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Teaching Digital Filter Implementations  

Using the 68HC12 Microcontroller 
     

Abstract 

 

We present our pedagogy for teaching digital filter implementations using the 68HC12 

microcontroller. In the Electrical and Computer Engineering Technology (ECET) curriculum, a 

microcontroller has been used as a popular platform for teaching an embedded system course in 

the sophomore year. After completing the course, students become familiar with the 

microcontroller software development tools. They are able to program using assembly and C 

languages, and apply necessary software and hardware interface for hands-on applications. In 

fact, most microcontrollers are capable of performing basic digital signal processing (DSP) tasks 

such as digital filtering. Therefore, in this paper, we first proposed a simple DSP platform, which 

consists of the low-cost 68HC12 microcontroller, a signal condition circuit, and a digital-to-

analog converter device for teaching the DSP course. Using the proposed DSP platform, we 

present our instructional techniques for digital filter implementations and related applications. 

Our student survey results regarding an adoption of the 68HC12 microcontroller for teaching 

DSP show that the microcontroller is a cost and learning effective tool and can be used as an 

alternative when the DSP dedicated hardware is not available.  

 

I. Introduction 

 

In the Electrical and Computer Engineering Technology (ECET) curriculum, a microcontroller 

has been used as a popular platform for teaching an embedded system course in the sophomore 

year. After completing the course, students become familiar with the microcontroller software 

development tools. They are able to program using assembly and C languages and apply 

necessary software and hardware interface for hands-on applications. In addition, most 

microcontrollers are capable of performing basic digital signal processing (DSP) tasks such as 

digital filtering. On the other hand, a low-cost DSP solution is preferred in many DSP 

applications. For example, a low sampling rate (100 Hz) is fast enough to process temperature 

signal, light intensity, air pressure, mechanical strain, or seismic signal. Meanwhile, a low 

analog-to-digital (ADC) resolution (8-bit data) in these applications may be sufficient. Hence, an 

adoption of a low-cost microcontroller instead of a digital signal processor with full capability is 

a cost effective choice. Considering these facts, using a microcontroller for a DSP course in the 

junior year could offer the following benefits to ECET students: (1) a microcontroller can be an 

alternative and cost effective solution when a DSP processor such as TMS320C67xx is not 

available; (2) students can save a significant amount of time for learning and familiarizing with 

the new system architecture, its corresponding development tools and assembly instructions. 

Instead, they can focus on learning the implementation of digital filters and DSP applications; (3) 

the microcontroller is flexible to use for various applications including signal processing. 

 

In this paper, we present our pedagogy for teaching digital filter implementations using the 

68HC12 microcontroller. The paper is organized as follows: we first describe a simple DSP 

system that consists of the low-cost 68HC12 microcontroller, a signal condition circuit, and a 

digital-to-analog (DAC) converter device. A simple program to flexibly set up the sampling rate 

is then developed and the key assembly instructions for digital filtering are reviewed. Next, we 
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illustrate the fixed-point data format, finite impulse response (FIR) filter and (infinite impulse 

response) IIR filter structures with direct forms I and II.  After digital filters are designed by 

using MATLAB, real-time FIR and IIR filter implementations are developed using a linear 

buffering technique.  Finally, we examine student surveys regarding adoption of the 68HC12 

microcontroller in their DSP course and discuss the possible improvement based on the survey. 

 

II. DSP Using an HC12 Microcontroller 

 

A. Hardware Setup and Interface  

 

We focus on the development of a simple DSP system by using the 68HC12 microcontroller, 

which is adopted as a cost and learning effective tool for our DSP course. The detailed 

information regarding the 68HC12 microcontroller’s architecture, interface, and instruction set 

can be found in the textbook written by D. Pack
1
.  Figure 1 depicts our simple DSP system.  
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           (a) Block diagram.                                                      (b) Pin assignments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) DSP hardware setup. 

 

Figure 1. A simple DSP system using the 68HC12 microcontroller. 

