
Session 3547

Teaching Embedded Systems Using Multiple Microcontrollers

C. Richard G. Helps, David P. Phillips
Electronics Engineering Technology, Brigham Young University

Abstract

Embedded control systems and in particular microcontrollers are used in virtually every
electronic system. It is essential that EET students be conversant with this technology. Students
need to have a clear understanding of the diversity of embedded systems. They also need to be
familiar with a range of development tools, operating systems and languages.

The characteristics of embedded systems add specific challenges to their development. They
necessarily involve both hardware and software, and the software often has real-time constraints.
Their development and debugging therefore require structured design techniques and good
understanding of software design principles. Software is frequently developed in C or assembly
code, often without the benefit of sophisticated or even standardized development tools. Data
books for these devices are often obscure and good reference books are scarce.

A microcontroller development system has been created for EET students at BYU. The
development system forms the "textbook" for a class in embedded real-time systems. Students
combine the theory of real-time systems with the practice of microcontroller systems
development. They each develop a data acquisition unit using most of the features available in
microcontrollers. The unit interfaces to sensors, actuators, LCD displays and serial ports using
different microcontroller architectures. The final data acquisition system can then be used for
later classes or projects or reprogrammed for other applications.

1. Embedded Microcontrollers are an Important Topic in EET programs

Embedded controllers are found in many modern products ranging through consumer
electronics, cars, industrial control, medical systems and communication. They serve as the
primary intelligence for many products or as simple intelligent interfaces between systems.
Microcontrollers are even replacing simple mechanical switches in many systems. A recent
survey1 indicated that for every 75 million desktop computers sold each year approximately 2.3
billion microcontrollers are sold. Another survey estimates that as many as 11 billion
microcontrollers of all types were sold in 19972. In the automobile market one estimate3

indicates that as many as 40 million cars are produced each year that typically include four
major microprocessors and dozens of low-end chips.

Mechanical engineering departments have also recognized the importance of this technology. In
recent years many of them have started “Mechatronics” programs using microcontrollers as the
intelligent element in the system. P

age 4.481.1

2. Software Requirements for Embedded Systems

The software designer for an embedded system must consider all the usual constraints, such as
structured design and algorithmic and logical correctness. In addition to these there are two
other significant features of embedded system software. The first is the hardware interfacing
inherent to every embedded system. The second is the real-time nature of embedded systems.

The peripherals and interface hardware of a microcontroller are tightly coupled to the CPU and
form a logical extension to the software of the system. Hardware configuration and timing must
be clearly understood for software to function successfully. Furthermore, when the hardware
malfunctions it can sometimes appear to be a software error. Both of these problems are
illustrated by a recent example in a student project. Students were using a microcontroller tied
to a set of latches to multiplex and buffer outgoing data. Several students assumed that the
latches were the standard D type latches and wrote software accordingly. The latches were in
fact transparent: if they were turned on then all subsequent data was passed through until they
were turned off. The problem manifested itself as data appearing on multiple outputs which
were thought to be inactive. This was a software error based on a misunderstanding of the
hardware. Tracing this problem was made more difficult since the latches were not performing
within design specifications and were occasionally triggered by narrow noise spikes on the
power lines. This was a hardware fault that also appeared to be a software logic problem.

Since hardware is sometimes misunderstood and faulty hardware problems such as those cited
do occur, there is a tendency for software writers to blame many of their problems on hardware.
This is the classic “Not Invented Here” syndrome. It is very important that students are involved
in both the hardware and software design so they understand the hardware and can, if necessary,
debug it. This problem is addressed by actively promoting a structured design approach for both
hardware and software in the course.

The other important consideration in embedded system software is its real-time aspect.
Interrupts and multitasking are the most common ways of implementing real-time software and
are also some of the more difficult types of software to write and debug. This problem is
aggravated by the scarcity of operating systems in microcontroller systems and by the prevalence
of primitive development environments. Students need to understand both the principles and the
practice of real-time systems with particular attention to minimalist implementations.

