
AC 2008-448: TEACHING BLACK-BOX TESTING TECHNIQUES THROUGH
SPECIFICATION PATTERNS

Salamah Salamah, Embry-Riddle Aeronautical University, Daytona Beach

Ann Gates, University Of Texas - El Paso

© American Society for Engineering Education, 2008 

P
age 13.1149.1



Using Specification Patterns to Teach Black-Box Testing

Ann Q. Gates

Computer Science Dept., University of Texas at El Paso.

Salamah Salamah

Computer and Software Engineering Dept., Embry-Riddle Aeronautical University.

Abstract

Software verification is one of the most important activities in the software development cycle,

and testing remains the most common approach to verification used in industry. The goal of black-

box testing (functional testing) is to verify the system’s adherence to specifications. The notion of

patterns and scopes developed by Dwyer et al. provides a cohesive and rich set of examples to

teach black-box testing strategies. A pattern describes a recurring software property, and a scope

specifies the interval of program execution where a pattern must hold. A property specified using a

pattern and scope combination has characteristics that must be satisfied if it is to hold. Based on

these characteristics, there is a large set of behaviors that can be examined using black-box testing

techniques. In a complementary fashion, the behaviors specified by patterns and scopes provide

clear and simple examples that can enhance the understanding of these testing techniques. In this

paper, we describe an approach and present general lessons and exercises that demonstrate how

patterns and scopes can be used to teach boundary value analysis and equivalence class testing,

which are two of the most commonly used black-box testing techniques. As a side effect of this

approach, students are exposed to, and become familiar with, formally specifying system behavior.

1 Introduction

Testing remains the most natural and customary way of verifying a piece of software [6]. In

software development, testing ranges from verifying the separate components of the system (meth-

ods, classes, etc.) to verifying the system as a whole (system testing). Testing approaches also

differ in their techniques, which are based on the accessibility to the internal structure (code) of the

system. In black-box testing techniques, test cases are defined based on system specification and

without any consideration for the design or implementation of the system. Conversely, white-box

techniques focus on testing the actual code of the system. As such, black-box testing is referred to

as specification-based testing, and white-box testing is refereed to as implementation-based testing

[6].

In this work, we focus on two of the most common black-box testing techniques: equivalence

class testing, and boundary value analysis. Specifically, we discuss the Specification Pattern System

(SPS) and the notions of patterns and scopes introduced by Dwyer et. al., [4] and how they are used

to assist in defining system specifications. We then introduce an approach that uses patterns and

scopes to teach the aforementioned testing techniques.

This paper is organized as follows; Section 2 provides the background information about the

work. This includes a detailed description of SPS’ patterns and scopes. In addition, descriptions

1

P
age 13.1149.2



of equivalence class and boundary value analysis testing techniques are provided in Section 2.

The motivation behind using SPS to teach black-box testing is introduced in Section 3. Section 4

introduces the goals and desired outcomes of the introduced approach. Additionally, the section

highlights the general approach and exercises used to achieve these goals and desired outcomes.

The paper concludes with a summary and description of future work, followed by References.

2 Background

2.1 Specification Pattern System: Patterns and Scopes

Software specifications refer to properties that the system must adhere to. Specifications can be

defined and used at the different stages of software development and can range in formality from

completely informal (i.e., natural language) to completely formal (i.e., mathematical description).

Informal specifications provide a simple mean by which stakeholders, who are, usually, not im-

mersed in logic, can easily understand the desired system properties. On the other hand, formal

specifications are more succinct and unambiguous. More importantly, formal specifications allow

for the use of formal verification techniques such as model checking [3] and runtime monitoring

[7].

Eliciting and defining system specifications, however, is a complex issue in software develop-

ment, as it requires training and knowledge of the elicitation, analysis, and specification techniques.