 

As shown in Figure 1(a), the proposed DSP system consists of the 68HC12 microcontroller, a 

signal conditioning circuit, and a digital-to-analog (DAC) unit. First, the analog signal from a 

sensor is conditioned via amplification to fit the voltage range designated between 0 to 5 volts. 
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The amplified analog signal is then fed to the 68HC12 microcontroller via an ADC channel 6 

(any other channel can also be configured) with an 8-bit resolution. The signal conditioning 

circuit is a standard voltage amplifier, which can be easily designed using an Op-Amp circuit 

[see Figure 1(b)]. Note that an anti-aliasing low-pass filter is not included, since the platform 

needs be flexible for various sampling rates set by internal software. The microcontroller 

processes the converted 8-bit digital value and sends the processed digital output to its 8-bit 

parallel port. A DAC unit (analog device AD557 circuit) shown in Figure 1(b) applies the 8-bit 

information and generates a recovered analog signal. Note that the DAC output is essentially a 

sample and hold waveform which contains image frequencies. These image frequencies can be 

filtered by a reconstruction low-pass filter (also called the anti-image low-pass filter). Again, a 

reconstruction low-pass filter is not included due to the flexibility requirement for a sampling 

rate selection. The DAC output range is between 0 to 2.55 volts. Figure 1(c) displays the DSP 

hardware setup. For lab experiments, an analog input signal can be produced by a function 

generator while the analog input and output signals can be examined via an oscilloscope.  

 

B. Software Setup 

 

Considering that students are familiar with the software development tool such as AxIDE (The 

detailed information can be found in reference
2
), assembly and C languages, and Motorola 

68HC12 instruction set, a simple software setup program for real-time signal processing depicted 

in Figure 2 can first be studied. 
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Figure 2.  Real-time process using the 68HC12 microcontroller. 

 

As shown in Figure 2, an interrupt driven application is required and an interrupt service routine 

is executed at the beginning of each sampling period of T seconds. During each sampling period, 

the microcontroller sends the processed digital output y(n) to the DAC unit, performs ADC 

conversion to obtain a new digital input data x(n), and processes the digital input x(n) to produce 

a digital output y(n). The digital output y(n) will be sent out when the next interrupt is activated. 

Since the microcontroller has a slow clock rate, assembly coding is required in order to 

maximize the processing capability, that is, maximize the usage of machine execution time. For 

example, if a sampling rate is set up to 8000 Hz, then the sampling period T equals 125 micro 

seconds. Again, since the 68HC12 microcontroller has a clock rate of 8 MHz (1 clock tick 

=1/8MHz=0.125 micro seconds), the maximum number of clock ticks for processing each 

sample is 1000 (clock cycles).  Given the sampling rate, students are required to examine 

execution time available for each filter implementation to ensure that the total number of clock 

ticks is within its limit. Figure 3 lists the program segment of sampling, ADC, and DAC 

conversions. Note that the number of ticks used as 1000 can be changed to set a different 

sampling rate. Using the machine code information
1
, the setup program with a sampling period 
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of 125 micro-seconds listed in Figure 3 takes 43 clock ticks in total, leaving 957 clock ticks for 

DSP processing. Of these 43 clock ticks, setting up the interrupt for sampling instant takes 22 

clock ticks, sending a digital output requires 6 clock ticks, and performing ADC conversion costs 

15 clock ticks. The memory allocation in general is depicted in Figure 4, where data area starts at 

address 0x2000 while the program area begins at 0x2100. The data area is designated between 

0x2000 and 0x2100, in which the input buffer, filter coefficients, and output data buffer reside. 

Beyond the 0x2100 is the program code area, where the executable codes reside.  

  

Once students verify the sampling program, they can begin to change the sampling rate by 

themselves. At this stage, using a function generator to produce an input sine wave, they are able 

to examine the input and output signals on an oscilloscope. In addition, since an anti-aliasing 

low-pass filter is not included in the DSP system, students are also able to examine the aliasing 

effects by inputting a sine wave with its frequency value larger than the Nyquist limit (half of the 

sampling rate). 
 