Embedded systems without a screen or keyboard are also much more difficult to test. Software
design must include provisions for testing. Systems must either indicate their status by
operating LEDs or some other external signal or they must be tested using a simulator or
emulator. In many cases a combination of these techniques will be used.

3. Embedded System Development

Development must be based on a foundation of structured design. Embedded processors do not
have keyboards and screens suitable for developing software. Software must be written on a
different machine, the development workstation, which is usually a desktop computer. The

P
age 4.481.2

development workstation needs to perform the following functions: editor, assembler or
compiler, simulator, programmer and emulator. Many chip manufacturers provide development
packages which include most of these features. These development packages are often complete
integrated development environments. A complete package with the features listed can greatly
aid development but it does not enforce or even encourage structured design. That discipline
must come from the programmer.

4. Need for Diversity in Microcontroller Courses

In a rapidly changing engineering environment the half-life of an engineering education is about
five years4. Students need to be life-long learners. Students not only need a wide range of
software, hardware and design skills5 they also need to be specifically educated to recognize the
range of capabilities available in different microcontroller architectures. Once students
understand the principles behind microcontrollers and embedded systems and have some
experience with implementing them, they can evaluate the suitability of new architectures and
can quickly learn how to apply them. It is therefore essential that students be exposed to a range
of different systems. They must not be narrowly trained to be able to operate a single system but
must be exposed to the whole field of embedded systems so they can not only appreciate the
effectiveness of a particular microcontroller for solving embedded system problems but be able
to choose the best microcontroller for the job.

Embedded systems encompass not only microcontrollers but also embedded microprocessor
systems such as the well-known PC104 family. There are also specialized systems such as the
DSP microprocessors from TI, Motorola, Analog Devices and others that often end up in
embedded systems. A dividing line can be drawn between microcontrollers and embedded
microprocessors but need not be. Students need to be competent in working with desktop-based
systems. Those skills transfer well to embedded systems such as the PC104 with a 386 CPU,
where memory is plentiful and operating systems are similar to desktop ones. Students also
need to be conversant with much smaller systems where RAM is measured in tens of bytes and
EPROM space (off-line storage) is measured in just a few kilobytes. The techniques used for
both systems are based on fundamental principles of multitasking, real-time systems and off-line
programming, although scaled down when applied to the smaller systems. This is another
reason why education must be principle-based and not only practice based.

Eight bit microcontrollers are the most commonly available. They have almost completely
replaced four bit systems since there is now no significant price difference2. 16 and 32 bit
systems are very similar to the 8 bit systems but are more expensive and are less well supported.
We see very little educational benefit in concentrating on 16 and 32 bit systems although they
are discussed in class.

Other issues with microcontroller development include problems of reliability, development
time, and a lack of operating systems.

5. BYU EET Microcontroller Development System P
age 4.481.3

In order to achieve the above objectives we have developed a microcontroller development
system for students to explore several of the microcontroller systems available. Students have all
studied topics in previous classes so that they are well grounded in several areas
• Basic digital systems
• Interfacing digital systems
• Structured Program design
• Coding and debugging (Assembly, C, Pascal or Java)

These classes require 14 semester credit hours spread over the first to third years of study. The
challenge that the instructor faces when designing a course of this type is that one wishes to give
the students the widest experience possible so that they have a thorough understanding of the
field. They must also have sufficient depth of exposure so that they do understand the topics
and are competent to design and solve problems’ requiring embedded system control, and not
merely survey the field. They also need to be aware of the tools that are available to facilitate
development. Time-to-market is one of the most crucial factors in deciding the financial success
of a new project and students need to be able to not only develop effective solutions to problems
but also to develop them quickly. Added to this challenge is the constraint of a limited number
of credit hours that can be dedicated to a single topic.

