
AC 2011-549: TEACHING DIGITAL FILTER IMPLEMENTATIONS US-
ING THE 68HC12 MICROCONTROLLER

Li Tan, Purdue University North Central

DR. LI TAN is currently with the College of Engineering and Technology at Purdue University North
Central, Westville, Indiana. He received his Ph.D. degree in Electrical Engineering from the University
of New Mexico in1992. Dr. Tan is a senior member IEEE. His principal technical areas include digital
signal processing, adaptive signal processing, and digital communications. He has published a number
of papers in these areas. He has authored and co-authored three textbooks: Digital Signal Processing:
Fundamentals and Applications, Elsevier/Academic Press, 2007; Fundamentals of Analog and Digital
Signal Processing, Second Edition, AuthorHouse, 2008, and Analog Signal Processing and Filter Design,
Linus Publications, 2009.

Jean Jiang, Purdue University North Central

DR. JEAN JIANG is currently with the College of Engineering and Technology at Purdue University
North Central, Westville, Indiana. She received her Ph.D. degree in Electrical Engineering from the Uni-
versity of New Mexico in 1992. Her principal technical areas are in digital signal processing, adaptive
signal processing, and control systems. She has published a number of papers in these areas. She has
co-authored two textbooks: Fundamentals of Analog and Digital Signal Processing, Second Edition, Au-
thorHouse, 2008, and Analog Signal Processing and Filter Design, Linus Publications, 2009.

c©American Society for Engineering Education, 2011

P
age 22.1384.1

Teaching Digital Filter Implementations

Using the 68HC12 Microcontroller

Abstract

We present our pedagogy for teaching digital filter implementations using the 68HC12

microcontroller. In the Electrical and Computer Engineering Technology (ECET) curriculum, a

microcontroller has been used as a popular platform for teaching an embedded system course in

the sophomore year. After completing the course, students become familiar with the

microcontroller software development tools. They are able to program using assembly and C

languages, and apply necessary software and hardware interface for hands-on applications. In

fact, most microcontrollers are capable of performing basic digital signal processing (DSP) tasks

such as digital filtering. Therefore, in this paper, we first proposed a simple DSP platform, which

consists of the low-cost 68HC12 microcontroller, a signal condition circuit, and a digital-to-

analog converter device for teaching the DSP course. Using the proposed DSP platform, we

present our instructional techniques for digital filter implementations and related applications.

Our student survey results regarding an adoption of the 68HC12 microcontroller for teaching

DSP show that the microcontroller is a cost and learning effective tool and can be used as an

alternative when the DSP dedicated hardware is not available.

I. Introduction

In the Electrical and Computer Engineering Technology (ECET) curriculum, a microcontroller

has been used as a popular platform for teaching an embedded system course in the sophomore

year. After completing the course, students become familiar with the microcontroller software

development tools. They are able to program using assembly and C languages and apply

necessary software and hardware interface for hands-on applications. In addition, most

microcontrollers are capable of performing basic digital signal processing (DSP) tasks such as

digital filtering. On the other hand, a low-cost DSP solution is preferred in many DSP

applications. For example, a low sampling rate (100 Hz) is fast enough to process temperature

signal, light intensity, air pressure, mechanical strain, or seismic signal. Meanwhile, a low

analog-to-digital (ADC) resolution (8-bit data) in these applications may be sufficient. Hence, an

adoption of a low-cost microcontroller instead of a digital signal processor with full capability is

a cost effective choice. Considering these facts, using a microcontroller for a DSP course in the

junior year could offer the following benefits to ECET students: (1) a microcontroller can be an

alternative and cost effective solution when a DSP processor such as TMS320C67xx is not

available; (2) students can save a significant amount of time for learning and familiarizing with

the new system architecture, its corresponding development tools and assembly instructions.

Instead, they can focus on learning the implementation of digital filters and DSP applications; (3)

the microcontroller is flexible to use for various applications including signal processing.

