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Abstract 

The modern student-disengagement crisis is thought to be partly due to the COVID-19 pandemic 

of the last three years. However, many student disconnection reports date back several decades 

and recognize a lack-of-belonging as the key issue. University remedies range from social events 

and student organization activities to academic-related growth opportunities and curriculum 

improvements down to an individual course level. Mathematics skill building, particularly in 

engineering and engineering technology majors, is of paramount importance but often left to the 

standard mathematics course sequence. This article presents a course-level approach that engages 

students through solving engineering problems using mathematics in a more practical way. The 

approach is to (i) reveal common mathematical challenges arising in science and engineering 

problems from various fields; (ii) present the problem solution leading to a common mathematics 

formulation (e.g., a set of linear equations or a differential equation); (iii) review the relevant 

background that solves the specific mathematics question relating the solution back to the 

original problem and to upper-division courses; and (iv) use the MathWorks MATLAB & 

Simulink environment to simulate, verify and visualize the solution. The new course offered in 

2023 will focus primarily on engineering technology sophomore and junior students and use 

applied mathematics as a universal interdisciplinary language that encourages a sense of 

belonging, increases students’ confidence in their major, and prepares them for success in 

engineering careers. 

1. Introduction 

The return-to-normal after three years of lockdowns, travel bans, remote learning, and other 

mitigating actions to curb the spread of COVID-19, has re-opened a conversation in academia 

centered on a general observation of student disengagement in the learning process. The 

observation has been reported for decades in one way or another using terms such as apathy, or 

describing it as a student’s feeling of emptiness, a lack of commitment, an interest in quick 

answers to questions, and a focus on a quick path to a degree showing little or no effort to fully 

participate in the learning process. The widely reported plagiarism crisis may very well be a 

consequence of the above-mentioned issues that students face. However, this disconnection with 

academic work is attributable to a lack of belonging to the University, or Department, or even an 

individual course mission [1]. 
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Improving academic engagement is a top priority for many researchers [2]. Universities and their 

academic units tackle the issue in a variety of ways ranging from social events on campus, 

student organizations activities, and spirit-building via sports, to providing a freshman-year 

experience, study abroad opportunities usually in the junior year, undergraduate research during 

the summer, or a Senior Capstone integrative course particularly in engineering and engineering 

technology (ET) majors. Participating students likely experience a positive trajectory from 

freshman to graduation and career placement, adding to a strong alumni base. Many students do 

not participate because of many reasons that mainly infringe upon their time management for 

academic tasks, such as family and work-related constraints. In other cases, an inadequate 

preparation in lower-division courses prevents students’ success in junior and senior-level 

classes. It is well known that at the course level in engineering and ET programs, inadequate 

mathematics knowledge is identified as one of the reasons for high failure rates and major 

attrition during the sophomore year. Nevertheless, none of the programs mentioned above 

focuses on the importance of mathematics for student success. 

The trademark ‘The degree is engineering technology, the career is engineering’ ™ guides 

students to a career that has grown increasingly interdisciplinary, complex, and math intensive. 

One challenge is overcoming a tendency to conclude that engineers in industry hardly ever need 

to use mathematics beyond calculus to perform functional engineering tasks. The evidence used 

to reach this conclusion may be based on feedback from engineers in industry. Moreover, the 

point is made that the profile of engineering technology faculty has morphed considerably to 

individuals who have a PhD in engineering, have not spent time in industry, and hence teach 

from a purely academic perspective. While these points may be true, the fact is that students 

must demonstrate abilities to use mathematics well beyond calculus in an educational path 

culminating in readiness for “engineer” titles in a competitive market with increasingly 

demanding technical tasks.  

A Google search of the question “How much math is used by practicing engineers?” yields 

various interesting responses. Some respondents reason that the amount and level of mathematics 

usage depends on the field, the position, and the years of experience. Others point to the 

availability of specialized software packages that for example perform finite-element analysis, 

and that all is needed is setting up the geometry and initial and boundary conditions. However, a 

fair amount of differential equation knowledge is needed to understand what initial and boundary 

conditions are and what role they play in the solution of the problem at hand. In addition, without 

some knowledge of the mathematics behind the software analysis, a user may misinterpret the 

results.  