The Specification Pattern System (SPS) [4] provides patterns and scopes to assist the practitioner

in formally specifying software properties. The work defined patterns and scopes after analyzing

a wide range of properties from multiple industrial domains, i.e., security protocols, application

software, and hardware systems. Patterns capture the expertise of developers by describing soft-

ware behavior for recurrent situations. Each pattern describes the structure of specific behavior and

defines the pattern’s relationship with other patterns. Patterns are associated with scopes, which

define the portion of program execution over which the property holds.

The main patterns defined by SPS are: universality, absence, existence, precedence, and

response. The descriptions given below are excerpts from the SPS website [10].

• Absence: To describe a portion of a system’s execution that is free of certain events or states.

• Universality: To describe a portion of a system’s execution which contains only states that

have a desired property.

• Existence: To describe a portion of a system’s execution that contains an instance of certain

events or states.

• Precedence: To describe relationships between a pair of events/states where the occurrence

of the first is a necessary pre-condition for an occurrence of the second.

• Response: To describe cause-effect relationships between a pair of events/states. An occur-

rence of the first, the cause, must be followed by an occurrence of the second, the effect.

In SPS, each pattern is associated with a scope that defines the extent of program execution over

which a property pattern is considered. There are five types of scopes defined in SPS (see [4] for a

detailed description of the scopes):

• Global: The scope consists of all the states of program execution.

• Before R: The scope consists of the states from the beginning of program execution until

the state immediately before the state in which proposition R first holds.

2

P
age 13.1149.3



Table 1. Summary of Characteristics for SPS’ Patterns
PATTERN CHARACTERISTICS

Absence (P ) 1) Event or condition P does not hold within the states defined by the scope of interest.
2) The absence property is also known as alarm.

Existence (P ) 1) Event or condition P holds at least once within the states defined by the scope of interest.
2) The existence property is also known as eventually.

Universality (P ) 1) Event or condition P holds in every state of the scope of interest.
2) The universality property is also known as safety or invariant.

(S) Precedes(P ) 1) S holds before P holds, where S and P are events or conditions
2) S may hold several times before P holds
3) P does not hold before S holds
4) P may hold at the same state as S holds
5) If S holds, then P may or may not hold
6) The precedence property represents a cause-effect relation, where S denotes a cause
and P denotes an effect
7) There is no effect P without a cause T

(S) Responds 1) P must be followed by S, where P and S are events or conditions
to (P ) 2) Some S follows each time that P holds

3) The same state at which S holds may follow two or more states at which P holds
4) S may hold at the same state as P holds
5) If S holds, then P may or may not hold at a previous state
6) The response property represents a cause-effect relation, where P denotes a cause and
T denotes an effect
7) If cause P holds, then at some future state effect S holds

• After Q: The scope consists of the state in which proposition Q first holds and includes all

the remaining states of program execution.

• Between Q And R: The scope consists of all intervals of states where the start of each

interval is the state in which proposition Q holds and the end of the interval is the state

immediately prior to one in which proposition R holds.

• After Q Until R: This scope is similar to the previous one except, if there is a state in which

Q holds and proposition R does not hold, then the interval of the scope will include all states

from and including the state where Q last holds until the end of program execution.

Figure 1 shows the scopes defined by SPS [10].

Figure 1. Scopes in SPS [10]

Tables 1 and 2 provide a detailed descriptions of the characteristics of these patterns and scopes

respectively.

SPS is presented as a website [10] with links to descriptions of the patterns. The website provides

a mapping of each pattern and scope combination into different formal specification languages.

For example, the property “A request always triggers an acknowledgment, between the beginning

3

P
age 13.1149.4



Table 2. Summary of Characteristics for SPS’ Scopes
SCOPE CHARACTERISTICS

Global 1) The scope denotes the entire computation.
2) The scope includes all the states in the computation.
3) The interval defined by the scope occurs once in a computation

Before R 1) The scope denotes a subsequence of states or events (an interval) that begins with the
start of computation and ends with the state or event immediately preceding the event or
state at which R holds for first time in the computation.
2) The interval does not include the state or event associated with R.
3) The interval defined by the scope occurs once in a computation.
4) One or more events (conditions) may be associated with R; a condition is a proposition
and an event is a change in value of the proposition from one state to the next.