In this paper, we present our pedagogy for teaching digital filter implementations using the

68HC12 microcontroller. The paper is organized as follows: we first describe a simple DSP

system that consists of the low-cost 68HC12 microcontroller, a signal condition circuit, and a

digital-to-analog (DAC) converter device. A simple program to flexibly set up the sampling rate

is then developed and the key assembly instructions for digital filtering are reviewed. Next, we

P
age 22.1384.2

illustrate the fixed-point data format, finite impulse response (FIR) filter and (infinite impulse

response) IIR filter structures with direct forms I and II. After digital filters are designed by

using MATLAB, real-time FIR and IIR filter implementations are developed using a linear

buffering technique. Finally, we examine student surveys regarding adoption of the 68HC12

microcontroller in their DSP course and discuss the possible improvement based on the survey.

II. DSP Using an HC12 Microcontroller

A. Hardware Setup and Interface

We focus on the development of a simple DSP system by using the 68HC12 microcontroller,

which is adopted as a cost and learning effective tool for our DSP course. The detailed

information regarding the 68HC12 microcontroller’s architecture, interface, and instruction set

can be found in the textbook written by D. Pack
1
. Figure 1 depicts our simple DSP system.

68HC12

Microcontroller

AD557Signal

conditioning

Analog input

signal

x

ADC channel 6

Range: 0-5 volts
P-Port

Output:

Sample and hold signal

Range: 0-2.55 volts

y

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

PP 7

PP 6

PP 5

PP 4

PP 3

PP 2

PP 1

PP 0

68HC12 AD557

Vout

outV Sense A

GND

GND

Vcc

CS

CE

outV Sense B

Vout

Vcc

10 uF

xinV

fR
iR

gain 1
f

i

R

R

AD 6

y

 (a) Block diagram. (b) Pin assignments.

(c) DSP hardware setup.

Figure 1. A simple DSP system using the 68HC12 microcontroller.

As shown in Figure 1(a), the proposed DSP system consists of the 68HC12 microcontroller, a

signal conditioning circuit, and a digital-to-analog (DAC) unit. First, the analog signal from a

sensor is conditioned via amplification to fit the voltage range designated between 0 to 5 volts.

P
age 22.1384.3

The amplified analog signal is then fed to the 68HC12 microcontroller via an ADC channel 6

(any other channel can also be configured) with an 8-bit resolution. The signal conditioning

circuit is a standard voltage amplifier, which can be easily designed using an Op-Amp circuit

[see Figure 1(b)]. Note that an anti-aliasing low-pass filter is not included, since the platform

needs be flexible for various sampling rates set by internal software. The microcontroller

processes the converted 8-bit digital value and sends the processed digital output to its 8-bit

parallel port. A DAC unit (analog device AD557 circuit) shown in Figure 1(b) applies the 8-bit

information and generates a recovered analog signal. Note that the DAC output is essentially a

sample and hold waveform which contains image frequencies. These image frequencies can be

filtered by a reconstruction low-pass filter (also called the anti-image low-pass filter). Again, a

reconstruction low-pass filter is not included due to the flexibility requirement for a sampling

rate selection. The DAC output range is between 0 to 2.55 volts. Figure 1(c) displays the DSP

hardware setup. For lab experiments, an analog input signal can be produced by a function

generator while the analog input and output signals can be examined via an oscilloscope.

B. Software Setup

Considering that students are familiar with the software development tool such as AxIDE (The

detailed information can be found in reference
2
), assembly and C languages, and Motorola

68HC12 instruction set, a simple software setup program for real-time signal processing depicted

in Figure 2 can first be studied.

clock

ADC:

x(n)

DSP

Processing

DAC:

y(n)

Interrupt service routine

T=sampling period

ADC:

x(n)

DSP

Processing

DAC:

y(n)

Interrupt service routine

T=sampling period

t

T 2T0 (sec.)

Figure 2. Real-time process using the 68HC12 microcontroller.

As shown in Figure 2, an interrupt driven application is required and an interrupt service routine

is executed at the beginning of each sampling period of T seconds. During each sampling period,

the microcontroller sends the processed digital output y(n) to the DAC unit, performs ADC

conversion to obtain a new digital input data x(n), and processes the digital input x(n) to produce

a digital output y(n). The digital output y(n) will be sent out when the next interrupt is activated.