Another example is in the field of Process Control. MATLAB has done an amazing job of 

creating a simulation environment that allows a designer to setup the configuration of the 

feedback system, the type of controller, the desired set of performance specifications, and even 

optimization parameters. One academic debate is whether to teach students to simply utilize a 

software package like MATLAB as a tool to design controllers, or to first teach the intricacies of 

the controller using differential equation language so that a true appreciation of the system 

performance can be acquired. Granted, one could use Excel or MATLAB to solve a differential 

equation as suggested by many practicing engineers. The educational question at the forefront is 

whether students can understand what a software package produces without some conceptual 

understanding of what is behind the calculations. Without that knowledge, one is blindly 
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performing simulations, whereas solving math problems develops a thinking process that is 

found tremendously beneficial in engineering as a field of design and performance analysis 

under constraints. 

It is important that faculty continuously modernize their teaching methodology to engage 

students, update degree plans to enhance the students’ appreciation of the goals of the chosen 

major, and revise course content to keep them relevant for students to achieve those goals toward 

a solid career placement. The COVID-19 pandemic created a uniquely stressful situation 

whereby faculty and students had to adapt literally overnight to blended technologies to facilitate 

engineering students’ achievement of competencies [3]. Assessment of competency achievement 

is equally challenging and can be approached by treating learning as a complex dynamical 

system with inputs and outputs in a dynamical continuous discrete assessment methodology [4]. 

For students interested in an engineering career, degree updates in the US follow ABET, which 

in 2011 renamed the Technology Accreditation Commission (TAC) to the Engineering 

Technology Accreditation Commission (ETAC). ET students are expected to develop a 

mathematics proficiency level adequate to achieve the career objectives set by ABET and state 

requirements. Then, in 2015, the ET Council of ASEE obtained approval to trademark the 

statement ‘The degree is engineering technology, the career is engineering’ ™ furthering the 

need for mathematics proficiency in an ET degree.  

An effective way to situate the ET degree in the engineering spectrum was suggested in 2009 [5] 

via the “Conceive, Design, Implement, and Operate” (CDIO) framework that visualizes how the 

majority of graduates gravitate toward the “Design-Implement” area where functional 

engineering tasks are performed. While it may be true that most functional engineering tasks do 

not rely on mathematics beyond calculus, it is an error in judgement to conclude that the 

educational path to an “engineer” title does not need more advanced mathematics. Furthering 

such conclusions tends to contribute to students’ misguided expectations and poor performance 

due to a so-called “Temporal Relevance” perception [6].  

Therefore, the key hypothesis throughout this article is that mathematics is critically important 

along the educational path of an ET degree as one of the two main university degrees that leads 

to an engineering career, and that there is a way to engage ET students through application-

oriented courses using computational tools. Many corroborating studies can be found in the 

literature [7-10], but primarily in the context of engineering curricula. In ET, the typical 

ETAC/ABET Accredited B.S. degree includes core mathematics requirements covering standard 

Calculus I and II material. Then, a third mathematics course may be needed to satisfy university 

requirements with options such as Engineering Math, Probability & Statistics, or others. Some 

students opt to earn a minor in mathematics requiring other courses such as Linear Algebra and 

possibly additional electives. An anecdotal observation by engineering and ET faculty across 

different programs and universities is that many math courses tend to focus on the marvel of 

mathematical intricacies and therefore lack the application side that engineering-bound students 

seek. Another anecdotal observation is that engineering and ET faculty must take time away 

from upper-division courses to cover math background resulting in less time for engineering 

topics to be covered and a redundant effort by several faculty members across many programs. 

The Mathematical Association of America (MAA), via its Committee on the Undergraduate 

Program in Mathematics, conducts periodic studies on ‘where undergraduate students should be’ 
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in each of the four years leading to science, mathematics, and engineering degrees regarding 

foundations of mathematics and its applications in various disciplines, pedagogy, and the use of 

technology in mathematics [11]. The MAA recommends five cognitive learning goals in 

mathematics programs for students interested in engineering: 

1. Critical thinking. Students will be able to think creatively and analytically. 

2. Problem solving. Students will be able to apply the necessary mathematical tools and 

appropriate computational technology to solve complex problems.  

3. Modeling. Students will be able to construct valid mathematical models for engineering 

applications.  

