
2006-274: TEACHING COMPUTER ARCHITECTURE PERFORMANCE
ANALYSIS

Gregory Palmier, Purdue University
Gregory M. Palmier

Gregory Palmier was a graduate student in the College of Technology working on computer
architecture and performance.

Jeffrey Honchell, Purdue University
Jeffrey W. Honchell

Professor Honchell is an Associate Professor in the Department of Electrical and Computer
Engineering technology at Purdue University, West Lafayette. His professional area of interest is
teaching and applied research in the area of RF communications. Professor Honchell also has 10
years of combined industrial experience with IBM and The Johns Hopkins University Applied
Physics Laboratory. He has also been actively involved in the ASEE and IEEE holding various
positions over the last 10 years.

© American Society for Engineering Education, 2006

P
age 11.1202.1

Teaching Computer Architecture Performance Analysis

Introduction

The field of Computer Engineering continues to make great strides as computer hardware

consistently reduces to a fraction of its former size while increasing in speed and

capabilities. Education in this field is demanding and competitive as the complexity of

today’s computer technology increases steadily. While the College of technology at

Purdue University offers many courses teaching the use of a computer as a tool, there are

few classes offering a technical “hands-on” approach to analyzing the performance of

different computer architectures and fostering an understanding how computer systems

function. This field of education is dominated by theoretical computer architecture

classes in the School of Electrical and Computer Engineering and has little to offer

students with technical backgrounds interesting in the subject of Computer engineering

and Performance Analysis. Therefore a meaningful laboratory supplement to the

theoretical knowledge applied to future technology is necessary for a better

understanding of a computer system’s architecture and performance.

The role of Electrical and Computer Engineering Technology (ECET 325) at Purdue

University will provide students with learning experience of introductory computer

architecture designs and theories with a required laboratory experiment each week. The

goal of these laboratory experiments will be to reinforce the lecture topics of computer

architecture for technology students. Students in technology curriculums need to

establish proper methodologies for understanding computer performance with statistical

analysis using software tools for benchmarking and analyzing computer system

configurations. This will be accomplished as a part of the laboratory experience.

These performance measurements include properly analyzing the CPU, memory, bus and

operating system in terms of similarities and differences. Conducting the laboratory

experiments will provide students with a “real world” view of computer processing in

real-time. Analyzing these characteristics of computer systems will provide students with

an understanding of how to properly assess the performance of new computer systems for

task specific applications.

The objective of benchmarking is to attempt to define and measure machine power in

such a way that they can compare one machine with another [1]. Students in the

Computer Engineering Technology field need the experience of working on a laboratory

experiment to answer questions like; “What is being measured? How is performance

properly analyzed? How is this affected by the operating system?” The human desire for

faster technology fuels the problem facing analysts in performance tuning: it is the

adaptation of the speed of a computer system to the speed requirements imposed by the

real world [2]. It is these topics in performance analysis that need to be applied to keep

the design requirements of computer systems moving forward.

P
age 11.1202.2

Background

To create a method for developing exercises to analyze computer performance and

modeling, a literature review process is used to organize an approach for solving the

problem while providing focus on how the projects research will contribute to the

technology field based on previous related work. Current computer engineering

programs contain a significant amount of material for implementation of complex

hardware/software systems, however the use of performance modeling to analyze

computer design alternatives has not made its way into the undergraduate curriculum [3].

The literature review process involves four methods of finding literature relevant to the

problem, purpose, significance and methodology for the study. The first goal of this

literature review is to find resources that are relevant to the understanding of computer

system benchmarking, modeling, and analysis as a tool. While there are many resources

available to computer architecture design, resources applicable to the understanding of

the computer benchmark, modeling and analysis topics themselves are researched. The

topics of these resources include the role of benchmarking in technology, a comparison of

different benchmarking types, and the interpretation of performance data. This research

is an analysis of the traditional ideas and methods of benchmarking that do not focus

directly on the benchmark programming, instead how the benchmarking tools can be

used. This includes researching computer system analysis and the definition of computer

system performance analysis as a field of study.