Since the microcontroller has a slow clock rate, assembly coding is required in order to

maximize the processing capability, that is, maximize the usage of machine execution time. For

example, if a sampling rate is set up to 8000 Hz, then the sampling period T equals 125 micro

seconds. Again, since the 68HC12 microcontroller has a clock rate of 8 MHz (1 clock tick

=1/8MHz=0.125 micro seconds), the maximum number of clock ticks for processing each

sample is 1000 (clock cycles). Given the sampling rate, students are required to examine

execution time available for each filter implementation to ensure that the total number of clock

ticks is within its limit. Figure 3 lists the program segment of sampling, ADC, and DAC

conversions. Note that the number of ticks used as 1000 can be changed to set a different

sampling rate. Using the machine code information
1
, the setup program with a sampling period

P
age 22.1384.4

of 125 micro-seconds listed in Figure 3 takes 43 clock ticks in total, leaving 957 clock ticks for

DSP processing. Of these 43 clock ticks, setting up the interrupt for sampling instant takes 22

clock ticks, sending a digital output requires 6 clock ticks, and performing ADC conversion costs

15 clock ticks. The memory allocation in general is depicted in Figure 4, where data area starts at

address 0x2000 while the program area begins at 0x2100. The data area is designated between

0x2000 and 0x2100, in which the input buffer, filter coefficients, and output data buffer reside.

Beyond the 0x2100 is the program code area, where the executable codes reside.

Once students verify the sampling program, they can begin to change the sampling rate by

themselves. At this stage, using a function generator to produce an input sine wave, they are able

to examine the input and output signals on an oscilloscope. In addition, since an anti-aliasing

low-pass filter is not included in the DSP system, students are also able to examine the aliasing

effects by inputting a sine wave with its frequency value larger than the Nyquist limit (half of the

sampling rate).

/* data area */

#data 0x2000

/* source code area */

#code 0x2100

filt_oc2()

{

#asm

done LDAA $008E ;

 ANDA #$04

 BEQ done

 LDD $0094

 ADDD #1000 ; set up 8000 Hz sampling rate: T=1000*125 microseconds

 STD $0094

 LDAA $008E

 ORAA #$04

 STAA $008E

 LDAA $2060 ; load the processed data

 STAA $0056 ; send the processed data to Port P and DAC device

 LDAA #$26

 STAA $0065 ; set up the ADC scan mode for AN channel 6

wait LDAA $0066 ; start ADC, and check the completion flag

 ANDA #$80

 BEQ wait ; complete ADC conversion

 LDAA $0074 ; obtain the converted from ADC resultant register 2

 ; this area for the DSP algorithm

 STAA $2060 ; store the converted data to the output buffer

#endasm

}

main()

{

 initA2D();

 initOC2();

 while(1) {

 filt_oc2();

 }

Figure 3. A sample program segment for sampling rate and ADC setup.

P
age 22.1384.5

$2000

$2001

$20FF

Data area

served for

input data buffer,

filter coefficient buffer,

and output data buffer

$2100 Program area

served for program

 Figure 4. Memory allocation for digital filter implementations.

C. FIR Filter Implementation

Now students can begin to implement a finite impulse response (FIR) digital filter designed

using MATLAB according to the given filter specifications. For example, the following designed

FIR filter is required to be implemented.

() 0.0060 () 0.0493 (1) 0.1733 (2) 0.25 (3)

0.1733 (4) 0.0493 (5) 0.0060 (6)

y n x n x n x n x n

x n x n x n

The memory utilization including FIR filter buffers is shown in Figure 5.

$2020

$2040

$2061

FIR filter coefficient

buffer

$2060

Input data buffer x(n)

Output data buffer y(n)

$2063

$2062

Figure 5. Memory utilization for FIR filter implementation.