4. Visualization. Students will be able to use visualization skills to assist with problem- 

solving and modeling.  

5. Communication. Students will be able to clearly articulate ideas orally and in writing. 

This article seeks to help address several of the issues above with a new course “Applied Math in 

ET” offered by the ET Department at the University of Houston in 2023. Applied Math is not 

simply the application of mathematics to solve “real world” problems. A more effective 

pedagogical perspective lies in the presentation of the material starting with a science or 

engineering problem definition followed by mathematical solutions and their visualization. Two 

key components guiding the design of this course cover several MAA recommended cognitive 

goals as described below: 

1) Applied and connected presentation. The content should be drawn from science and 

engineering problem definitions rather than mathematical definitions so that modeling is 

included. The mathematics should focus on the utilization of tools rather than on the 

intricacies of how they came about. Finally, solutions should be connected as much as 

possible to upper-division ET courses to avoid the Temporal Relevance perception [3]. 

2) Computational thinking. A software environment should be chosen as the primary venue 

to decompose the problem, simulate, verify, and visualize the solution, thus promoting 

computational thinking as a process applied in real-world applications. Many studies 

report on the measurable advantages that a computing environment such as the 

MathWorks MATLAB/Simulink provide in engineering [12]. 

Therefore, the approach taken to organize this new course comprised the following four steps:  

Step 1. Reveal how science and engineering problems from various fields exhibit 

overlapping and often equal mathematics challenges and that complex problems can be 

decomposed into more basic problems (computational thinking). 

Step 2. Present the science or engineering problem solution that can be decomposed to a 

common mathematics formulation, for example, a set of linear equations or a differential 

equation. 

Step 3. Review the relevant background that solves the specific mathematics question and 

relate the solution back to the original problem. 

Step 4. Use a computation tool such as the MathWorks MATLAB/Simulink environment 

to simulate, verify and visualize the solution. Connect the problem and solution to upper-

division courses. 
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The remainder of the article is organized as follows: Section 2 describes the content of the 

course; Section 3 presents various examples; and Section 4 concludes and offers 

recommendations for further studies. 

2. Course Content 

Table A in the Appendix provides a content summary organized into six major units for a 

semester-long course. The starting expectations are that students have a working knowledge of 

differentiation and integration as covered in the sequence Calculus I and II. The first assignment 

is to complete a two-hour self-paced MATLAB OnRamp course [13]. Students upload a 

Completion Certificate for credit. In addition, students view a computational thinking video and 

participate in a discussion board on how a computation tool such as MATLAB can be used to 

solve problems. The instructor reviews the concept in the class and follows the computational 

thinking process to solve the problem.  

Student performance is assessed in a variety of ways each following the computational thinking 

process: 

1. In-Class Problem (ICP). This is a team-solved problem in class using all available resources 

including MATLAB. Sometimes, more complex or extensive portions of an ICP may be 

converted into a Homework assignment. 

2. Homework Assignments. Students are required to present solutions in a professional 

engineering manner leading with problem definition, assumptions, and logical analysis. The 

advice is to avoid lengthy derivations but show intermediate steps, label figures, include 

relevant software code e.g., MATLAB, and provide explanations for equations and figures. 

3. Tests. Two in-person tests gauge individual knowledge acquisition. 

4. Group Project. Groups of 2-3 members present the solution to a science or engineering 

problem of their choosing from other courses in their respective majors. 

 

3. Typical Illustrative Examples 

The following examples illustrate the teaching methodology using computational thinking and 

computation tools to solve mathematical problems. Note that the process will help students take 

the systematic steps to solve ‘complicated' problems. Computational thinking takes the following 

steps: first describe the problem in words, second decompose the problem into simpler sub-

problems, then solve the sub-problems, and finally build the solutions up to complete the whole 

solution.  

Example I. A word problem leading to solving an algebraic equation 

Step 1 – problem statement. Car #1 drives north at a constant speed 𝑣1, while Car #2 starts to 

drive west a time 𝑇𝑑 later. How long does it take for the cars to be a bird-fly distance 𝐷 apart? 

Step 2 – problem decomposition and modeling.  
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Find the relation between the distance traveled by each car and the time it takes: 𝑑 = 𝑣𝑡; then, 

use the Pythagorean theorem to relate the distance travelled by each car and the bird-fly distance, 

(D). This relation is illustrated in Figure 1. 

