
Paper ID #40895

Teaching Computational Thinking Using Open-Source, High-Impact Prac-
tice
Project-based Approach

Dr. Salman Siddiqui, Georgia Southern University

Dr. Salman Siddiqui joined Georgia Southern in 2013 and is currently working as a Senior Lecturer in
the Department of Electrical & Computer Engineering. He received his B.S.E.E., M.S.E.E., and Ph.D.
in Electrical Engineering from Florida State University, Tallahassee, FL. His research interests include
analysis, simulation, and control of human-robot systems; project-based education, STEM outreach, and
application of new instructional technology in classroom instruction.

Dr. Rami Jubrail Haddad, Georgia Southern University

Rami J. Haddad is a Professor and Interim Chair in the Department of Electrical & Computer Engineer-
ing at Georgia Southern University. He received his B.Sc. degree in Electronics and Telecommunication
Engineering from the Applied Sciences University, Amman, Jordan, in 2004, the M.S. degree in electrical
and computer engineering from the University of Minnesota Duluth, Duluth, MN, USA, in 2006, and the
Ph.D. degree from the University of Akron, Akron, OH, USA, in 2011. He is also the Founding Direc-
tor of the Optical Networks and Smart Applications (ONSmart) Laboratory at GSU. His research inter-
ests include distributed power generation, smart grid applications, optical fiber communication/networks,
machine learning/artificial intelligence, UAV ad-hoc networks, multimedia communications, multimedia
bandwidth forecasting, and engineering education.

©American Society for Engineering Education, 2024

Teaching Computational Thinking Using Open-Source, High-
Impact Practice Project-based Approach

Abstract

This paper explores a novel pedagogical approach incorporating Open Educational
Resources (OER) and High Impact Practices (HIPs) for cultivating computational thinking
in engineering education. It diverges from the conventional practice of introducing these
concepts primarily through programming courses. Instead, this approach advocates for the
integration of project-based hardware programming applications into the curriculum. The
paper details a successful implementation of this methodology within a first-year computing
course, utilizing Arduino and MATLAB as the primary tools. The core of this approach is to
immerse students in hands-on hardware programming projects, aiming to foster a deeper
engagement and enthusiasm for engineering applications and computational thinking. This
method has demonstrated a significant enhancement in student performance within the
course. Comprehensive statistical assessment methods were employed to validate the
effectiveness of this teaching model. These included quantitative and qualitative analyses,
offering a robust evaluation of the pedagogy's impact.

Furthermore, the paper presents a comparative analysis between this innovative teaching
model and the traditional format of the same course. This comparison is critical in
highlighting the advancements and improvements brought about by the project-based
approach. The findings from this study offer valuable insights and evidence for the merit of
integrating hands-on hardware programming in early engineering education, suggesting a
transformative shift in teaching computational thinking to engineering students.

Introduction

The concept of computational thinking, fundamentally defined as the cognitive process of
formulating problems and articulating their solutions in a manner executable by a computer
[1-3], stands as a cornerstone in the education of engineering students, particularly during
their first year. This skill, critical in the engineering discipline, involves translating the
abstract dimensions of a physical problem into a computational framework, employing
methodologies such as top-down or bottom-up approaches. Moreover, computational
thinking is intrinsically linked with the engineering design process [3-5], underscoring its
indispensability in the repertoire of engineering students.

Traditionally, the teaching of computational thinking in engineering education has
predominantly relied on computer programming courses [6], often employing languages
such as MATLAB, C, or JAVA. While effective to a degree, this conventional approach
sometimes falls short of meeting freshman students' practical, hands-on engineering design
expectations. The primary reason for this disconnect can be traced back to the inherently
abstract and virtual nature of traditional programming instruction, which may not fully
resonate with students' early experiences in engineering.

Recognizing the essential role of computational thinking in the engineering curriculum, this
study proposes a more dynamic, engaging, and student-centric pedagogical strategy. It
underscores the integration of Open Educational Resources (OER) and High Impact
Practices (HIPs) to effectively bridge the gap between abstract computational concepts and
tangible engineering applications. This innovative approach embraces a project-based
learning paradigm [7-9], harnessing the potential of Arduino—a widely accessible,
affordable, and open-source electronics prototyping platform. This strategy is designed to
transform computational thinking into an interactive, hands-on learning experience, thereby
aligning more closely with the practical aspects of engineering and enhancing student
engagement.