Each filter is implemented in a fixed-point format
3-5

 in which each data contains 15 bits for

magnitude and 1 bit for sign bit (Q-15 format). The 2’s complement form is used for any

negative number. The designed FIR filter coefficients are quantized into 16 bits as following:

P
age 22.1384.6

15

0 0.006 2 197b ,

15

1 0.0493 2 1615b ,

15

2 0.17331 2 5679b ,

15

3 0.25 2 8192b ,

4 5679b , 5 1615b , 6 197b

In the program (refer to Figure 4), students can enter the quantized filter coefficients in the data

area as shown below:

--
 #data 0x2020

int code[7]= {197, 1615, 5679, 8192, 5679, 1615, 197};

The FIR filtering requires multiplication and accumulation (MAC) operations. Multiplying two

16-bit numbers (Q-15 format) will result in a 31-bit number (Q-30 format). Figure 6 illustrates a

fixed-point multiplication using Q-15 formats. After multiplication, the result must be shifted left

by 1 bit to form a 32-bit data (Q-31 format).

s

s s

ss

s 0

15-bit magnitude

15-bit magnitude 15-bit magnitude

30-bit magnitude

Q-15 format

Q-15 format Q-15 format

x

After MAC operation:

Q-30 format

After adjustment to Q-31 format by shifting 1 bit to left:

Q-31 format

31-bit magnitude

Figure 6. MAC operation in Q-format.

The filtered output data y(n) is stored starting at address 0x2060 with consecutive 4 bytes, whose

highest byte will be sent to the parallel port as shown Figure 7. Note that the highest byte is sent

out to match the 8-bit ADC resolution.

P
age 22.1384.7

$2060

$2061

$2062

$2063

To P-portHighest byte

Lowest byte

Figure 7. Output data byte for DAC.

Before coding the digital filtering operation, students are instructed to learn how to update input

data using an FIFO buffer (first in-first out linear buffering technique) as depicted in Figure 8,

where the input buffer ranging from 0x02040 to 0x0204C.

$2040

$2042

$2044

$2046

$2048

$204A

$204C

x n()

x n()1

x n()2

x n()3

x n()4

x n()5

x n()6

New sample x(n) in

Oldest sample x(n-6) out

Figure 8. Input buffer using FIFO.

The digital filtering operation is described in Figure 9. As illustrated in the figure, the 68HC12

microcontroller offers a special instruction, called EMACS (multiply and accumulate with the

multiplier and multiplicand each having 16 bit signed numbers) operation. The accumulated

result is stored as a 32 bit signed number. This instruction requires thirteen (13) clock cycles for

execution. It uses index X and index Y registers to hold the addresses of multiplier and

multiplicand, respectively. The multiplied result is added to the specified address such as 0x2060

as depicted in Figures 9 and 10. After each “EMACS” operation, the index registers must be

increased four (4) times to fetch the next multiplier and multiplicand for the next “EMACS”

operation until the filtering processing is completed.

P
age 22.1384.8

EMACS syntax: [M(x):M(x+1)] x [M(y):M(y+1)] + M~M+3

$2020

$2022

$2024

$2026

$2028

$202A

$202C

$2040

$2042

$2044

$2046

$2048

$204A

$204C

x n()

x n()1

x n()2

x n()3

x n()4

x n()5

x n()6

197

1615

8192

5679

5679

197

1615

X=$2020 Y=$2040
Initial

pointers:
EMACS $2060

INX

INX

INY

INY

EMACS $2060

INX

INX

INY

INY

 Figure 9. Digital filtering using the EMACS instruction.

s s

ss

s 0

15-bit magnitude 15-bit magnitude

30-bit magnitude

Q-15 format Q-15 format

x

After EMACS operation:

Q-30 format

After adjustment to Q-31 format by shifting 1 bit to left:

Q-31 format

31-bit magnitude

Add a DC offset $80 to the first byte:

8 bit data$2060

$2060

$2060

Figure 10. Output data format.

Note that a DC offset value of $80 is added to the first byte (highest byte), since an ADC557

chip only converts a positive number. The final 8-bit data at location 0x2060 is now ready to be

sent out to the parallel port. Figure 11 lists a program segment.