 

 

 

 

Figure 1. Problem illustration 

Step 3 – write the appropriate mathematical equations that solve the built-up problem.  

𝑑1
2 + 𝑑2

2 = 𝐷2 ⇒ (𝑣1𝑇)2 + (𝑣2(𝑇 − 𝑇𝑑))
2

= 𝐷2 

Given 𝑣1, 𝑣2, 𝑇𝑑, 𝐷, this is a quadratic equation in the unknown 𝑇. Suppose further that Car #2 

is faster than Car #1, 𝑣2 = 𝛽𝑣1, 𝛽 > 1.  Then, 

(𝑣1𝑇)2 + (𝑣2(𝑇 − 𝑇𝑑))
2

= 𝐷2 ⇒  𝑣1
2𝑇2 + 𝛽2𝑣1

2(𝑇2 − 6𝑇 + 9) = 𝐷2 

(1 + 𝛽2)𝑇2 − 2𝑇𝑑𝛽2𝑇 + 𝑇𝑑
2𝛽2 = (

𝐷

𝑣1
)

2

⇒ 𝑎𝑇2 + 𝑏𝑇 + 𝑐 = 0 ⇒ 𝑇 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

Step 4 – use MATLAB to solve the above equation. A numerical case is summarized in Table 1.  

 

Table 1. Numerical case for Example I. 

 MATLAB and Comments 

  𝑣1 = 40
𝐾𝑚

ℎ
;   𝑇𝑑 = 3 ℎ  

   𝛽 = 1.5;  𝑣2 = 60
𝐾𝑚

ℎ
;   𝐷 = 500 𝐾𝑚 

 

>> beta=1.5; D=500; v1=40; 

>> roots([1+beta^2 -6*beta^2 9*beta^2-

(D/v1)^2]) 

ans =      8.8710       -4.7172  

The negative root is not admissible 

 ⇒ 𝑇 = 8.87 ℎ which means Car #1 travels 8.87 h (8 h, 52 

m, 12 s) and Car #2 travels 3 hours less. 

 

Example II. Analysis of inequalities arising in a feedback control problem 

𝐷 
𝑑1  

𝑑2 
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Step 1 – problem statement. The bounded-input, bounded-output stability of a linear model of an 

unmanned submersible vehicle under pitch angle feedback control is determined by analyzing 

the associated Routh-Hurwitz entries in Table 2, 

 

Table 2. A Routh-Hurwitz Stability Table for Example II. 

𝑠4 1 3.457 0.0416 + 0.109𝐾 

𝑠3 3.456 0.719 + 0.25𝐾 0 

𝑠2 11.228 − 0.25𝐾 0.144 + 0.377𝐾 0 

𝑠1 
−0.0625𝐾2 + 1.324𝐾 + 7.575

11.228 − 0.25𝐾
 0 0 

𝑠0 0.144 + 0.377𝐾 0 0 

 

 

where 𝐾 is an amplifier pitch gain to be designed. It can be shown that the system remains in a 

stable operating mode if there are no sign changes in the first column.  

Step 2 – problem decomposition and modeling. Analyze each entry in the first column and 

provide conditions that avoid sign changes. 

Step 3 – write the corresponding mathematical relations and analyze each one. Since the first 

two entries in the first column are positive, the following sequence of conclusions are made: 

 

a. From the 𝑠2-Row:   11.228 − 0.25𝐾 > 0 ⇒ −∞ < 𝐾 < 44.91 

b. From the 𝑠1-Row: since the denominator 11.228 − 0.25𝐾 > 0 is kept positive, then 

the numerator remains positive if the following condition is satisfied: 

−0.0625𝐾2 + 1.324𝐾 + 7.575 > 0 ⇒ 𝐾2 − 21.184𝐾 − 121.2 < 0 ⇒ (𝐾 − 25.869)(𝐾 + 4.685) < 0 

Use MATLAB to obtain a graph of the quadratic function shown in Figure 2 to assist with 

analysis visualization. This is done with three basic commands shown next. 

>> K = -10:0.01:30;   % Set up K interval 

>> F = K.^2 - 21.184*K - 121.2;  % Compute F 

>> plot(K,F), grid   % Plot  
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Fig. 2. Graph of the function 𝐹 = 𝐾2 − 21.184𝐾 − 121.2. 