After Q 1) The scope denotes a subsequence of states or events (an interval) that begins with the
first event or state at which Q holds and ends with termination of computation.
2) The interval includes the state or event associated with Q
3) The interval defined by the scope occurs once in a computation.
4) One or more events (conditions) may be associated with Q; a condition is a proposition
and an event is a change in value of the proposition from one state to the next.

Between Q and R 1) The scope denotes a subsequence of states or events (an interval) that begins when Q
holds and ends with the state or event immediately preceding the event or state at which
R holds.
2) Event or condition Q must hold and, at a different event or state in the future, R must
hold.
3) The interval includes the state or event associated with Q
4) The interval does not include the state or event associated with R.
5) The interval defined by the scope may occur more than once in a computation.
6) Multiple intervals may be defined within an interval when Q holds more than once
before R holds
7) One or more events (conditions) may be associated with Q and R

After Q Until R 1) The scope denotes a subsequence of states or events (an interval) that begins when Q
holds and ends either with the state or event immediately preceding the event or state at
which R holds, or begins when Q holds and ends with the termination of computation.
2) The interval includes the state or event associated with Q
3) The interval does not include the state or event associated with R
4) The interval may repeat during a computation.
5) If Q holds and R does not hold, the interval ends with termination of a computation.
6) The interval defined by the scope may occur more than once in a computation.
7) Multiple intervals may be defined within an interval when Q holds more than once
before R holds
8) One or more events (conditions) may be associated with Q and R

4

P
age 13.1149.5



of execution and system shutdown.” can be described by the S Responds to P pattern within the

BetweenQ and R scope, where S denotes “Acknowledgement is triggered.”, P denotes “Request

is made.”, Q denotes “Execution begins.”, and R denotes “System is shut down.”. SPS provides

mapping of pattern and scope combinations in multiple formal presentations such as Linear Tempo-

ral Logic (LTL) or Computational Tree Logic (CTL). For example, the specification for the above

property in LTL, as provided by the SPS website, is:

2((Q ∧ (¬R) ∧ ⋄R) → (P → ((¬R)U(S ∧ ¬R)))UR).

Traces of Computation Through the reminder of this paper, we use the notion of traces of com-

putation to describe test cases and the behaviors accepted by pattern and scope combinations. A

trace of computation is a string representing a sequence of states that depicts the propositions that

hold in each state. Each character in the string represents a state, and a dash (-) implies that no

proposition is true at that state. A letter symbol, e.g., P, S, Q, and R, denotes that the proposition is

true in the designated state. Displaying more than one letter between parentheses implies that the

propositions represented by the letters are valid at that state. For example, in the trace of computa-

tion “- - Q - - R - - (SP) - -”, Q is true in the third state, R is true in the sixth state, and S and P are

both true in the ninth state.

2.2 Equivalence Class Testing

In general, it is impossible to test all possible operating conditions of a software system. As

such, it is necessary to define and execute representative test cases to give enough evidence that the

system (or the part of interest) exhibits the desired behavior, even in those cases that have not been

tested.

In Equivalence class testing, test cases are partitioned into sets from which exemplars are se-

lected. The technique assumes that test cases from a partition are equally likely to expose an error

and, hence, only a representative test case is needed. This enables developers to significantly reduce

the number of tests to run. In other words, the goal of equivalence class testing is to minimize the

number of possible tests while at the same time have enough coverage to provide confidence in the

correctness of the code or system being tested. For example, the two traces of computation “Q - P

- - - - - -” and “Q - - - - - - P - -” belong to the same equivalence class in testing the existence(P )

pattern within the After Q scope. In both tests, P occurs after Q, which holds in the first state. As

a result, we only need to run one of the these tests.