P
age 22.1384.9

 ... ;sampling rate

 LDAA $2060 ;output filtered data

 STAA $0056

 LDD #$00 ; clear the result

 STD $2060

 STD $2062

 … ; done with ADC

 LDD $204A ;linear buffering

 STD $204C

 LDD $2048

 STD $204A

 LDD $2046

 STD $2048

 LDD $2044

 STD $2046

 LDD $2042

 STD $2044

 LDD $2040

 STD $2042

 LDAA $0074 ;get new input sample

 LDAB #$00

 ADDA #$80 ;subtract DC offset

 STD $2040 ;update new sample

 LDX #$2020 ; the first coefficient

 LDY #$2040 ; the first data

 EMACS $2060 ;

 INX

 INX

 INY

 INY

 EMACS $2060

 INX

 INX

 INY

 INY

 EMACS $2060

 INX

 INX

 INY

 INY

 EMACS $2060

 INX

 INX

 INY

 INY

 EMACS $2060

 INX

 INX

 INY

 INY

 EMACS $2060

 INX

 INX

 INY

 INY

 EMACS $2060 ; done with filtering

 LDD $2060

 LSLD ;adjust it to Q-15 format

 ADDA #$80 ; add DC offset

 STD $2060 ; store to output buffer

Figure 11. A sample program segment for FIR filter implementation.

P
age 22.1384.10

After studying the sample program shown in Figure 11, students are required to examine their

own codes to see if the execution time is within its limit set by the sampling rate. Then they

program the “EMACS” operation mechanically. Once the program is successfully implemented,

students are required to replace the repetition part of the “EMACS” with a subroutine and a loop.

D. IIR Filter Implementation

The infinite impulse response (IIR) filter implementation requires more efforts. The scaling

factors must be incorporated to avoid a possible overflow for each accumulator and a coefficient

quantization overflow due to the designed coefficient value larger than one. An illustrative

example is given below:

1 2

1 2

0.06747 0.1349 0.06747
()

1 1.1429 0.4128

z z
H z

z z

Students are first required to implement H(z) using direct form I

shown in Figure 12.

z 1

z 1

z 1

z 1

z 1

y(n)
b C0 /

b C1 /

b CM /

a C1 /
+

x n()

x n()1

x n M()

z 1

a C2 /

a CN /

C

Figure 12. IIR filter implementation in direct form I.

Converting the transfer function yields the following difference equation:

() 0.06747 () 0.1394 (1 0.06747 (2) 1.1429 (1) 0.4128 (2)y n x n x n x n y n y n

Since a coefficient value of 1.1429 is larger than 1, the DSP equation must be scaled down by a

factor of 2 to avoid the coefficient quantization overflow. The scaled DSP equations are

0.06747 0.1394 0.06747 1.1429 0.4128
() () (1 (2) (1) (2)

2 2 2 2 2
sy n x n x n x n y n y n

() 2 ()sy n y n

P
age 22.1384.11

The quantized coefficients using 16 bit including a sign bit are listed below:

150.06747
2 1106

2
,

150.1344

2 2210
2

,

151.1429
2 18725

2
,

150.4128
2 6763

2

Figure 13 depicts the memory and buffer organization.

$2020

$2022

$2024

bn

1106

2210

1106

$2030

$2032

an

18275

-6763

$2040

$2042

$2044

x n()

x n()

x n()1

x n()2

Input buffer

$2050

$2052

y n()1

y(n-1)

y(n-2)

Past output

buffer y n sum()

dataH

dataL

Output buffer

$2060

$2062

8 bit

Output filtered data

$2060

Add a DC offset #$80

P-port

 Figure 13. Memory arrangement for an IIR filter in direct form I.

P
age 22.1384.12

Figure 14 illustrates the IIR filter implementation using linear buffers. Note that both input and

output data buffers need to be updated for processing each input sample. Figure 15 shows a

sample program segment.

$2040

$2042

$2044

x n()

x n()

x n()1

x n()2

Input buffer

Substruct DC offset:

ADDA #$80

$2050

$2052

y n()

y(n-1)

y(n-2)

Output without adding

DC offset

$2020

$2022

$2024

bn

1106

2210

1106

$2030

$2032

an

18275

-6763

$2040

$2042

$2044

x n()

x n()

x n()1

x n()2

Input buffer

$2050

$2052

y n()1

y(n-1)

y(n-2)

Past output

buffer

Output buffer

$2060

x

x

x

x

x

+

+

+

Q-30 formats s

$2060 Q-31 formats

Shift to left by 1 bit

0

Figure 14. IIR filter implementation in direct form I.