The objective is to introduce first-year engineering students to the fundamental principles of
computational thinking and engineering design in a tangible, interactive manner. To this end,
a first-year computing course was restructured to integrate Arduino hardware programming
applications cohesively throughout the curriculum in tandem with MATLAB. This
integration not only bridges the gap between computational thinking and the engineering
design process but also demonstrates the tangible impact of programming in interfacing with
real-world applications. This innovative approach aims to reignite student interest in
engineering by providing a more holistic, hands-on educational experience.

Course Structure and Pedagogical Strategy

Original Course Model

The “Computing for Engineers” course, positioned at the freshman level within the electrical
and computer engineering curriculum, serves as an introduction to computing, computational
thinking, and engineering problem-solving, with a specific focus on MATLAB
programming. This foundational course, requiring no prior programming experience but a
co-requisite of Calculus I, progressively covers topics from basic programming principles to
advanced concepts. Key areas include engineering essentials, ethics, communication skills,
and the top-down problem-solving approach within the MATLAB Environment. The
curriculum encompasses various programming control structures such as sequence,
conditional, and repetition structures, followed by functions, numerical techniques, data
modeling, cell arrays, structure arrays, and file operations. Traditionally, the course
combined classroom lectures with lab exercises for the practical application of programming
concepts. This 3-credit hour course included twice-weekly lectures of 50 minutes and a
weekly lab session lasting an hour and forty minutes. The original grading structure is
highlighted in Table I.

Table I- Course Assessment Components and Grade Allocation
Assessment Component Weight
Exam#1
Exam#2
Final Exam
Lab Projects
Homework/Classwork
Quizzes

 20%
20%
30%
15%
10%
5%

Restructured Course Model

In an effort to overcome the constraints of traditional teaching methods and inspired by
research that highlights the advantages of project-based learning—such as increased student
engagement, success, and retention—a dynamic and engaging teaching strategy centered
around High Impact Practices (HIPs) was implemented. In the mid-semester, the course
instructors introduced the Arduino microcontroller and the Sparkfun Inventors Kit. This
strategic addition, in line with the principles of high-impact, project-based learning, followed
lessons on repetition control structures and basic hardware programming. Students were then
challenged to propose and execute projects in pairs, guided by the kit’s manual. This
innovative approach led to a significant boost in student engagement and performance.

Building on this success, the course underwent further restructuring in the following
semester. A focus was placed on developing Open Educational Resources tailored to
integrate project-based learning elements earlier in the course. The Sparkfun inventor's kits
were introduced within the first month rather than midway through the semester. This
adjustment allowed hardware applications to be woven into each weekly lab session, moving
away from a previous sole focus on hardware. Such a change provided students with more
time to engage with the sensors and electronic components of the kit, gradually building their
skills to handle increasingly complex projects.

Furthermore, the course was enhanced to include both an oral presentation and a written
report on the projects, adding depth to the learning experience. Reflecting these changes, the
grading structure was revised to better align with this enriched, hands-on educational
approach, as highlighted in Table II.

Table II- Course Assessment Components and Grade Allocation
Assessment Component Weight
Exam#1
Exam#2
Final Exam
Lab Projects
Arduino Project
Homework/Classwork
Quizzes

 20%
20%
25%
15%
10%
 5%
 5%

These modifications in the course structure and assessment demonstrate a strategic move
towards a more hands-on, project-based learning approach, aligning with contemporary
pedagogical trends in engineering education.

Hardware-based Programming Model

The innovative approach outlined in this paper involves the use of Arduino-UNO
microcontroller, along with electronic components and sensors, to prototype electronic
applications as a cornerstone for project-based learning. In this model, the Arduino-UNO
microcontroller functions in a tethered configuration, synergizing with the MATLAB

development environment. This setup positions the Arduino-UNO as a server, responding to
requests from MATLAB programs (acting as the client) via serial communication.

The primary goal of this hardware-based programming model is to foster authentic learning
experiences in first-year computing courses, enhancing students' grasp of computational
thinking. This model is meticulously crafted to heighten engineering students' engagement
by immersing them in real-world system development. It effectively bridges the gap between
the theoretical aspects of programming and the practical, applied nature of engineering.
Under instructor guidance, this model creates a collaborative, project-based learning
environment that offers numerous educational benefits:

1. Authentic Learning Environment: Students engage in the creation of tangible, real-
world products, which enhances the applicability and relevance of their learning
experience.