Using equivalence class partitioning, we can derive test sets for each pattern and scope combina-

tion. For example, the test sets for the Absence (P ), and Existence (P ) patterns can be partitioned

at the upper level into two sets: 1) P does not hold in any state of the interval(s) and 2) P holds in

some state of the interval(s). The test sets for the S precedes P (S responds to P ) pattern can be

partitioned at the upper level into two sets: 1) S does not precede P (S does not respond to P ) in

any state of the interval(s) and 2) S precedes P (S responds to P ) in the interval(s). The partitions

for the Universality pattern and for Global scope are slight variations of the above partitions. The

next level of partitions is based on the intervals defined by the scope as follows:

• Before R (After Q)-Partition 1:

– R (Q) holds in the first state

– R (Q) holds in the last state

– R (Q) holds in other states

5

P
age 13.1149.6



– the interval is not built

• Before R (After Q)-Partition 2:

– Q holds in the first state (not applicable for R)

– R (Q) holds in the last state

– R (Q) holds in other states

• Between Q and R (After Q Until R)-Partition 1:

– the interval is not made

– a single interval is made and

∗ Q holds in the first state

∗ R holds in the last state

– multiple intervals are made

– nested intervals are made

• Between Q and R (After Q Until R)-Partition 2:

– a single interval is made and

∗ Q holds in the first state

∗ R holds in the last state

∗ Q and R hold in other states

– multiple intervals are made

– nested intervals are made

2.3 Boundary Value Analysis

The boundary value analysis strategy is a method by which input values are chosen to lie on

data extremes. Example values are those representing the maximum value, minimum value, and the

values just before and after boundaries. The idea is that, if a the system works correctly for these

special values then it will work correctly for all values in between.

The test cases defined in each of the sub-partitions in Section 2.2 are based on boundary value

analysis strategies. For example, consider the following three test cases that are associated with

Absence - After Q and the sub-partition “Q holds in other states” under Partition 2:

1. - - - - - - - - - P Q - - - - - - - - - -

2. - - - - - - - - - - (QP) - - - - - - - - - -

3. - - - - - - - - - - Q P - - - - - - - - -

Test case 1 is valid, and the last two test cases are not valid. Test case 2 checks that P holds in

the first state in which Q becomes true. Test case 2 is also used for a Before R test case, where Q

is replaced by R. In this case, the test would be valid. Tables 3 and 4 give the complete set of test

cases for the Absence-Before R and Precedence-Between Q and R patterns respectively. The

complete set of test cases for all patterns and scopes can be found in [8].

Notice that in using the two testing techniques, test cases that check conditions that can be

verified through other test(s) should be eliminated. For example, in the S precedes P pattern within

the Between Q and R scope, the following test case is not needed: −−−Q −−(PS) −−− R.

There are two issues that are being checked by this test case; it checks that precedence is upheld

6

P
age 13.1149.7



when P and S hold at the same state, and it checks that the interval is built even when R occurs

in the last state of the computation. These two conditions are covered by test cases 2(a)(vi) and

2(b)(iii) respectively as given in Table 3.

3 Motivation

The main contribution of this paper is to show how the aforementioned notions of patterns and

scopes can be used in teaching black-box testing techniques. The motivation behind this use of

patterns and scopes is twofold; 1) The characteristics of these patterns and scopes seem to be a

perfect fit with the notions of boundary values and equivalence classes, and 2) the students will be

introduced to formal specifications of software properties.

Applicability of Patterns and Scopes: Considering the scope characteristics in Table 2 and Fig-

ure 1, we can find a perfect symmetry with the conditions emphasized in testing boundary values.