P
age 22.1384.13

 … ; sampling rate control

 LDD $2060 ;output filtered data

 STAA $0056 ; send y(n) to P-Port

 LDD #$00 ; clear accumulate

 STD $2060

 STD $2062

 … ; ADC

 LDD $2042 ;update the linear buffer for input x(n)

 STD $2044

 LDD $2040

 STD $2042

 LDAA $0074 ;update sample

 LDAB #$00 ;clear lower byte

 ADDA #$80 ; subtract DC offset =2.5 volts

 STD $2040

 LDX #$2020 ; perform b0x(n)+b1x(n)+b2x(n-2)

 LDY #$2040

 EMACS $2060

 INX

 INX

 INY

 INY

 EMACS $2060

 INX

 INX

 INY

 INY

 EMACS $2060 ;done with sum of b(n)*x(n)

 LDX #$2030 ; perform -a1y(n-1)-a2y(n-2)

 LDY #$2050

 EMACS $2060

 INX

 INX

 INY

 INY

 EMACS $2060

 LDD $2060; change y(n) in Q-15 and scale it up by 2

 LSLD

 LSLD ; scale factor used in quantization

 STD $2060

 LDD $2050 ; update buffer y(n-1) y(n-2)

 STD $2052

 LDD $2060

 STD $2050

 LDAA $2060

 ADDA #$80 ;add DC offset

 STAA $2060

Figure 15. A sample program segment for IIR filter implementation in direct form I.

P
age 22.1384.14

Next, direct form II shown in Figure 16 can be investigated using the same IIR filter transfer

function.

z 1

+ +

y n()b B0 /

b B1 /

b BM /

a A1 /

a AM /

x n()

b B2 /a A2 /

w n()2

w n M()

w n()

z 1

z 1

w n()1

1/ S 1/ A

A B S

 Figure 16. IIR filter implementation in direct form II.

Converting the transfer function yields the following difference equations in direct form II:

() () 1.1429 (1) 0.4128 (2)w n x n w n w n

() 0.06747 () 0.1349 (1) 0.06747 (2)y n w n w n w n

To avoid the overflow in the first equation (corresponding to the first adder), an impulse

response sequence from its transfer function can be determined by using MATLAB as follows:

1

1 2

1
()

1 1.1429 0.4128
h n Z

z z

The scale factor S shown in Figure 16 is then computed using the following formula
4
:

() 4S h n

For this case, S=4 is selected. Again, since the coefficient 1.1429 >1, a scale factor of A=2 is

employed to ensure all the numerator coefficients in the first equation are less than 1. B=1 is

chosen since all of the coefficients in the second equation are fractions. Thus, the final

implementation equations without coefficient quantization are listed below:

P
age 22.1384.15

1
() ()

4
inputx n x n

1 1.1429 0.4128
() () (1) (2)

2 2 2
sw n x n w n w n

() 2 ()sw n w n

() 0.06747 () 0.1349 (1) 0.0647 (2)y n w n w n w n

() 4 ()outputy n y n

Now, quantizing each coefficient leads to

151
2 16384

2
,

151.1429
2 18726

2
,

150.4128
2 6764

2
,

150.06747 2 2211,
150.1349 2 4420

The memory arrangement for input and output data buffers is displayed in Figure 17. As shown

in Figure 17, there are three data buffers: input data buffer, output data buffer, and state data

buffer. Only state data buffer requires the FIFO operation. A detailed implementation is shown in

Figure 18.

$2020

$2022

$2024

bn

2211

4420

2211

$2030

$2032

an

18276

-6763

$2040

$2042

$2044

x n()

x n()

w n()1

w n()2

Input buffer
() sumy n

dataH

dataL

Output buffer

$2060

$2062

16384

$2034

w n()

$2046

State buffer ()w n

 Figure 17. Memory arrangement for IIR filter implementation in direct form II.