We selected two significantly different microcontrollers to cover in depth in a single course.
Other processor technologies are covered in discussions in that course and are also covered in
some depth in other courses. We selected the 8051 architecture to represent a fairly
conventional CISC system. There are many other suitable chips which represent what we
consider to be conventional architectures, some of the most notable being the Motorola
6811/6805 series, the Mitsubishi MELPS family and the NEC K series. We chose the 8051
largely because of the wide support available from many suppliers and the easy availability of
EEPROM parts that simplified programming in the first part of the course. The second
architecture we chose was the Microchip PIC architecture. This RISC chip is very different in
its programming. The complete instruction set consists of only 35 instructions and the system
has only one general-purpose register. We felt that students exposed to these two systems would
be able to handle and adapt to a wide variety of other processors when the need arises.

Once we had chosen the systems to use, we found that manufacturers such as PIC, Phillips,
Atmel and Motorola were very generous in supplying parts for us to test and for the students to
use.

Structured programming skills are emphasized throughout the course. Microcontroller systems
usually have very small memory sizes and very little or no memory management. While almost
all desktop systems use one of the few major operating systems (UNIX, Windows, Mac),
embedded microcontroller systems either have no operating system or use one of the many
proprietary operating systems. In general memory is globally shared. Students need to be
disciplined in program design, coding and debugging to ensure success. This discipline, taught
in earlier programming classes, takes on new meaning in the embedded environment. Students
in the class commented that they design with much smaller, more easily tested modules for
microcontrollers than they do for normal C or assembly for desktops.

P
age 4.481.4

Figure 1 Development system PCB layout showing principal features

There is no formal textbook for the class. Students are encouraged to use the same data books
and Internet resources that they will have access to as practicing professionals. Class lectures
and handout notes cover theoretical material. Students are also provided with sample code to
help them learn new instruction sets, assembly syntax, and programming techniques faster. In
many cases this sample code is also from publicly available sources such as manufacturers’
application notes. The Internet provides data sheets, example code, application notes,
development tools and other materials. These are freely available from nearly every
manufacturer and from other interested parties.

We also felt that students would be more motivated if the class and development system had a
clear and useful goal. Therefore the lab exercises were all steps in developing a serial port
controlled, multitasking, real-time data acquisition system with onboard LCD display. In
teaching some real-time and higher-current interfacing techniques a stepper motor controller was
also developed.

The development hardware consists of a double-sided PCB that is socketed to accept several
microcontroller (MCU) chips. The MCU sockets are arranged so that only one MCU can be
plugged in at a time to prevent conflict with multiple MCUs trying to control the buffer circuits.
Some additional features are included such as buffer chips to expand the I/O ports, a serial
connector, a power supply, a reset switch and prototyping area. The buffer chips are connected
to the pins of one of the MCU sockets but wire-wrap pins make them available for general use.
Figure 1 shows an outline of the development board. P

age 4.481.5

The course begins by having the students develop a simple basic functioning processor. They
take an 8051 MCU chip and apply power, a clock oscillator and a reset switch to it. They then
develop a simple program to read a single switch as an input and turn on a single LED. This is
the microcontroller equivalent of the traditional C program known as “Hello World.” A very
simple “Hello World” program consists of the instructions

ReadSwitchWriteLed:
MOV R0,P1 ; switch on P1
MOV P0,R0 ; LED on P0
JMP ReadSwitchWriteLED

This process teaches them to consider hardware issues such as impedances and current limits. It
also teaches them all the necessary mechanics of software writing, cross assembling,
downloading and running. It also introduces the problems of debugging embedded systems
without the benefits of integrated development environments. Students are given PIC and 8051
sample programs. These sample programs demonstrate assembler syntax, program
documentation, and contain functional assembly code.

After this, students move through a progression of lab exercises exploring the various
peripherals on the MCU chip and dealing with hardware interfacing and buffering. Interface
chips are provided as part of the class development system but students are still required to
research their characteristics and design the necessary software to take advantage of them.

