
Copyright ASEE Middle Atlantic Regional Conference, 
April 29-30, 2011, Farmingdale State College, SUNY 

Teaching Error Correction to Core IT Students via Video Supplementary 
Instruction 

 
MAJ John Syers 

Department of Electrical Engineering and Computer Science 
United States Military Academy, West Point, NY 10996 

 
Abstract 

The introduction to programming can be very difficult for students, particularly those who have 
no IT background.  Understanding and correcting syntax errors is an integral part of 
programming, yet this topic is often given only perfunctory mention in course curriculums. 
The goal of this study is to determine whether providing supplementary instruction to students is 
an effective means of teaching error correction.  It also explores the effects this instruction has 
on instruction in the classroom. The study uses a popular online video website as the means of 
distribution, and also seeks to determine whether this type of communication is preferable, or 
whether another form of media should be used.  Students were surveyed to gain their feedback 
on the usefulness of this form of instruction. The results of this study will provide insight to 
faculty on the relative benefits of investing time in preparing materials that will be primarily 
used outside of the classroom. 
 
1. Introduction 

This study was formulated as a result of trends observed in IT105, Introduction to Computing 
and Information Technology.  The United States Military Academy is somewhat unique in that 
its core curriculum includes two information technology courses.  Cadets take the first course 
during their freshman year and the second junior year.  IT105 introduces cadets to a problem 
solving process, using Java as the vehicle.  Because the goal is for cadets to assimilate the 
process and programming concepts rather than become programmers, we use the RAPTOR 
design tool, which greatly reduces the number of novice programmer mistakes1.  
 
Cadets generally did well on programming assignments gradewise.  The assignments were 
believed to be valid assessments, and so it was reasonable to conclude that the cadets had an 
understanding of the general programming concepts, but something was lacking.  A closer 
observation of in-class graded programs revealed that some cadets became stymied by a 
particular error and progressed no further, spending as much as half an hour on the same point.  
Some of these cadets requested assistance, but a teacher is severely limited in the quality of hints 
that can be given during a graded event.  Sometimes they helped, but often they didn’t. 
 
Testing is part of the problem solving process, and identifying and correcting logic and syntax 
errors are both part of testing.  These concepts are explained, but the actual mechanics of 
interpreting and eliminating errors is often lost on a class.  Both intentional and unintentional 
errors during exercise demonstrations are helpful, but this only scratches the surface of the 
myriad combinations of errors that a novice student might encounter, and it is impossible to 
cover everything during our classroom sessions.  The course text, being also focused on concepts 
rather than syntax, provides no help with syntax errors. 



Copyright ASEE Middle Atlantic Regional Conference, 
April 29-30, 2011, Farmingdale State College, SUNY 

 
The author cannot recall having received any formal instruction on error correcting as an 
undergraduate student, but computer science majors were expected to figure out these things on 
their own.  This expectation is less realistic in a core course. 
 
2. Background 

Research was conducted in three main areas: teaching programming and error correction to 
cadets, teaching programming to a non-standard audience, and supplemental instruction. 
 
The pervasive theme in teaching programming is that is difficult (particularly in regards to 
debugging)2-5.  Programming is not just an academic discipline, it is a multi-tiered skill, requiring 
students to utilize multiple types of learning simultaneously6.  Introductory programming 
curriculums usually follow a standard format, giving a small amount of time to each concept, and 
then moving on.  Like mathematics, the knowledge is cumulative, and if the previous concept is 
not grasped, the student then has to wrestle with multiple concepts at once. 
 
Usually the focus in an introductory computing course is programming, that is, learning the 
processes associated with problem solving using a programming language.  The language itself is 
tangential, and yet there is a large amount of overhead associated with learning the syntax of the 
language being used (This also applies to the compiler and editor or Integrated Development 
Environment)7, 8.  Correcting syntax errors is associated with learning the computer language, but 
is a skill unto itself because syntax error messages are often cryptic.  It is not uncommon to see 
syntax errors that do not address the real problem.  For instance, a cadet entered the following 
code: 
 
public class Hello World extends eecs.Gui 
{ 
    public static void main(String[] args) 
    { 
    printLine("Hello World!"); 
    } //close main 
} //close class 

This program produced the error  '{' expected , but the real problem was that the cadet 
inserted a space in the class name.  The cadet had been admonished that identifiers could not 
include spaces, but novice programmers will have difficulty making a connection between the 
admonition and the error message. 

Another issue here is that we don’t make mistakes on purpose.  A student may write error-free 
programs 99% of the time, and encounter her first syntax error on a graded event.  Because the 
student previously had no syntax errors, she had no motivation to learn how to correct syntax 
errors. Despite the traumatic effect errors have on students, they are ultimately beneficial 
because the process of correcting them helps students learn more about how the computer works. 
 