P
age 22.1384.16

 … ; sampling rate control

 LDD $2060 ;output the filtered data

 STAA $0056

 LDD #$00

 STD $2060

 STD $2062

 … ; done with ADC

 LDAB $0074 ;update sample

 LDAA #$00

 ADDD #$FF80 ;add DC offset with sign extension

 LDY #$0040 ;scale the input x(n) down by 4 (S=4)to avoid overflow

 emuls ;note that A=2 is included in coefficients

 STD $2040

 LDX #$2030

 LDY #$2040

 EMACS $2060 ;0.5*x(n)

 INX

 INX

 LDY #$2044

 EMACS $2060 ;-a1*w(n-1)

 INX

 INX

 INY

 INY

 EMACS $2060 ;-a2*w(n-2)

 LDD $2060

 LDY #$0002 ; A=2

 emuls

 LSLD ; adjust to Q-15

 STD $2042 ; w(n)

 LDD #$0

 STD $2060

 STD $2062

 LDX #$2020 ; filtering data

 LDY #$2042

 EMACS $2060 ;b0*w(n)

 INX

 INX

 INY

 INY

 EMACS $2060 ;b1*w(n-1)

 INX

 INX

 INY

 INY

 EMACS $2060 ;done with sum of b(n)*w(n)

 LDD $2044 ;update the linear buffer for w(n)

 STD $2046

 LDD $2042

 STD $2044

 LDD $2060

 LSLD ; change y(n) to Q-15

 LSLD ; scale up by 4, S=4

 LSLD

 ADDA #$80 ;add DC offset

 STD $2060

Figure 18. A sample program segment for IIR filter implementation in direct form II.

P
age 22.1384.17

With the established knowledge and sample programs, students can further conduct their own

filter implementations using their own designed filters. Finally, a group project can be assigned

to students to develop more advanced implementations including dual tone multi-frequency

(DTMF) tone generation using IIR filters, FIR filter using the circular buffering, and sampling

rate conversions.

III. Student Evaluation and Improvement

Upon completion of the DSP course as well as its laboratory experiments, a survey was

conducted to ask each student to evaluate his/her achievement using the 68HC12 microcontroller

as a learning tool. Table 1 shows the survey results. Note that the rating scale was based on the

percentage of the overall students.

 Table 1. Student survey for their achievements.

Rating scale Understanding

of digital filter

implementation

Tools Excitement

4 – excellent 85% 90% 80%

3 – good 15% 10% 15%

2 – fair 0% 0% 5%

1 – unsatisfied 0% 0% 0%

Most students remained excited about labs since the hands-on real-time labs using their familiar

platform motivated them. Students felt that they can focus on learning filter implementations

without putting extra effort to learn the new programming tool and environment. The textbook
4

helped a lot to develop DSP concepts using ample worked numerical examples accompanying

with handy MATLAB simulation examples and programs. After learning the digital filter

implementation, students enhanced their skills in the embedded system design significantly so

that they could apply their gained knowledge and proficiency into their senior capstone projects.

Our future improvement could include developing more practical projects with applications of

processing low frequency signals like instrumentation, vibration, and biomedical signals.

IV. Conclusion

In this paper, we have demonstrated the feasibility and our pedagogy for teaching a real-time

DSP course using the 68HC12 microcontroller. We have validated that using the 68HC12

microcontroller as a platform in our DSP course is not only cost-effective but also learning

effective. The developed method could be an alternative when the DSP dedicated hardware is not

available while offering a DSP course is in demand.

Bibliography

1. D. J. Pack, S. F. Barrett, 68HC12 Microcontroller: Theory and Applications. Prentice Hall, 2002.

2. Axiom Manufacturing: http://www.axman.com/

P
age 22.1384.18

3. D. Grover, J. R. Deller, Digital Signal Processing and the Microcontroller. Prentice Hall, 1999.

4. L. Tan, Digital Signal Processing: Fundamentals and Applications. Elsevier/Academics, 2007.

5. T. B. Welch, C. H.G. Wright, M. G. Morrow, Real-Time Digital Signal Processing. CRC Press, 2006.

P
age 22.1384.19