The visualization of the inequality (𝐾 − 25.869)(𝐾 + 4.685) < 0 yields the revised constraint 

−4.685 <   𝐾  <  25.87 

c. Lastly, from the 𝑠0-Row:     0.144 + 0.377𝐾 > 0 ⇒ −0.382 < 𝐾 < ∞ 

Step 4 – provide the built-up solution. Combining the partial results, yields the overall 

conclusion that the system remains in a stable operating mode if the pitch gain value is kept in 

the range   −𝟎. 𝟑𝟖𝟐 < 𝑲 < 𝟐𝟓. 𝟖𝟕 

Example III. A system of linear equations 

Step 1 – problem statement. Many flow control problems can be visualized as in Figure 3 

showing a 5-node network, where the arrows from one node to another represent known values 

or unknown flows 𝑥𝑖, 𝑖 = 1,2,⋯ 5, and fundamental laws require that at each node, the net flow 

be zero. Examples include electric circuits; computer networks, traffic flow at intersections; 

water irrigation systems; mechanical trusses; and others. 

 

 

 

 

 

Fig. 3. A typical flow control network for Example III. 

Step 2 – problem decomposition and modeling. There are five nodes leading to five constraint 

equations obtained using the convention ∑(𝐹𝑙𝑜𝑤 𝑂𝑈𝑇) = ∑(𝐹𝑙𝑜𝑤 𝐼𝑁).   

Step 3 – write the corresponding mathematical relations and reason the solution. The five node 

equations that need to be solved simultaneously are: 

 

20 

10 10 
𝑥1 

𝑥2 𝑥3 

𝑥5 

𝑥4 

1 

5 4 

3 

2 
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Node 1 𝑥1 + 𝑥2 = 20 

Node 2 𝑥3 + 20 = 𝑥4 ⇒ 𝑥3 − 𝑥4 = −20 

Node 3 10 + 10 = 𝑥2 + 𝑥3 ⇒ 𝑥2 + 𝑥3 = 20 

Node 4 𝑥5 = 𝑥1 + 10 ⇒ 𝑥1 − 𝑥5 = −10 

Node 5 𝑥4 = 𝑥5 + 10 ⇒ 𝑥4 − 𝑥5 = 10 

 

In matrix form, 𝐴𝑋 = 𝐵  ⇒    

[
 
 
 
 
1 1 0 0 0
0 0 1 −1 0
0 1 1 0 0
1 0 0 0 −1
0 0 0 1 −1]

 
 
 
 

[
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5]
 
 
 
 

=

[
 
 
 
 

20
−20
20

−10
10 ]

 
 
 
 

  or in augmented form 

[
 
 
 
 
1 1 0 0 0 20
0 0 1 −1 0 −20
0 1 1 0 0 20
1 0 0 0 −1 −10
0 0 0 1 −1 10 ]

 
 
 
 

 

which is reducible by hand using elementary row and column operations to 

[
 
 
 
 
1 0 0 0 −1 −10
0 1 0 0 1 30
0 0 1 0 −1 −10
0 0 0 1 −1 10
0 0 0 0 0 0 ]

 
 
 
 

. 

Using MATLAB, 

>> A = [1 1 0 0 0 20; 0 0 1 -1 0 -20;  

0 1 1 0 0 20; 1 0 0 0 -1 -10; 0 0 0 1 -1 10] 

>> Ared = rref(A)   % Reference: Row Reduced Echelon Form 

Ared = 

     1     0     0     0    -1   -10 

     0     1     0     0     1    30 

     0     0     1     0    -1   -10 

     0     0     0     1    -1    10 

     0     0     0     0     0     0 

 

Step 4 – provide the built-up solution. The last equation reads 0 = 0 indicating there are an 

infinite number of solutions that can be parametrized by 𝑥5 = 𝑘, a given constant. Then, 

[
 
 
 
 
𝑥1

𝑥2
𝑥3
𝑥4

𝑥5]
 
 
 
 

=  

[
 
 
 
 

𝑘 − 10
−𝑘 + 30
𝑘 − 10
𝑘 + 10

𝑘 ]
 
 
 
 