Secondly, the representation of numbers and visual data must be understood to properly

quantify the results of the analysis of a given computer system. Performance graphs are

used to depict data to a human being as a method of understanding what the numbers are

representing. Data represented visually can be skewed according to a manufacturer’s,

author’s or programmer’s bias towards certain architectures or computer system features,

therefore understanding analysis reports and visual data is researched in conjunction with

how the computer analysis data is obtained.

Next, the methods of education undergraduate students, topics in computer architecture

and performance analysis are researched. More recent publications including journals

and conference papers are highly relevant because they represent a more recent

observation of current industrial and educational focus. Educational goals of the College

of Technology provide a greater focus for this portion of the research by discerning

information relevant to solving the problem of this study.

The last research goal involves gathering methods of using computer software tools to

analyze computer systems in a limited time instructional setting. Resources applicable to

the use of software tools include operating system manuals, software package manuals,

system performance guides, and instructional computer analysis printed works. The use

of the Internet is helpful for the high level software tools readily available to solve the

problem of the study. This includes using benchmarking tools to analyze the computer

system as a whole or in part. More research pertaining to this area will come from more

recent publications such as journal articles and conference papers. Due to the fact, that

P
age 11.1202.3

there are many different computer architectures and these analysis methods may only

pertain to new, more sophisticated techniques of analyzing performance properly. There

are two types of computer benchmarks, system and component. The use of benchmark

software distinguishing the two types will be up-to-date with today’s current computer

technology; therefore, traditional computer performance ideas will not aide this portion of

the literature finding. .

Literature Review

The results of the literature search indicate a need for more conceptualized analysis of

computer systems, to bring the critical topics of implementing alternative computer

system designs into technology education. Design alternatives must be evaluated early in

the design process before detailed information about the system exists; therefore the use

of abstract architecture models is used to create performance models [3]. The relevance

of teaching these topics have been of interest since the establishment of the Joint Tast

Force on Computing Curricula 2001 by the Computer Society of the Institute for

Electrical and Electronic Engineers (IEEE) and the Association for Computer Machinery

(ACM) to evaluate the computer curriculum in undergraduate programs. Outside of

computer engineering principles, objectives of this evaluation include important issues

for designers, and tools needed for carrying out research [4]. The education of computer

system design using modeling and evaluation methods not only includes computer

architecture as seen through the eyes of a programmer, but how the implementation and

organization of the computer system will dictate its design [4]. Implementation and

organization of a computer system design includes all components of the system which

affect the computer architecture. This project will analyze multiple computer system

component designs which include operating system choices, memory and motherboard

architecture, file systems I/O devices such as data storage devices and computer process

handling best suited for computer system design applications. Tools for performance

analysis in place have been successful in analyzing hardware and software components of

a design for computer professionals, however, use of these tools by undergraduates

requires ease of understanding so that design alternatives of computer systems can be

applied.

In a paper describing the evolution of computer performance evaluation since the 1960’s,

benchmarking was described as the only technique to receive consistent use as a

performance evaluation tool [5]/ Research emphasized the increasing importance of

performance evaluation by the establishment of the ACM in 1971. The ACM recognized

a need for understanding the relationship between computer system models and the tolls

useful for performance evaluation. More research shows that most undergraduate

engineering programs spend significant time on implementing complex hardware and

software designs, but do not utilize performance modeling as a tool for analyzing design

alternatives. Computer manufacturers often use benchmarks with and agenda to show

superiority in a competitive market, however, results often mislead system designers with

inaccurate depictions of component performance. Research shows that using traditional

statistical methods causes these bad interpretations and designers much distinguish

between traditional statistics and computer-related statistical methods which accurately

P
age 11.1202.4

depict the computer performance. Software tools often summarize computer

performance into one number for conclusions, but can only be useful to a system designer

if considered properly [6]. More findings indicate the use and abuse of performance

monitoring systems. A similar study’s results, from the Joint Task Force on Computing

Curricula 2001 (CC2001), reveals a semester long timeline for computer architecture

topics and also outlines course objectives and amount of time spent on topics. However,

the CC2001 study focused more specifically on processor architecture by lecture and had

no laboratory exercises. The goal of this project is to continue with a similar model

produced by the CC2001 and reinforce the lecture topics with laboratory instruction for

better comprehension. Compared to lecture-only instruction, reinforcement with

laboratory exercises can increase the comprehension of computer system performance

topics.