2. Bridging Theoretical and Practical Divides: This approach narrows the gap
between abstract programming concepts and the tangible, hands-on nature inherent
in engineering disciplines.

3. Foundation in Engineering Principles: By focusing on hardware-based
programming, the model addresses fundamental engineering principles and hands-on
design at the freshman level.

4. Collaborative Learning and Teamwork: The environment fosters collaboration
and teamwork, enhancing students' sense of community and mutual support.

5. Capstone-Like Projects: Students are given the opportunity to apply their learning
in comprehensive projects, which solidifies their understanding of the core concepts.

6. Early Development of Communication Skills: The model encourages the
development of communication skills through presentations and report writing,
essential competencies in the engineering field.

7. Enhanced Course Performance and Success: By integrating these elements, the
model aims to significantly improve students' overall performance and success rates
in the course.

In summary, this hardware-based programming model represents a progressive shift in
engineering education, emphasizing practical application, collaboration, and real-world
relevance to enrich the learning experience of engineering students.

Implementation and Evaluation

The innovative Open-Source Hardware-based Programming model was integrated into a
freshman-level 'Computing for Engineers' course, marking a significant shift in the
pedagogical approach. Within this framework, students were tasked with undertaking a
diverse array of projects. These projects were meticulously designed to not only challenge
the students' understanding of computational thinking but also to stimulate their creativity in
engineering design solutions. The scope of the projects undertaken was broad and inventive,
encompassing a variety of applications. Project examples included the development of a
music jukebox, an alarm clock, a secure lockbox, a ‘Simon Says’ memory-enhancing game,
a motion-sensor-based security system, and the design and construction of an autonomous
robot. These projects underscore the model’s effectiveness in fostering both technical
proficiency and innovative thinking among students.

A notable aspect of this implementation was the requirement for students to code in
MATLAB, diverging from the readily available C-programming resources for Arduino on
the web. This requirement ensured that students engaged in original coding efforts,
enhancing their problem-solving skills and deepening their understanding of MATLAB, a
prominent tool in engineering.

To prepare the students for these projects, they were introduced to the Sparkfun Arduino Kit
through a demonstration highlighting the use of various components. This included activities
such as controlling blinking LEDs, obtaining inputs from push buttons, reading values from
a potentiometer, displaying data collected from a temperature sensor, and generating
frequencies on a piezo buzzer. However, the ultimate goal of these projects was to integrate
multiple kit components into functional circuits aimed at solving real-world problems.

Throughout these projects, common skills were developed by the students. These skills
encompassed the ability to control and read data from sensors, actuators, and other hardware
components, write code to effectively interface with these hardware elements to meet user
requirements, design circuits using the Fritzing software, troubleshoot both hardware and
software issues within their projects, collaborating within a team, and enhancing verbal and
written communication skills by presenting the project to peers and composing a project
report. To illustrate the tangible outcomes of this educational model, Figures 1 to 5 in the
paper showcase a selection of the student projects. These examples serve not only as a
testament to the students' ingenuity and skill but also as an endorsement of the model's
effectiveness in enhancing the educational experience in engineering courses.

The Alarm Clock Project (highlighted in Figure 1) served as a significant motivator for
learning various hardware and software aspects while producing a product used in daily life.
Students were exposed to hardware components such as photoresistors, temperature sensors,
LEDs, and an LCD screen with adjustable brightness controlled by a potentiometer. Their
programming skills were put to the test as they created a functional system that involved
extracting time information from the system, converting military time to standard time
format, efficiently representing data due to LCD screen constraints, and effectively
troubleshooting both hardware and software issues.

Figure 1. Alarm Clock Project

The SparkFire Prevention System (highlighted in Figure 2) focused on designing a fire safety
system for scenarios like grease fires, employing components such as a temperature sensor,
piezo buzzer, RGB LED, diode, transistor, and DC motor. Beyond constructing the hardware
and programming it to detect temperature fluctuations and control the motor, students
developed a prototype to illustrate its operation.