. 
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For instance, suppose one could control the flow 𝑥5 from node 4 to node 5, 𝑥5 = 𝑘 = 10. Then 

the unique solution to this network flow control problem is given by 

  

[
 
 
 
 
𝑥1

𝑥2
𝑥3
𝑥4

𝑥5]
 
 
 
 

=  

[
 
 
 
 
0
20
0
20
10]

 
 
 
 

 

Example IV. A second order differential equation 

Step 1 – problem statement. The switched electric circuit in Figure 4 leads to two distinct time 

segments separated by the instant when the switch is closed at 𝑡 = 0. Determine the voltage in 

the capacitor 𝑣𝑐(𝑡) during each of these time segments. 

 

 

 

 

 

 

 

 

 

Fig. 4. A switched electric circuit in Example IV. 

 

Step 2 – problem decomposition and modeling. Prior to closing the switch, that is, for 𝑡 < 0, the 

circuit is a DC circuit governed by fundamental laws. It can be shown that the resulting energy 

balance in the elements forces the so-called initial conditions on the capacitor voltage and its first 

derivative to be 𝑣𝑐(0) = −6𝑉 and 
𝑑

𝑑𝑡
𝑣𝑐(0) = 0. Then, closing the switch at 𝑡 = 0 changes 

the electric energy balance in such a manner that the capacitor voltage is the unique function 

𝑣𝑐(𝑡), 𝑡 > 0 that satisfies the forced, second-order, ordinary differential equation given by 

 

𝒅𝟐

𝒅𝒕𝟐
𝒗𝒄(𝒕) + 𝟏𝟐 × 𝟏𝟎𝟑

𝒅

𝒅𝒕
𝒗𝒄(𝒕) +

𝟏

𝟔
× 𝟏𝟎𝟗𝒗𝒄(𝒕) =

𝟒

𝟔
× 𝟏𝟎𝟗 

Step 3 – write the corresponding mathematical relations to build-up the complete solution. The 

homogeneous or natural component of the total solution of the differential equation is found 

from the associated pair of complex-conjugate roots of the characteristic equation 

 

𝑠2 + 12 × 103 𝑠 +
1

6
× 109 = 0    or    𝑠1,2 = −6 ± 𝑗11.431 × 103 = −𝜎 ± 𝑗𝜔𝑑 

easily verified with MATLAB 

>> roots([1  12000  (1/6)*10^9]) 

ans =   1.0e+04 * 

  -0.6000 + 1.1431i       -0.6000 - 1.1431i 

The homogeneous solution of the differential equation therefore has the functional form 
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𝑣𝑐ℎ(𝑡) = 𝐾1𝑒
−𝜎𝑡 cos(𝜔𝑑𝑡 − 𝜙) 

 

written in terms of the two arbitrary constants 𝐾1 and 𝜙. Using trigonometric identities, the 

solution can also be written as follows: 

 

𝑣𝑐ℎ(𝑡) = 𝐾1𝑒
−𝜎𝑡 (cos(𝜔𝑑𝑡) cos(𝜙) + sin(𝜔𝑑𝑡) sin (𝜙)) = 𝑒−𝜎𝑡(𝐴1 cos(𝜔𝑑𝑡) + 𝐴2 sin(𝜔𝑑𝑡))  

where the new arbitrary constants are 𝐴1 = 𝐾1cos (𝜙) and 𝐴2 = 𝐾1sin (𝜙). 

The particular or forced component of the solution is a constant 𝑣𝑐𝑝(𝑡) = 𝐾2, which when 

substituted into the differential equation yields 

    
1

6
109 𝐾2 =

4

6
109  ⇒     𝐾2 = 4. 

Step 4 – provide the built-up solution. The total solution is then 

 𝑣𝑐(𝑡) = 4 + 𝐾1𝑒
−𝜎𝑡 cos(𝜔𝑑𝑡 − 𝜙)  or  𝑣𝑐(𝑡) = 4 + 𝑒−𝜎𝑡(𝐴1 cos(𝜔𝑑𝑡) + 𝐴2 sin(𝜔𝑑𝑡)) 

Finally, use the two initial conditions to find the constants 𝐾1 and 𝜙, or 𝐴1 and 𝐴2. 