Previous studies related to the education environment of computer engineering

undergraduates have determined that the success of this project strategy depends on

completing the goal considering the following variables. First, the material must be

understandable on a level comparable to the complexity of similar computer system

undergraduate projects. Second, all of the reference material necessary for completing

laboratory exercises must be available in what [3] calls a “prefabricated” environment.

With two hour per week time constraints as a limitation of potential student success,

quick access to material references aiding student exercises is essential. Third, the

material needs to be flexible so that it can be applied to different applications and

repeatable in different projects. Limitations of this variable are defined by the computer

system architectures that will be used in the laboratory experiments and the breadth of

abilities the different modeling analysis tools provide for analyzing systems. For

instance, there is no “all encompassing” computer benchmark tool available for any

computer architecture and operating system, so different tools will be utilized for

analyzing different components of the computer system. The laboratory experiments will

utilize Microsoft Windows, Debian Linux and Sun Solaris which are widely used for both

personal workstations and large scale computer systems. Another variable relating to the

success of the student’s understanding of the laboratory material will be the depth of

requirements completed outside of lab in preparation for the lab session. This method is

used by the ECET department’s strategy for preparing the students to be ready to utilize

the short time in lab efficiently. Limitations of the “pre-lab” need to be concise with

providing information necessary to complete the laboratory experiment, without requiring

the use of any computer performance tools.

Variables in selecting the analysis software used in the laboratory experiments will

depend on the following characteristics. The amount of time running the analysis tools

must be efficient and provide for the limitations for the tools that will be acceptable for

laboratory exercises. Software tools that require large amounts of time are not useful for

laboratory experiments if the students are waiting for results during the entire laboratory

session. Also, the computer tools must be able to meet the minimum hardware

requirements for the computer system. This limitation included ensuring hardware

compatibility with the operating system and analysis tools. Findings of software tools

available show that sar, vmstat, and tools offered by SiSoftware® and Veritest®

P
age 11.1202.5

companies are some examples of software that are free to use and analyze different

aspects of computer system components.

After completing the laboratory experiments, students should have an understanding of

computer architecture by performing the “hands-on” work and were able to integrate

theoretical designs and practical experiences to performance metrics.

Definition of Terms

Benchmark – The process of performance comparison for two or more systems by

measurements [8].

Computer Architecture – The structure of a computer that a machine language

programmer must understand to write a correct (timing independent) program for that

machine [9].

Organization – In terms of computer, includes the high- level aspects of a computer’s

design, such as the memory system, the bus structure, and design of the internal CPU [7].

Performance analysis – As applied to experimental computer science and engineering,

should be thought of as a combination of measurement, interpretation and communication

of a computer system’s ‘speed’ or ‘size’ [10].

Throughput – Measure of the amount of computation performed per unit time [10].

Introduction to the Experimental Process

To prepare the laboratory experiments, each computer architecture topic presented in

lecture was researched. Performance analysis methods of each topic were discovered

through the analysis of software tools. The analysis tools were gathered, tested and

critiqued on the basis of compatibility, ease of use, completion time and results. Figure 1

shows a flowchart diagram of the experiment creation process.

P
age 11.1202.6

Figure1: Procedure Creation Process

Each of the lab procedures focus on the ease of gathering basic data. The use of the

script command under the Linux platform is used consistently to allow users to record

and import data easily into an analysis program (e.g. Microsoft Excel). The ability to

gather data easily was a focus in this project considering the time allotted and student

knowledge required for the experiments to be completed.