Scopes, formally1, define the states of interest within system execution (i.e., define boundaries

where a pattern is to hold). As a result, scopes characteristics provide sufficient examples to ex-

plain what constitutes a boundary value. For example, using the scope Before R, one can test

whether the pattern of interest is upheld if that pattern holds immediately before the state where R

holds, and at the same state as R, at the state immediately after R. In a similar fashion, patterns can

be used to better understand equivalence class testing. For example, using the S Responds to P

pattern, we can think of multiple equivalence classes to choose tests from:

• P never holds, and S holds,

• P and S never hold,

• P holds and S never holds,

• P holds and S holds before P,

• P holds and S holds after P,

• P and S hold at the same state (this might be considered for boundary analysis),

• ...

It is important to note that scopes can also be used to explain equivalence classes and patterns

can be used to explain boundary analysis. For example, the Between L and R scope provides

multiple equivalence classes to test whether the scope is built or not. Some of these classes are

R holds before L, L holds at the same state as R, and L holds and is followed by multiple states

where R holds. It is because these patterns and scopes are rich in characteristics that they provide

ample combinations of situations that that can be used to teach and test the two black-box testing

techniques. The SPS website [10], contains more than 500 properties that are defined by patterns

and scopes. These properties are examples that instructor can use as real life situations.

Introducing Students to Formal Specifications: Formal specifications allow for the precise and

unambiguous definition of software properties. They are also required in the use of formal ver-

ification techniques such as model checking [3] and runtime monitoring [7], which are effective

approaches for improving the dependability of programs. These techniques check the correctness

of the system against specifications written in a formal specification language. Additionally, formal

1SPS provides a formal description for each pattern and scope combination in multiple languages.

7

P
age 13.1149.8



Table 3. Equivalence Classes for Precedence Between Q and R
EQUIVALENCE
CLASSES ON P

TEST CASES WITH BOUNDARY ANALYSIS AND EQUIV-
ALENCE CLASSES ON R

EXPECTED
RESULT

S Does not precede 1. The interval is not made:
P in any state in a) - - - - - - - - - P - - - - - - - - - - R 1a. Valid
the interval b) - - - - (QRP) - - - - - - - - - - - - - - - - 1b. Valid

c) - - - - Q - - - - - - - P - - - - - - - - 1c. Valid
d) - - - - - - - - - - - - P - - - - - - - - 1d. Valid
e) R - - - - - - - P - - - - Q - - - - - - - 1e. Valid

2. A single interval is made:
a) Q holds in first state:
i. Q - - - P - - - - R - - - - - - - - - - - 2ai. Not valid
ii. Q - - - S - - - - R - - - - - - - - - - - 2aii. Valid
iii. Q - - P - - S - - R - - - - - - - - - - - 2aiii. Not valid
iv. Q - - - - (RP) - - - - - - - - - - - - - - - 2aiv. Valid
v. Q - - - - - R P - - - - - - - - - - - - - 2av. Valid
vi. Q - - - (PS) - - - - R - - - - - - - - - - - 2avi. Not valid
b) R holds in last state:
i. - - - - - - - - - - - P Q - - - - - - - R 2bi. Valid
ii. - - - - - - - - - - - - - - - - Q - - - (RP) 2bii. Valid
iii. - - - - - - - - - - - Q - - P - - - - - R 2biii. Not valid
iv. - - - - - - - - - - - Q - - P - - S - - R 2biv. Not valid
v. - - - - - - - - - - - Q - - S - - - - - R 2bv. Valid

3. Multiple intervals are made:
a) Q - - - - R - - - - - Q - - - P - - R - - 3a. Not valid
b) Q - - - - R - - P - - - Q - - - - R - - - 3b. Valid

4. Nested intervals are made:
a) - - - - Q - - - - - - Q - - P - - R - - - 4a. Not valid
b) - - - - Q - - P - - - Q - - - - - R - - - 4b. Not valid
c) - - - Q - - - Q - - - R - - P - - R - - - 4c. Valid
d) - - Q - - S - - Q - - - P - - - - R - - - 4d. Not valid