First, using   𝑣𝑐(𝑡) = 4 + 𝐾1𝑒
−𝜎𝑡 cos(𝜔𝑑𝑡 − 𝜙)  and 

            𝑝𝑣𝑐(𝑡) = −𝐾1𝜎𝑒−𝜎𝑡 cos(𝜔𝑑𝑡 − 𝜙) − 𝐾1𝜔𝑑𝑒−𝜎𝑡 sin(𝜔𝑑𝑡 − 𝜙) 

leads to the two equations  𝑣𝑐(0) = −6 = 4 + 𝐾1 cos(𝜙) ⇒ 𝑲𝟏 𝐜𝐨𝐬(𝝓) = −𝟏𝟎 

𝑝𝑣𝑐(0) = −𝑲𝟏𝝈 𝐜𝐨𝐬(𝝓) + 𝑲𝟏𝝎𝒅 𝐬𝐢𝐧(𝝓) = 𝟎 

with solution 𝝓 = 𝟎. 𝟒𝟖𝟑𝟒  and 𝑲𝟏 = −
𝟏𝟎

𝐜𝐨𝐬(𝝓)
= −𝟏𝟏. 𝟐𝟗 

Finally, 𝒗𝒄(𝒕) = 𝟒 − 𝟏𝟏. 𝟐𝟗𝒆−𝟔𝟎𝟎𝟎𝒕 𝐜𝐨𝐬(𝟏𝟏. 𝟒𝟑𝟏 × 𝟏𝟎𝟑𝒕 − 𝟎. 𝟒𝟖𝟑𝟒)  (𝑽),     𝒕 > 𝟎 

Alternatively, using   𝑣𝑐(𝑡) = 4 + 𝑒−𝜎𝑡(𝐴1 cos(𝜔𝑑𝑡) + 𝐴2 sin(𝜔𝑑𝑡))   and 

 𝑝𝑣𝑐 = −𝜎𝑒−𝜎𝑡(𝐴1 cos(𝜔𝑑𝑡) + 𝐴2 sin(𝜔𝑑𝑡)) + 𝑒−𝜎𝑡(−𝐴1𝜔𝑑sin (𝜔𝑑𝑡) + 𝐴2 ωd𝑐𝑜𝑠(𝜔𝑑𝑡))    

the two simultaneous equations and their solution are 

𝑣𝑐(0) = −6 = 4 + 𝐴1 ⇒ 𝑨𝟏 = −𝟏𝟎 and 𝑝𝑣𝑐(0) = 0 = −𝜎𝐴1 + 𝐴2𝜔𝑑 ⇒ 𝑨𝟐 = −𝟓. 𝟐𝟒 

Finally, 𝒗𝒄(𝒕) = 𝟒 − 𝒆−𝟔𝟎𝟎𝟎𝒕(𝟏𝟎𝐜𝐨𝐬(𝟏𝟏. 𝟒𝟑𝟏 × 𝟏𝟎𝟑𝒕) + 𝟓. 𝟐𝟒 𝐬𝐢𝐧(𝟏𝟏. 𝟒𝟑𝟏 × 𝟏𝟎𝟑𝒕)) (𝑽),   𝒕 > 𝟎 

The capacitor voltage is of the underdamped type with a time constant 𝜏 =
1

6
 𝑚𝑠𝑒𝑐. The signal 

starts at 𝑣𝑐(0) = −6 𝑉, exhibits a peak overshoot, some oscillations lasting for about 5 time 

constants or 
5

6
 𝑚𝑠𝑒𝑐, and reaches a steady-state value of 𝑣𝑐(∞) = 4 𝑉.  MATLAB is used to 

visualize the solution. First, rescale time 𝑡 to msec (6000𝑡 = 6𝑡1). Then, the following 

commands create a plot of the capacitor voltage 𝑣𝑐(𝑡), 𝑡 > 0: 

 
>> t1=0:0.01:10/6;  % Create a time vector of 10 time constants 
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>> Vc=4-11.2938*exp(-6*t1).*cos(11.431*t1-0.4843);   

% Note the use of the .* command 

>> plot(t1,Vc),grid   

% Use X Label, Y Label, Title, and Textbox tools under the Insert menu 

 

 

 

 

 

 

 

 

Fig. 5. Capacitor voltage in Example IV. 