/* data area */ 

#data    0x2000  

 

/* source code area */ 

#code    0x2100 

  

filt_oc2() 

{  

#asm 

done     LDAA $008E  ; 

        ANDA #$04 

        BEQ done             

        LDD  $0094    

        ADDD #1000   ;  set up  8000 Hz sampling rate: T=1000*125 microseconds 

        STD $0094             

        LDAA $008E 

        ORAA #$04 

        STAA $008E    

        LDAA $2060     ; load  the processed data 

        STAA $0056      ; send the processed data to Port P and DAC device     

        LDAA #$26 

        STAA $0065   ;  set up the ADC scan mode for AN channel 6 

wait     LDAA $0066 ; start ADC, and check the completion flag 

        ANDA #$80 

        BEQ wait      ; complete ADC conversion 

        LDAA $0074  ; obtain the converted from ADC resultant register 2 

 

        ; this area for the DSP algorithm 

        STAA $2060  ; store the converted data to the output buffer 

#endasm 

} 

 

main() 

{ 

  initA2D(); 

  initOC2(); 

  while(1) { 

    filt_oc2(); 

  }  

 

Figure 3. A sample program segment for sampling rate and ADC setup. 

P
age 22.1384.5



 

 

 

 

 

$2000

$2001

$20FF

Data area

served for

input data buffer,

filter coefficient buffer,

and output data buffer

$2100 Program area

served for program

 
 

 

 Figure 4. Memory allocation for digital filter implementations. 

 

 

C. FIR Filter Implementation 

 

Now students can begin to implement a finite impulse response (FIR) digital filter designed 

using MATLAB according to the given filter specifications. For example, the following designed 

FIR filter is required to be implemented. 

 

( ) 0.0060 ( ) 0.0493 ( 1) 0.1733 ( 2) 0.25 ( 3)

0.1733 ( 4) 0.0493 ( 5) 0.0060 ( 6)

y n x n x n x n x n

x n x n x n
 

 

The memory utilization including FIR filter buffers is shown in Figure 5. 
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$2063
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Figure 5.  Memory utilization for FIR filter implementation. 

 

Each filter is implemented in a fixed-point format
3-5

 in which each data contains 15 bits for 

magnitude and 1 bit for sign bit (Q-15 format).  The 2’s complement form is used for any 

negative number. The designed FIR filter coefficients are quantized into 16 bits as following: 
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15

0 0.006 2 197b ,  

15

1 0.0493 2 1615b , 

15

2 0.17331 2 5679b , 

15

3 0.25 2 8192b , 

4 5679b , 5 1615b , 6 197b  

 

In the program (refer to Figure 4), students can enter the quantized filter coefficients in the data 

area as shown below:  

 
-------------------------------------------------------------------------------------------------------- 
                  #data 0x2020 

int code[7]= {197, 1615, 5679, 8192, 5679, 1615, 197}; 

--------------------------------------------------------------------------------------- 

 

The FIR filtering requires multiplication and accumulation (MAC) operations. Multiplying two 

16-bit numbers (Q-15 format) will result in a 31-bit number (Q-30 format). Figure 6 illustrates a 

fixed-point multiplication using Q-15 formats. After multiplication, the result must be shifted left 

by 1 bit to form a 32-bit data (Q-31 format). 

 

 

s

s s

ss

s 0

15-bit magnitude

15-bit magnitude 15-bit magnitude

30-bit magnitude

Q-15 format

Q-15 format Q-15 format

x

After MAC operation:

Q-30 format

After adjustment to Q-31 format by shifting 1 bit to left:

Q-31 format

31-bit magnitude
 

 

 

Figure 6. MAC operation in Q-format. 

 

 

The filtered output data y(n) is stored starting at address 0x2060 with consecutive 4 bytes, whose 

highest byte will be sent to the parallel port as shown Figure 7. Note that the highest byte is sent 

out to match the 8-bit ADC resolution. 
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Figure 7. Output data byte for DAC. 

 

 

Before coding the digital filtering operation, students are instructed to learn how to update input 

data using an FIFO buffer (first in-first out linear buffering technique) as depicted in Figure 8, 

where the input buffer ranging from 0x02040 to 0x0204C. 
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Figure 8. Input buffer using FIFO. 