Figure 2. Sparkfire Prevention System Project

The Jukebox Project (highlighted in Figure 3) aimed to simulate the creation of personal or
business entertainment products. Although the hardware components mainly consisted of
pushbuttons, resistors, and buttons, the software programming aspect was particularly
intensive. Students delved into random number generation to select music from four different
genres associated with each pushbutton. Additionally, they programmed three different
songs within each genre, culminating in a functional system.

Figure 3. Jukebox Project

The Environment Control System Project (highlighted in Figure 4) underscored the design
of systems tailored to consumer or industrial needs. Hardware components included
photoresistors, temperature sensors, servo motors, DC motors, diodes, and transistors.
System control was software-based, requiring specific programming commands to operate
multiple hardware features.

Figure 4. Environment Control System Project

Lastly, the Simon Says Game Project (highlighted in Figure 5) illustrated the use of games
as a means to address real-world problems, such as improving memory skills. Hardware
components included pushbuttons, LEDs, a piezo buzzer, and resistors. Software
development necessitated the implementation of a random sequence generator to create
increasingly complex patterns as the user progressed through the game, the use of arrays for
pattern storage and validation, scorekeeping, and auditory feedback through tone generation
during gameplay.

Figure 5. Simon Says Game Project

The application and evaluation of the project-based model within a first-year engineering
course revealed its considerable potential in enhancing students’ technical skills, promoting
creativity, and equipping them for more complex challenges in their engineering education.
The hypothesis posited that the implementation of a project-based model in such a course
would lead to improved student performance.

To empirically test this hypothesis and measure the model's effectiveness, a comparative
study was conducted using two separate iterations of the same course, designated as control

and test groups. The assessment of student performance in this study was based on a
comparative statistical analysis. The control group consisted of students enrolled in the
traditional format of the first-year computing course, focusing exclusively on Matlab without
the inclusion of project-based elements. Conversely, the test group participated in the same
course, incorporating the newly proposed open-resource, project-based model.

The study encompassed 48 first-year students, with 25 in the control group and 23 in the test
group. Their academic performance was evaluated through their final course grades,
calculated based on assessment criteria detailed in Tables I and II.

Figure 6 displays the normal distribution fit of the final course grades between the control
and test groups. The results from this analysis highlighted a significant disparity in both the
mean and standard deviation of grades between the two groups. Notably, the average score
for the control group was 71.04, in contrast to the test group, which averaged 79.24. This
finding represents an improvement of over 11.5% in overall academic performance as
measured by course grades in the test group. However, it was observed that the test group
exhibited a higher standard deviation in grades, suggesting greater variation from the mean.
This variation is attributed to the necessity of further refining the Open Educational
Resources (OER) material to enhance its user-friendliness and adaptability to diverse student
requirements. These findings corroborate the initial hypothesis, indicating that the project-
based model enhances student performance and fosters a more engaging and effective
learning environment.

Figure 6. Normal fitting of students’ final exam grades of two offerings

To rigorously assess and confirm the preliminary results, an extensive statistical analysis was
undertaken using Minitab statistical software. The research posited a null hypothesis
asserting the absence of statistical differences in the final course grades between the control
and test groups due to the implementation of the model. The chosen method for hypothesis
testing was the one-way analysis of variance (ANOVA), employing a 5% significance level
(p=0.05) as the probability of error criterion. The dependent variable in this analysis was the
students' final course grades at the conclusion of the course. The primary factor under
examination was the treatment effect, which was modeled based on the final course grades

in both the control and test groups. The two-level treatment compared the traditional delivery
of the computational thinking course (control group) against the innovative delivery using
the OER project-based model (test group).

The results, as depicted in Figure 7, yielded a p-value of 0.031, falling below the established
threshold of 0.05 for significance. Consequently, the null hypothesis, which suggested no
significant difference between the groups, was rejected at a confidence level of 96.9%. This
finding led to the conclusion that there is a statistically significant difference between the
control and test groups, thereby validating the efficacy of the proposed model. Additionally,
considering the relatively small sample size in this study, the Cohen’s effect size was
calculated. The obtained Cohen's d values, ranging from 0.577 to 0.726, indicate that the
model had a medium to large effect on student performance despite the limitations imposed
by the sample size.