S precedes P in 5. A single interval is made:
the interval a) Q holds in first state:

i. Q S - P - - - - - R - - - - - - - - - - - 5ai. Valid
ii. (QS) P - - - - R - - - - - - - - - - - - - - 5aii. Valid
iii. Q - - - S - P R - - - - - - - - - - - - - 5aiii. Valid
b) R holds in last state:
i. - - - - - - - - - - - - - - Q S P - - - R 5bi. Valid
ii. - - - - - - - - - - - - - - (SQ) P - - - - R 5bii. Valid
iii. - - - - - - - - - - - - - - Q - - S - P R 5biii.Valid
c) Q-R hold in other states:
i. - - - - - - - - Q - - S - - P - - R - - - 5ci. Valid
ii. - - - - - - - - - Q - - S - - P - R - - - 5cii. Valid

6. Multiple intervals are made:
a. Q - S - P - - R - - - - Q - - R - - Q P R 6a. Not valid
b. Q - S P - - R - Q - - S - P - R - Q - P - 6b. Valid

7. Nested intervals are made:
- - - Q - - S - - Q - - - P - R - - - - - 7. Not Valid

8

P
age 13.1149.9



specifications can be used to capture pre and post-conditions of methods and to generate test cases

[2]. Furthermore, because formal specifications are mathematically based, it is possible to prove

properties about the specifications themselves [5]. Because of the advantages of formal methods

and formal verification, it is important that students learn the basics of formal specifications and are

able to apply them to define system properties.

4 Educational Component for Teaching Black-Box Testing

4.1 Goals and Outcomes

The goal of the lessons described in this section are to teach students how to: 1) use SPS in

support of specifying system properties, and 2) be able to develop test cases for system proper-

ties (defined by patterns and scopes) using boundary value analysis and equivalence class testing

techniques. This section describes activities that support the attainment of these goals.

The educational component described in this paper can be used in any computer science or

software engineering courses where the topic of testing is discussed. The component described

here is approximately six hours in length (includes tutorials on SPS).

The component outcomes, given below, are separated using Bloom’s taxonomy [1], where level

1 outcomes represent knowledge and comprehension outcomes (those in which the student has

been exposed to the terms and concepts at a basic level and can supply basic definitions.); level 2

outcomes represent application and analysis (those in which the student can apply the material in

familiar situations, e.g., can work a problem of familiar structure with minor changes in the details);

and level 3 represent synthesis and evaluation (those in which the student can apply the material in

new situations).

• 1-1. Students will be able to describe the simple behaviors defined by SPS patterns and

scopes.

• 2-1. Students will be able to identify the appropriate pattern and scope associated with a

property and to apply them to generate a specification using SPS.

• 2-2. Given a trace of computation, the students will be able to determine if the property

(defined by a pattern and scope combination) holds under the trace.

• 2-3. Given a pattern and scope combination, the students will be able to identify the boundary

conditions for this combination.

• 2-4. Given a set of traces of computations (test cases) for a pattern and scope combination, the

students will be able to identify redundant traces (ones that belong to the same equivalence

class).

• 3-1. Students will be able to specify a property using a pattern and scope combination, and

will be able to define equivalence class and boundary value analysis test cases to test the

property.

The lessons for Outcome 1-1 are not given in this paper. The focus will be on the rest of the

outcomes.

4.2 Basic Approach and General Exercises

Following an introduction to testing and system specifications and a tutorial on SPS, the students

will be given a hands-on exercise in which they use SPS to specify a series of properties. The lesson

9

P
age 13.1149.10



focuses on Outcome 2-1 and teaching students how to use SPS to specify patterns and scopes to

generate formal specifications2. There are 25 possible SPS pattern and scope combinations. The

concentration should be on the use of the response pattern, which is one of the most commonly

used patterns in property specification [4].