 

 

The digital filtering operation is described in Figure 9. As illustrated in the figure, the 68HC12 

microcontroller offers a special instruction, called EMACS (multiply and accumulate with the 

multiplier and multiplicand each having 16 bit signed numbers) operation. The accumulated 

result is stored as a 32 bit signed number. This instruction requires thirteen (13) clock cycles for 

execution. It uses index X and index Y registers to hold the addresses of multiplier and 

multiplicand, respectively. The multiplied result is added to the specified address such as 0x2060 

as depicted in Figures 9 and 10. After each “EMACS” operation, the index registers must be 

increased four (4) times to fetch the next multiplier and multiplicand for the next “EMACS” 

operation until the filtering processing is completed.  
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EMACS syntax: [  M(x):M(x+1) ] x [M(y):M(y+1) ] + M~M+3 
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   Figure 9. Digital filtering using the EMACS instruction. 
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Figure 10. Output data format. 

 

 

Note that a DC offset value of $80 is added to the first byte (highest byte), since an ADC557 

chip only converts a positive number. The final 8-bit data at location 0x2060 is now ready to be 

sent out to the parallel port. Figure 11 lists a program segment. 
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         ...        ;sampling rate 

        LDAA $2060  ;output filtered data 

        STAA $0056 

        LDD #$00    ; clear the result     

        STD $2060 

        STD $2062 

        …          ; done with ADC 

        LDD $204A   ;linear buffering 

        STD $204C 

        LDD $2048 

        STD $204A 

        LDD $2046 

        STD $2048 

        LDD $2044 

        STD $2046 

        LDD $2042 

        STD $2044 

        LDD $2040 

        STD $2042 

        LDAA $0074  ;get new input sample 

        LDAB #$00 

        ADDA #$80  ;subtract DC offset 

        STD $2040  ;update new sample 

        LDX #$2020  ; the first coefficient 

        LDY #$2040  ; the first data  

        EMACS $2060 ; 

        INX 

        INX 

        INY 

        INY 

        EMACS $2060 

        INX 

        INX 

        INY 

        INY 

        EMACS $2060 

        INX 

        INX 

        INY 

        INY 

        EMACS $2060 

        INX 

        INX 

        INY 

        INY 

        EMACS $2060 

        INX 

        INX 

        INY 

        INY 

        EMACS $2060 

        INX 

        INX 

        INY 

        INY 

        EMACS $2060 ; done with filtering 

        LDD $2060  

        LSLD  ;adjust it to Q-15 format 

        ADDA #$80  ; add DC offset 

        STD $2060 ; store to output buffer 

Figure 11. A sample program segment for FIR filter implementation. 
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After studying the sample program shown in Figure 11, students are required to examine their 

own codes to see if the execution time is within its limit set by the sampling rate. Then they 

program the “EMACS” operation mechanically. Once the program is successfully implemented, 

students are required to replace the repetition part of the “EMACS” with a subroutine and a loop. 

 

D. IIR Filter Implementation 

 

The infinite impulse response (IIR) filter implementation requires more efforts. The scaling 

factors must be incorporated to avoid a possible overflow for each accumulator and a coefficient 

quantization overflow due to the designed coefficient value larger than one. An illustrative 

example is given below: 

 
1 2

1 2

0.06747 0.1349 0.06747
( )

1 1.1429 0.4128

z z
H z

z z
 

 

Students are first required to implement H(z) using direct form I
 
shown in Figure 12. 

 

 

z 1

z 1

z 1

z 1

z 1

y(n)
b C0 /

b C1 /

b CM /

a C1 /
+

x n( )

x n( )1

x n M( )

z 1

a C2 /

a CN /

C

 
 

    

Figure 12. IIR filter implementation in direct form I. 

 

 

Converting the transfer function yields the following difference equation: 

 

( ) 0.06747 ( ) 0.1394 ( 1 0.06747 ( 2) 1.1429 ( 1) 0.4128 ( 2)y n x n x n x n y n y n  

 

Since a coefficient value of 1.1429 is larger than 1, the DSP equation must be scaled down by a 

factor of 2 to avoid the coefficient quantization overflow. The scaled DSP equations are 

 

0.06747 0.1394 0.06747 1.1429 0.4128
( ) ( ) ( 1 ( 2) ( 1) ( 2)

2 2 2 2 2
sy n x n x n x n y n y n  

( ) 2 ( )sy n y n  

 

P
age 22.1384.11



The quantized coefficients using 16 bit including a sign bit are listed below: 