Experiments one through four were designed for students to become acquainted with the

computer and operating systems before being able to analyze the operation. Experiments

five through eight were designed to understand the importance and purpose of computer

performance analysis. Table1 shows the semester long laboratory experiment plan with

duration.

P
age 11.1202.7

Table1: ECET 325 Laboratory Experiments

As imposing a purpose of the performance test, analysis of what the data represents

becomes more apparent instead of seeing arbitrary number reports from analysis

software. The final class of experiments focused analysis of single components (e.g.

CPU, memory) that can be pedagogically successful after creating competence with the

computer environment. For brevity only two of the experiments are discussed in detail.

Data Types and Time-Keeping

The objective of this experiment is to identify differences in CPU instruction time and

become acquainted with system analysis tools. A pre-laboratory assignment was created

to prepare students to run a program and keep track of its execution time. The laboratory

procedures are to modify, compile and run a small ‘C’ language program used to

calculate the time of integer and floating point processing power of each platform. The

program is a simple number addition loop, increasing the number of addition operations

through loop iteration by a factor of 10. Figure 2 displays the syntax to compile the code

for Linux. Figure 3 displays the compile syntax in the Windows environment.

Figure 2: Compiling Two Programs Under Linux

Figure 3: Compiling Programs Under Windows

The duration of the integer and floating point calculations were recorded using a timer in

a C program. The lab 3 integer benchmark programs were run under the Linux and

Windows operating systems. The results for each program are shown in Figure 4 and

Figure 5.

 P
age 11.1202.8

Figure 4: Linux Integer analysis

Figure 5: Windows Integer Analysis

 Next, the students were instructed to modify the code to analyze both integer and

floating point functions. Figure 6 and figure 7 display the results of the integer and

floating point program under each operating system.

Figure 6: Linux Integer and Floating Point Results

P
age 11.1202.9

Figure 7: Windows Integer and Floating Point Results

The base install of Debian is packages with the GCC compiler and a free Borland

compiler was configured for Windows. Using GCC under Windows would have

involved configuring Cygwin, a Linux-like environment for Windows on the test

computers, but this wasn’t done to give a more broad difference in results for comparison

in the laboratory report. Not only are computer performance results skewed due to the

platform, but also the compilers too, depending on how the functions of the processor are

utilized by the compiler. The results of the integer and floating point tests on the two

different platforms using different compilers were very significant, which showed the

floating point calculations to take up to ten times longer with the Borland compiler on

Windows versus the GCC compiler using Linux. The results of these procedures show

that there is more than one way to manage the architecture of a computer system not only

by the operating system, but also the compiler and the subtle differences in data types.

The laboratory report includes presenting integer and floating point performance results.

The data is analyzed, detailing the differences between using the two platforms for

analysis.

Filesystem Performance Analysis

The objectives of this experiment are for the student to benchmark and analyze the

performance of the hard disk drive and to quantify the performance metrics of hard drive

performance characteristics. The first procedure [appendix] involves installing the I/O

performance tools used in the experiment. Retrieving the tiobench, systat, and hdparm

software tools requires using the internet to install the software. Figure 8 shows the

syntax required to install the software.

P
age 11.1202.10

Figure 8: Installing Hard Disk Analysis Tools

The systat software suite includes more than one program for performance analysis,

therefore verifying vmstat installation is required for this experiment. The installation of

the software tools was then verified and is shown in figure 9.

Figure 9: Software Tool Installation Verified

The first performance analysis test to be fun included using the tiotest benchmark

program. The data generated by this program is shown in Figure 10.

Figure 10: Tiotest Benchmark Results

P
age 11.1202.11

To analyze different performance enhancing features of the hard disk, the disk write-

caching feature is disabled and the tiotest benchmark is re-analyzed. Figure 11 shows

how write-caching is disabled and Figure 12 displays the tiotest results.