Exercise 1: For each of the properties below, use SPS to: (1) define the property pattern, (2)

define the property scope, (3) map the propositions used in the pattern and scope to the appropriate

phrases in the property description, and (4) generate the LTL formula for the pattern and scope.

1. The OK button is enabled after the user enters correct data.

2. A request always triggers reply between start of execution and system shutdown.

3. No work will be scheduled before execution.

Exercise 2: Exercise 2 focuses on teaching students the concept of traces of computations, and

how they can be used to visualize the behaviors accepted or not accepted by a system property. In

addition, the subtle characteristics of patterns and scopes (Tables 1 and 2 in Section 2) are described

prior to the exercise. This exercise targets Outcome 2-2. Instructions for Exercise 2 follow:

Consider the following property: When a connection is made to the SMTP server, all queued mes-

sages in the OutBox mail will be transferred to the server. This property can be described using

the Existence(P ) scope within the Before R scope, where P “a connection is made to the SMTP

server” and R is “all queued messages in the OutBox mail are transferred to the server”. For each

of the traces of computations given below, state the expected result of the test (Valid or Invalid).

Explain your answer.

1. - - - - - - - - - - -

2. - - - -(PR)- - - - - - -

3. - - - - P R - - - - - -

4. - - - - R P - - - - - -

5. - - - - - - - - - - - R

6. R - - - - - - - - - - -

7. - - R - - P - - - R - -

8. - - - - P - - - - - - -

Exercise 3: After completing exercises 1 and 2, the students should have sufficient understanding

of the SPS patterns and scopes and are familiar with the notion of traces of computations to repre-

sent test cases. The next lessons introduce equivalence classes and boundary value analysis testing

techniques. Exercise 3 aims at testing students’ ability to define boundary conditions for a certain

pattern and scope combination. Exercise 3 targets Outcome 2-3. Instructions for Exercise 3 follow:

Consider the following property: “The first method called will be the connect method.” This prop-

erty can be described using the Absence (P) pattern, within the Before R scope, where P is “Another

method is called”, and R is “Connect method is called”. Define the boundary conditions to be tested

2The choice of the formal language to represent the property is irrelevant here and is up to the instructor. In this paper,
we chose LTL, simply because of its common use to represent software properties.

10

P
age 13.1149.11



in verifying the system behavior in regard to this property.

Note that boundary conditions should be defined in similar fashion as in Tables 3 and 4 in Sec-

tion 2. Example boundary conditions for the previous property include P and R hold in the same

state, P holds in the state imminently before R, P holds in the state immediately after R, R holds in

the first state, and R holds in the last state.

Exercise 4: While Exercise 3 tests the students understanding of boundary value analysis, this

exercise tests their understanding of the equivalence class testing techniques. Exercise 4 targets

Outcome 2-4. Instructions for Exercise 4 follow:

Consider the S Responds to P pattern within the After Q scope. For each of the following traces of

computation: 1) State the expected result of the test (Valid or Invalid), and 2) State which of these

traces of computations are redundant (i.e., there’s another trace in the set that belongs to the same

class.)

1. Q - - - - - - - P S - - - - - - - -

2. - - - - - S - - - - P - - - Q - - -

3. (QP) - - - - - - - - - - - - - - - - -

4. - - Q - - - - P - - - - - - S - - -

5. - - - - - - P Q - - - - - - - - - -

6. - - S - - P - - - - - Q - - - - - -

7. - - - - - - - (PQS) - - - - - - - - - -

8. - - - - - S (PQ) - - - - - - - - - - -

9. - - - - - - P (QS) - - - - - - - - - -

10. - - - Q - - - P - - - S - - - - - -

Exercise 5: After completing the previous exercises and other assignments determined by the

instructor, the students should be able to define test cases in the form of traces of computations

to validate their pattern and scope generated properties. Exercise 5 checks their ability to satisfy

Outcome 3-1. Instructions for Exercise 3 follow:

For each of the properties given below, specify the appropriate pattern and scope combination.