 

150.06747
2 1106

2
, 

 
150.1344

2 2210
2

, 

151.1429
2 18725

2
,  

150.4128
2 6763

2
 

 

 

Figure 13 depicts the memory and buffer organization. 
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  Figure 13. Memory arrangement for an IIR filter in direct form I. 
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Figure 14 illustrates the IIR filter implementation using linear buffers. Note that both input and 

output data buffers need to be updated for processing each input sample. Figure 15 shows a 

sample program segment. 
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Figure 14. IIR filter implementation in direct form I. 
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        …      ; sampling rate control 

        LDD $2060         ;output filtered data 

        STAA $0056        ; send y(n) to P-Port 

        LDD #$00    ; clear accumulate 

        STD $2060 

        STD $2062 

        …        ; ADC 

        LDD $2042   ;update the linear buffer for input x(n) 

        STD $2044 

        LDD $2040 

        STD $2042        

        LDAA $0074  ;update sample 

        LDAB #$00  ;clear lower byte 

        ADDA #$80 ; subtract DC offset =2.5 volts      

        STD $2040 

        LDX #$2020  ; perform b0x(n)+b1x(n)+b2x(n-2) 

        LDY #$2040 

        EMACS $2060                            

        INX 

        INX 

        INY 

        INY 

        EMACS $2060 

        INX 

        INX 

        INY 

        INY 

        EMACS $2060  ;done with sum of b(n)*x(n) 

        LDX #$2030 ; perform  -a1y(n-1)-a2y(n-2) 

        LDY #$2050 

        EMACS $2060 

        INX 

        INX 

        INY 

        INY 

        EMACS $2060    

        LDD $2060; change y(n) in Q-15 and scale it up by 2  

        LSLD 

        LSLD ; scale factor used in quantization 

        STD $2060 

        LDD $2050   ; update buffer y(n-1) y(n-2) 

        STD $2052 

        LDD $2060 

        STD $2050 

        LDAA $2060 

        ADDA #$80      ;add DC offset 

        STAA $2060 

 

 

Figure 15.  A sample program segment for IIR filter implementation in direct form I. 

 

 

 

 

 

P
age 22.1384.14



Next, direct form II shown in Figure 16 can be investigated using the same IIR filter transfer 

function. 

 

 

z 1

+ +

y n( )b B0 /

b B1 /

b BM /

a A1 /

a AM /

x n( )

b B2 /a A2 /

w n( )2

w n M( )

w n( )

z 1

z 1

w n( )1

1/ S 1/ A

A B S

 
 

 

   Figure 16. IIR filter implementation in direct form II. 

 

 

Converting the transfer function yields the following difference equations in direct form II: 

 

( ) ( ) 1.1429 ( 1) 0.4128 ( 2)w n x n w n w n  

( ) 0.06747 ( ) 0.1349 ( 1) 0.06747 ( 2)y n w n w n w n  

 

To avoid the overflow in the first equation (corresponding to the first adder), an impulse 

response sequence from its transfer function can be determined by using MATLAB as follows: 

 

1

1 2

1
( )

1 1.1429 0.4128
h n Z

z z
 

 

The scale factor S shown in Figure 16 is then computed using the following formula
4
:  

 

( ) 4S h n  

 

For this case, S=4 is selected. Again, since the coefficient 1.1429 >1, a scale factor of A=2 is 

employed to ensure all the numerator coefficients in the first equation are less than 1. B=1 is 

chosen since all of the coefficients in the second equation are fractions. Thus, the final 

implementation equations without coefficient quantization are listed below: 
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1
( ) ( )

4
inputx n x n  

1 1.1429 0.4128
( ) ( ) ( 1) ( 2)

2 2 2
sw n x n w n w n  

( ) 2 ( )sw n w n  

( ) 0.06747 ( ) 0.1349 ( 1) 0.0647 ( 2)y n w n w n w n  

( ) 4 ( )outputy n y n  

 

Now, quantizing each coefficient leads to 

 

151
2 16384

2
,  

151.1429
2 18726

2
, 

150.4128
2 6764

2
,  

150.06747 2 2211,  
150.1349 2 4420  

 