Figure 11: Disabling Hard Disk Write-Caching

Figure 12: Tiotest Results with Write-Caching Disabled

By disabling the write-caching features on the hard disk, the write process time increased

over 100% for 40MB of write data. The net task was to disable the Direct Memory

Access (DMA) feature on the computer system. The DMA function on the computer can

be enabled and disabled by typing the commands shown in Figure 13.

Figure 13: Enabling and Disabling DMA

P
age 11.1202.12

A comparison of the effect DMA had on hard disk performance was then compared using

hdparm, a much simpler hard drive tool, available for nearly all UNIX and Linux based

computer systems. Figure 14 displays the performance results with DMA enabled and

disabled.

Figure 14: DMA Performance Impact using Hdparm

Analyzing the data, the performance impact of enabling and disabling the DMA feature

on the hard disk was very significant, increasing the transfer rate up to 195% when

enabled.

The next test conducted analyzed the differences between transferring data sequentially

and synchronously. The difference between sequential and synchronous data write is that

the processor does not wait for the hard drive to complete the write function before

starting the next process thread in the sequential mode transfer so the data is in the exact

order as was transferred to the hard disk from the CPU. In a synchronous transfer, the

data is transferred to memory and is written with multiple process threads, but causes a

sifnificant performance decrease and fragmentation due to multiple concurrent write

functions. Figure 15 displays the performance results of a sequential data transfer

compared to a synchronous data transfer shown in Figure 16.

P
age 11.1202.13

Figure 15: Synchronous Hard Disk Transfer Performance

Figure 16: Sequential Hard Disk Transfer Performance

The next procedure was to analyze the random process usage of the hard disk when using

the computer system to check email, browse the internet and use other random computer

functions. This data was analyzed over a fifteen minute time period and recorded using

the vmstat performance analyzer. The vmstat tool analyzer the transfer of I/O block

P
age 11.1202.14

data and reports samples according to user input parameters. The vmstat program

sample rate (in seconds) is initiated by appending a number parameter to the command.

Figure 17 displays an example of vmstat sample reporting where I/O is reported with

data blocks in (bi) and data blocks out (bo). Aside from strict I/O usage, the vmstat

program also reports usage of the swap partition.

Figure 17: Vmstat I/O Statistical analysis

The report data was then graphed showing blocks in and blocks out versus time for each

lab group. Each student executed different functions of the computer during the fifteen

minute time period; therefore all of the data between the groups was different. Figure 18

shows a vmstat analysis plot of hard disk usage use versus time while running the

database update program, updatedb.

Figure 18: I/O Usage Versus Time

The goal of this portion of the laboratory procedure was to reinforce the random process

usage of computer systems and how this is effected by student interaction.

At the end of the lab, the students could quantify the performance metrics of a hard disk

by using the formula shown in Figure 19.

sMBs

RPMtorstracks

Speed /
1000000

60

512sec/

=

⋅⋅

= [2]

Figure 19: Quantifying Hard Disk Speed

P
age 11.1202.15

The different functions of hard drive operations were easily manipulated and analyzed

with a small set of basic tools to modify system parameters and initiating short, simple

performance tests instead of merely using a complex data transfer tool analyzing the

default system configuration performance. The students understood hard drive writing

and reading function differences such as sequential, synchronous, cached write and direct

memory access by modifying these system parameters and analyzing the performance

results individually. While most single hard drive computer systems utilize the same

read/write methods to maximize performance, the students understood how and why each

of these design methods are utilized by modifying the parameters and seeing direct

results from performance analysis.