In addition, define a minimal set of traces of computations to validate your choice. The Properties

are:

1. When a connection is made to the SMTP server, all queued messages in the OutBox mail will

be transferred to the server.

2. When the name of a mailbox is double-clicked, the mailbox will be opened.

5 Summary and Future Work

Because testing remains the major form of verification used in industry, it is important that stu-

dents are exposed to the different testing techniques. It is also important that these students are

familiar with the importance of formal specifications and their uses. In this paper, we introduced

11

P
age 13.1149.12



an approach the links these two ideas together. We introduced an approach that assists in the un-

derstanding of system properties as well as in understanding two of the most common black-box

testing techniques: equivalence classes and boundary value analysis. We also provided exercises

based on the use of property patterns and scopes to enhance students’ understandings of these test-

ing techniques and of system specifications. The approach and exercises can be used in Computer

Science and Software Engineering courses that introduce testing.

Evaluation of the Approach: This semester (Spring 08), we began using the introduced ap-

proach in the capstone course in Computer Science at the University of Texas at El Paso, and an

introductory course in Software Engineering at Embry-Riddle Aeronautical University. The initial

observation is that students are showing more interest in the topic of testing when they are given real

life examples form the SPS website [10]. In each of the two courses, we have explained the ideas

of black-box testing and patterns and scopes. We also gave the students each of the exercises intro-

duced in the paper. Unfortunately, at the time of the witting of this paper, we have not yet tested their

understanding of the testing techniques. In each course, there will be two exams for the reminder

of the semester (second midterm and the final). Each of these will have questions on black-box

testing. These questions will be the same questions given to students in previous semesters. Once

we have the results of these exams, we will analyze the performance of the students and compare

them against those in previous semesters. We will report the results in the conference presentation

of the paper at the ASEE conference, as well as in a future publication.

Future work also includes applying this approach and defining similar exercises for other black-

box testing techniques, such as the cause-effect graph testing technique. Additionally, we are in

the process of developing a tool that can be used to run the actual test cases represented as traces

of computation. The tool will allow the students to compare their expected results with the actual

results of the tests. The tool is based on the technique of using a model checker to validate formal

specifications [9].

References

[1] Bloom, B.S., “Taxonomy of Educational Objectives: The Classification of Educational Goals,” Susan Fauer Com-
pany, Inc., 1956, pp. 201-207.

[2] Cheon Y., Leavens G. T., “A Simple and Practical Approach to Unit Testing: The JML and JUnit Way”, European
Conference on Object-Oriented Programming, ECOOP, Malaga, Spain, June 2002.

[3] Clarke, E., Grumberg, O., and D. Peled. Model Checking. MIT Publishers, 1999.

[4] Dwyer, M.B., Avrunin, G.S., and Corbett, J.C., “Patterns in property specifications for finite-state verification,” Int.
Conf. on Software Engineering, ICSE, Los Angeles, CA, May, 1999, pp. 411–420.

[5] Hall, A., “Seven Myths of Formal Methods,” IEEE Software, September 1990, 11(8).

[6] Ghezzi, C., Jazayeri, M., and Mandrioli, D., Foundamentals of Software Engineering. Prentice Hall, 2002.

[7] Gates, A., Roach, S., et al., “DynaMICs: Comprehensive Support for Run-Time Monitoring,” Runtime Verification
Workshop, Paris, France, July 2001, pp. 61-77.

[8] Salamah, S., ”Supporting Documentation for the SPS-Prospec Case Study,” UTEP-CS-05-14, the University of
Texas at El Paso, April 2005.

[9] Salamah, S., Gates, A., “A Technique for Using Model Checking to Teach Formal Specifications,” to appear in the
proceedings of the 21st IEEE-CS Conference on Software Engineering Education and Training April 2008.

[10] Spec Patterns, http://patterns.projects.cis.ksu.edu/, January 2008.

12

P
age 13.1149.13