The memory arrangement for input and output data buffers is displayed in Figure 17. As shown 

in Figure 17, there are three data buffers: input data buffer, output data buffer, and state data 

buffer. Only state data buffer requires the FIFO operation. A detailed implementation is shown in 

Figure 18. 
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bn
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4420

2211

$2030

$2032

an
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$2040
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x n( )
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dataH
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$2062

16384

$2034
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$2046
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 Figure 17.  Memory arrangement for IIR filter implementation in direct form II. 
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        …        ; sampling rate control 

        LDD $2060  ;output the filtered data 

        STAA $0056 

        LDD #$00 

        STD $2060 

        STD $2062 

        …          ; done with ADC 

        LDAB $0074  ;update sample 

        LDAA #$00 

        ADDD #$FF80 ;add DC offset with sign extension 

        LDY #$0040  ;scale the input x(n) down by 4 (S=4)to avoid overflow 

        emuls       ;note that A=2 is included in coefficients 

        STD $2040 

        LDX #$2030 

        LDY #$2040 

        EMACS $2060       ;0.5*x(n) 

        INX 

        INX 

        LDY #$2044 

        EMACS $2060        ;-a1*w(n-1) 

        INX 

        INX 

        INY 

        INY 

        EMACS $2060      ;-a2*w(n-2) 

        LDD $2060 

        LDY #$0002      ; A=2  

        emuls 

        LSLD            ; adjust to Q-15 

        STD $2042         ; w(n) 

        LDD #$0 

        STD $2060 

        STD $2062 

        LDX #$2020  ; filtering data 

        LDY #$2042 

        EMACS $2060      ;b0*w(n) 

        INX 

        INX 

        INY 

        INY 

        EMACS $2060     ;b1*w(n-1) 

        INX 

        INX 

        INY 

        INY 

        EMACS $2060  ;done with sum of b(n)*w(n) 

        LDD $2044   ;update the linear buffer for w(n) 

        STD $2046 

        LDD $2042 

        STD $2044 

        LDD $2060 

        LSLD  ; change y(n) to Q-15 

        LSLD  ; scale up by 4, S=4 

        LSLD   

        ADDA #$80    ;add DC offset 

        STD $2060 

 

Figure 18.  A sample program segment for IIR filter implementation in direct form II. 
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With the established knowledge and sample programs, students can further conduct their own 

filter implementations using their own designed filters. Finally, a group project can be assigned 

to students to develop more advanced implementations including dual tone multi-frequency 

(DTMF) tone generation using IIR filters, FIR filter using the circular buffering, and sampling 

rate conversions. 

 

III. Student Evaluation and Improvement 

 

Upon completion of the DSP course as well as its laboratory experiments, a survey was 

conducted to ask each student to evaluate his/her achievement using the 68HC12 microcontroller 

as a learning tool. Table 1 shows the survey results. Note that the rating scale was based on the 

percentage of the overall students. 

 

             Table 1. Student survey for their achievements. 

Rating scale  Understanding 

of digital filter 

implementation 

Tools Excitement 

4 – excellent 85% 90% 80% 

3 – good 15% 10% 15% 

2 – fair 0% 0% 5% 

1 – unsatisfied 0% 0% 0% 

 

Most students remained excited about labs since the hands-on real-time labs using their familiar 

platform motivated them. Students felt that they can focus on learning filter implementations 

without putting extra effort to learn the new programming tool and environment. The textbook
4
 

helped a lot to develop DSP concepts using ample worked numerical examples accompanying 

with handy MATLAB simulation examples and programs. After learning the digital filter 

implementation, students enhanced their skills in the embedded system design significantly so 

that they could apply their gained knowledge and proficiency into their senior capstone projects. 

Our future improvement could include developing more practical projects with applications of 

processing low frequency signals like instrumentation, vibration, and biomedical signals. 

 

IV. Conclusion 

 

In this paper, we have demonstrated the feasibility and our pedagogy for teaching a real-time 

DSP course using the 68HC12 microcontroller. We have validated that using the 68HC12 

microcontroller as a platform in our DSP course is not only cost-effective but also learning 

effective. The developed method could be an alternative when the DSP dedicated hardware is not 

available while offering a DSP course is in demand. 
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