Figure 7. The outcome of the one-way ANOVA analysis

In addition to the quantitative outcomes, student satisfaction with the hardware programming
component was also reflected in their final course evaluations conducted toward the end of
the semester. Selected responses from these evaluations illustrate the positive reception of
the course material and its practical applications, as follows:

➢ “I liked how useful the material is and how many helpful resources were available
to learn the material.”

➢ “I liked learning coding and interfacing with hardware like Arduino. Allows me to
get ahead and learn more things.”

➢ “The Arduino project was fun and the labs are good too.”

➢ “The course itself is easy to engage in because it is fun to learn MATLAB and its
uses (applications)”

➢ “I liked being able to apply knowledge in the real world.”

➢ “The work was challenging but enjoyable.”

➢ “We got to explore practical applications of what we have learned so far with
sensor and Arduino board.”

These responses indicate a strong appreciation for the practical, hands-on approach of the
course, highlighting the successful integration of theory and application in teaching hardware
programming and its relevance in real-world contexts.

Conclusions

The implementation of a high-impact, project-based learning approach, utilizing the Arduino
Sparkfun Inventor’s Kit in a freshman engineering course, demonstrated significant
improvements in student engagement, enthusiasm for engineering applications, and overall
performance. This approach effectively cultivated computational thinking skills and fostered
collaborative engineering design work among students. Notably, the integration of hardware
programming into lectures and labs enabled all students, regardless of prior experience, to
develop a comprehensive understanding of the subject matter. This leveling of the playing
field allowed inexperienced students to achieve competencies comparable to their more
experienced peers, particularly in hardware-related tasks. Additionally, students with prior
programming experience were able to create more optimized code.

The course also served as an effective precursor for subsequent programming courses, such
as C Programming. Students who completed this course reported ease in transitioning to
more advanced programming, aided by their familiarity with simulation tools like Tinkercad,
which closely mirrored the hardware components used in the Arduino-based course.

Overall, the study concluded that the introduction of hardware programming in the course
led to a statistically significant difference in student performance, as validated by a
confidence level exceeding 96.9% in comparative analyses. This outcome underscores the
efficacy of the project-based approach in enhancing computational thinking and technical
skills in freshman engineering students, thereby affirming its value as an educational strategy
in engineering curricula.

Bibliography

[1] J. M. Wing, “Computational thinking’s influence on research and education for all,“

Italian Journal of Educational Technology, vol. 25, no. 2, pp. 7-14, 2017.

[2] F. K. Cansu and S. K. Cansu, “An Overview of Computational Thinking,“
International Journal of Computer Science Education in Schools, vol. 3, no. 1, pp.
17–30, 2019.

[3] R. J. Haddad and Y. Kalaani, “Can computational thinking predict academic
performance?” in 2015 IEEE Integrated STEM Education Conference, Princeton, NJ,
USA, 2015, pp. 225-229.

[4] H. Ehsan, A. P. Rehmat, and M. E. Cardella, “Computational thinking embedded in
engineering design: capturing computational thinking of children in an informal
engineering design activity,” in Int J Technol Des Educ, vol. 31, pp. 441–464, 2021.

[5] R. J. Haddad and Y. Kalaani, “Cross-Disciplinary Perceptions of the Computational
Thinking among Freshmen Engineering Students,” in ASEE Southeastern Section
Conference, Gainesville, FL, 12-14 April 2015.

[6] F. B. Flórez, R. Casallas, M. Hernández, A. Reyes, S. Restrepo, and G. Danies,
"Changing a Generation’s Way of Thinking: Teaching Computational Thinking
Through Programming," Review of Educational Research, vol. 87, no. 4, pp. 834–
860, 2017.

[7] S. Bell, "Project-based learning for the 21st century: Skills for the future," The Clearing
House, vol. 83, no. 2, pp. 39-43, 2010.

[8] A. Sahin, "STEM project-based learning: Specialized form of inquiry-based
learning," in STEM Project-Based Learning: An Integrated Science, Technology,
Engineering, and Mathematics (STEM) Approach, pp. 59-64, 2013.

[9] S. Groß, M. Kim, J. Schlosser, D. Lluch, C. Mohtadi, and D. Schneider, “Fostering
computational thinking in engineering education: Challenges, examples, and best
practices,” in IEEE Global Engineering Education Conference, EDUCON, pp. 450-
459, 2014.