About halfway through the semester the students switch over from the 8051 to the PIC16C74 for
lab exercises and work, at an accelerated pace, through similar exercises with the PIC MCU.
They then develop the data acquisition system. The data acquisition system accepts a simple set
of ASCII commands over the serial port, monitors and controls ports appropriately, and sends
results to the onboard LCD display and to the serial port. Although the data acquisition
functions implemented are minimal, the structure is in place and since the students have
developed the system themselves, they can easily extend or modify the system for any particular
purpose.

In parallel with the lab exercises, class discussions explore topics such as multitasking, real-time
definitions, practical real time strategies, other microprocessor architectures, and general
embedded system software design. This is intended to give them the theoretical background and
broadening which will enable them to evaluate the lab experiences with clear understanding.

6. Response to the Development System and Course

Student response has been very positive as measured by the standard anonymous course
evaluation system used on campus. The course has been taught by each of the authors
separately and was rated by the students at 6.1 on a 1 - 7 scale. This compares to an average for
the college of about 5.3 and to an average for these instructors of about 5.5. Student comments
indicate that they found the course challenging but that several thought it was one of the best
courses taken. Microcontrollers are widely used by the students in later projects and students are

P
age 4.481.6

very willing to choose different types of microcontrollers for projects and even to combine
different MCUs in a single project to take advantage of different features. This course has been
evolving over the last few years and has only been taught a few times. Early informal responses
from alumni indicate that the skills transfer well to the professional workplace.

7. Conclusions

The use of microcontrollers and embedded systems is growing rapidly in many different product
categories. The microcontroller is characterized by diversity in type and rapid change. This is
an excellent application area for engineering technology graduates. Diversity in background and
in microcontrollers are both necessary to work in the field professionally.

Students with a principle-based multiple architecture background will be best equipped to take
advantage of the many microcontrollers available and new ones being developed. Structured
programming is essential in an environment characterized by hardware interfacing, real-time
constraints, simple operating systems and minimal development interfaces.

BYU has developed a microcontroller development system and accompanying senior-level
course that accomplishes most of the goals for teaching embedded system principles. The
students develop working prototype embedded system devices using professional resources.
They study and apply diverse microcontroller architectures. They gain understanding of the
need for reliability, on-time delivery and real-time hardware/software design. This approach is
very successful as measured by student responses to the course, and the ease with which they
apply the system to other projects in the department.

Bibliography
1. Peatman, John B., Design with PIC Microcontrollers, Prentice Hall 1998
2. Cole, Bernard, Embedded Systems - Boundaries Fade with Architecture Changes, Electronic Engineering Times,
March 16, 1998, p89.
3. Werner, Loren, Embedded Operating Systems Face Greater Productivity Demands, Electronic Design, Oct 1
1998, p51-60
4. Pfile, Richard E. & Conrad, William R., Bring Realism Into the Classroom Through Your Consulting,
Proceedings, ASEE Annual Conference, Seattle,1998
5. Cheng, Betty H. C., Rover, Diane T. & Mutka, Matt W. A Multi-Pronged Approach to Bringing Embedded
Systems into Undergraduate Education. Proceedings, ASEE Annual Conference, Seattle,1998

C. RICHARD G. HELPS
Richard Helps is the Program Chair of the Electronics Engineering Technology program at BYU. He spent ten
years in industry as a control systems design engineer. He completed BS and MS degrees at the U of the
Witwatersrand, South Africa and a further graduate degree at the U of Utah. His primary interests are in control
systems, particularly embedded control systems, combined with artificial intelligence techniques such as neural
networks and fuzzy logic.

DAVID P. PHILLIPS
David P. Phillips is a part-time faculty member of the Electronics Engineering Technology program at Brigham

P
age 4.481.7

Young University. He has twenty-one years of design experience (hardware and software) with microprocessor and
microcontroller-based systems. He is now employed at Intelogis, Inc. where he is part of the design team working
on Intelogis Powerline Networking products. He has worked at Los Alamos Scientific Labs, Brigham Young
University, Purdue University, and Novell Inc. David received an M.S. degree from the University of New
Mexico/Los Alamos and a B.S. degree from Brigham Young University.

P
age 4.481.8