Conclusions and Recommendations

While writing the lab procedures and testing the tools used for performance analysis,

testing the tools used to gather data for computer system analysis didn’t require too much

down time waiting for results. Students’ knowledge of Linux was gauged to be very low,

after gathering responses from questions about computer knowledge and observing

response to early computer tests. Over the course of the semester when writing the labs,

more incorporation of common usages of Linux and data recorded over longer periods of

time gathered by simple analysis tools were implemented. Doing so, the students could

more easily interpret how a computer is engineered by how the software used the

systems. By the end of the semester, the students were comfortable editing, compiling

and running code, using the internet, configuring the network interface, and transferring

files to each other for later analysis. Incorporation of experiments early in the semester

proved to be a good foundation of computer component understanding. Observation of

the component orientation on the motherboard reinforced the computer operation by

visualizing the model of process operation. Minimizing waiting time for results of the

performance analysis programs kept students involved and attentive to what they were

trying to accomplish. Students learned how data types and computer architecture

affected the results shown because the students understood the operation of their own

programs and connected the meaning of their results to the characteristics of the

computer architecture regardless of how tedious the procedure steps were. Each

objective was completed using small steps which keep students constantly thinking of

what they were trying to accomplish, no matter how mundane or predictable the results

were. This coincided with the approach for writing the lab procedures, which were

originally planned to include only seven over the course of the semester but turned into

ten. The single-week laboratory experiments proved to be more beneficial because the

previous week’s work wasn’t forgotten over the course of the week. The performance

tests were more concise and the topic coverage proved more effective when completed

during one lab session. This also lends the lab material more flexibility by managing the

smaller parts for future semester of ECET 325.

After completing all of the experiments, the students changed their perspective of

computer performance to a degree based on their experience in the laboratory. Each of

the systems were comparable in terms of raw processing power but had subtle difference

P
age 11.1202.16

which included stability, compiling code, transferring data, user interfaces, etc. A great

majority had never used either Linux or Sun so this experience was eye opening to the

world of computer engineering outside of webpage browsing and media. Some of the

experiments were very hard to complete using the Windows environment, while others

were very challenging with Linux, so their options definitely changed regarding which

computer system is best suited for a certain application.

In the future, using the Sarge release of Debian Linx would provide the students with an

easier installation process along with a more updated kernel and software packages. This

wasn’t selected because during test phases the used of the internet was required. A lab of

5+ computers would saturate the network and extend past the allotted lab time.

References

[1] Benwell, N. (1975). Benchmarking: Computer Evaluation and Measurement.
 Washington, D.C. Hemisphere Publishing Corporation.

[2] Musumeci, G.D., Loukides, M. (2002). System Performance Tuning. Sebastopol, CA:

 O’Reilly & Associates, Inc.

[3] Klenke, R.H., Belvins, J.M., Aylor, J.H., Hein, J.J. (2003). A Performance Modeling

 and Design Environment for Senior Computer Engineering Undergraduates,

 Proceedings of ASEE/IEEE Frontiers in Education 2003 Conference, F2F-23-

 F2F-28.

[4] Nelson, V.P., Theys, M.D., Clements, A. (2003). Computer Architecture and

 Organization in the Model Computer Engineering Curriculum, Proceedings of

 ASEE/IEEE Frontiers in Education 2003 Conference, F2F-11 – F2F-16.

[5] Lewis, B.C., Crews, A.E. (1985). The Evolution of Benchmarking as a Computer

 Performance Evaluation Technique. MIS Quarterly 9(1), 7-16.

[6] Fleming, P.J., Wallace, J.J. (1986). How Not To Lie With Statistics: The Correct

 Way to Summarize Benchmark Results. Communications of the ACM 29(3), 218-

 221.

[7] Hennessy, J.L. & Patterson, D.A. (2003). Computer Architecture: A Quantitative

 Approach. San Francisco, CA: Morgan Kaufmann.

[8] Jain, R. (1991). The Art of computer Systems Performance Analysis. New York, NY:

 John Wiley & Sons, Inc.

[9] Amdahl, G.M., Blaauw, G.A., Brooks Jr., F.P. (1964). Architecture of the IBM

 System 360. IBM J. Research and Development 8, 2 (April) 87-101.

[10] Lilja, D.J. (2000). Measuring computer Performance: A Practitioner’s Guide.

P
age 11.1202.17

 Cambridge, MA: Cambridge University Press.

P
age 11.1202.18