 

5. Conclusions and Further Work 

A new course, Applied Math in Engineering Technology, is created to increase students’ 

analytical confidence and prepare graduates for success in engineering careers. The course is 

envisioned to further instill in students a sense of belonging to a course, a major, and by 

expansion to an engineering career. Six modules comprise the full content and assessment is 

accomplished with homework assignments, in-class problem exercises, tests and a project. Four 

examples were provided that illustrate the general course structure to reveal common 

mathematical challenges arising in science and engineering problems from various fields; to 

describe the problem solution leading to a common mathematics formulation (e.g., a set of linear 

equations or a differential equation); to review the relevant background that solves the specific 

mathematics question relating the solution back to the original problem and to upper-division 

courses; and finally, to use the MathWorks MATLAB & Simulink environment to simulate, 

verify and visualize the solution. The authors are preparing a website that grows to compile 

relevant examples available to the public. A longitudinal assessment is also planned to 

demonstrate the hypothesized educational value of this effort. 
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Appendix Table A. Applied Math in ET Content Summary and Semester Schedule 

1 

Introduction. Engineering problems with common mathematics challenges. Computational Thinking – 

the need for computation, modeling and simulation 

https://serc.carleton.edu/teaching_computation/why_computation.html  

A review of units, complex numbers & algebra, trig functions, common trig identities, and engineering 

functions (impulse, step, ramp, exponential, sinusoids, and other).  MATLAB tools (e.g., plot. 

Complex number algebra). Engineering applications. 

Weeks 

1 – 3 

Review Calculus 

I and II  

Make sure you 

have Matlab 

access. 

Visit 

https://matlabaca

demy.mathworks.

com/ for Matlab 

tutorials. 

 

2 ICP and 3 HW 

(Weeks #2-#6) 

 

Test T1 

2 

Engineering Data Analysis & Manipulation: Solution of linear equations, overdetermined and 

underdetermined cases, basic linear algebra (matrices, eigenvalues, and eigenvectors), mean and 

variance, curve fitting, least-squares minimization.  Calculus operations, Zeros of functions, local 

minima/maxima; calculating area via Simulink. Numerical solution of nonlinear equations. MATLAB 

tools (e.g., polyfit, fzero, spline, fsolve; symbolic manipulation) 

Weeks 

3 – 4 

3 

Linear Constant Coefficient Ordinary Differential Equations (DFQ):   

Classical solution of 𝑛𝑡ℎ-order DFQ: decomposition into natural (homogeneous) and forced (particular) 

components. Decomposition into its equivalent matrix representation using 𝑛 first order DFQs of the form  
𝑑

𝑑𝑡
𝑤(𝑡) = 𝐴𝑤(𝑡), and finding 𝑒𝐴𝑡 (𝐴 ∈ ℜ𝑛𝑥𝑛 a square matrix). Lab simulation. MATLAB tools (e.g., 

lsim, ilaplace, residue).  Block diagrams and numerical Simulation in Simulink. 

Weeks 

4 – 7 

4 

Transformations: introduce the notion of transformations as a means of easing mathematical 

operations from logarithms to phasor analysis, Fourier Series/Transforms (vibrations), Laplace 

Transforms (solving DFQ), and Z-Transforms (sampling). 

Weeks 

7 – 10 

3 ICP and 3 HW 

(Weeks #8-#13) 

 

Test T2 

 

Group Project 

Due (Week 15) 

5 

Partial Differential Equations (PDE): classical heat and wave equations, method of separation of 

variables 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡), finite mode expansions 𝑦(𝑥, 𝑡) = ∑ 𝜙𝑘(𝑥)𝑞𝑘(𝑡)
𝑁
𝑘=1 , and matrix 

representation  
𝑑

𝑑𝑡
𝑤(𝑡) = 𝐴𝑤(𝑡).   Engineering applications. 

Weeks 

10 – 13 

6 
Further Topics: Introduction to Discrete-Time Signals and Systems, sampling, difference equations. 

Nonlinear differential equations and linearization. 

Weeks 

14 – 15  

 

  

https://serc.carleton.edu/teaching_computation/why_computation.html
https://matlabacademy.mathworks.com/
https://matlabacademy.mathworks.com/
https://matlabacademy.mathworks.com/
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