Typically, programming is taught to computer science majors.  These students have chose 
computer science as their field of study and it is assumed that they possess more than a passing 



Copyright ASEE Middle Atlantic Regional Conference, 
April 29-30, 2011, Farmingdale State College, SUNY 

interest in the discipline, and thus possess the motivation to tackle the more challenging aspects 
of the courses.  Even then, when students encounter a problem, they fall into two camps, the 
movers and the stoppers9.  The movers experiment using the knowledge they have, making 
controlled modifications in hopes of overcoming the current obstacle.  The stoppers throw their 
hands in the air in frustration and progress no further.  Psychologists call this “learned 
helplessness.”6 

If this is the case for computer science majors, does it also hold true for non-majors?  Is there a 
difference between the two groups?  Studies have shown that there is usually a small difference 
in mathematical aptitude, which is related to a cadet’s ability to create algorithms.  Non-majors 
have expressed difficulty in understanding problem specifications, specifically in analyzing them 
and creating algorithms from them10.   

Different mediums for providing information on error correction were also explored.  Because 
the goal was to provide material that would be available for students outside the classroom, the 
term supplementary instruction seemed appropriate.  However, the term supplementary 
instruction seems to be associated providing with non-traditional and/or underprepared 
students11, 12.   
 
Because technology is the focus of the course, leveraging technology to facilitate this learning 
made sense. YouTube became the platform of choice.  Some research has been done regarding 
the role of YouTube and education13.  The fact that anyone can put content on YouTube is both a 
pro and a con.  YouTube contains a wealth of information, but there is no formal peer review, so 
the information presented is unreliable.  Some studies have explored the informal peer review in 
the form of comments and likes/dislikes. 
 
 
3. Method 

Instructional videos were created using Camtasia Studio 4 and CamStudio 2.0.  Both programs 
were evaluated, and while Camtasia Studio contained more features, CamStudio can produce 
similar results and has the advantage of being free.  Adobe Captivate was considered but was 
determined to be cost prohibitive.  
 
Video subjects were determined based on observations from previous IT105 semesters.  The goal 
was to tailor instruction specifically to the context in which cadets were making the errors.  
Methods (subroutines) is the last programming concept taught in IT105, and it created a different 
context for errors, which the videos addressed.  The goal was for all videos to be under three 
minutes.  This seems to be a standard on YouTube, and also takes attention span and frustration 
levels into consideration.  Because cadets were allowed to view the videos in the classroom, the 
videos contained no audio. 
 
The content of each video starts with a description of the error message.  Then a scenario is 
shown in either RAPTOR or the programming editor in which the error occurs.  Messages are 
shown highlighting each individual element of the error message and the significance.  The error 
is then corrected, with messages showing the steps needed to correct the error. 
 



Copyright ASEE Middle Atlantic Regional Conference, 
April 29-30, 2011, Farmingdale State College, SUNY 

The videos were introduced to four IT105 classes, containing either 17 or 18 cadets.  The 
introduction was made after the halfway point in the programming phase of class, where cadets 
are dealing with multiple concepts and errors typically increase.  The channel was shown three 
times, typically at the beginning of class, and cadets were encouraged to favorite/bookmark the 
site.  The students were also referred to the videos when they encountered errors during in-class 
exercises. 
 
The view count of the videos was checked periodically.  The times that the view counts 
increased suggested that the videos were initially being viewed only by IT105 cadets and 
principally during in-class programming assignments, but this no longer seems to be the case. 
 
During the last lesson of the semester, a six-question survey was issued to all four classes.  59 
out of 71 cadets completed the survey.  The final exam took place after the survey was given.  
There was a significant change in view counts during the final exam, suggesting that cadets took 
advantage of the resource. 
 
4. Results 

4.1  Resource awareness, necessity and consumption 

Figure 1 shows the distribution of cadet responses to the question “Did you visit the video 
channel?”  The response “I wasn’t aware the videos existed” was added due to a student 
comment during  a program review. 
 

 
Figure 1: Distribution of resource awareness, necessity and consumption 

4.2 Pattern of resource consumption 

Figure 2 shows the distribution of responses to the question “When did you visit the video 
channel?”  Cadets were allowed multiple responses on this question.  For this reason and because 



Copyright ASEE Middle Atlantic Regional Conference, 
April 29-30, 2011, Farmingdale State College, SUNY 

only one quarter of the responders actually visited the channels, percentages do not add up to 
100%.   
 
 

 
Figure 2: Distribution of resource consumption 

4.3 Personal utility 

Figure 3 shows cadet responses the question of whether cadets found the videos helpful.  The 
question  used a six-level likert item with the following responses: very helpful, helpful, neither 
helpful nor unhelpful, unhelpful, very unhelpful, non applicable. There were no unhelpful or 
very unhelpful responses.  Non applicable responses totaled 10.169%.  The remaining responses 
were adjusted to a 100% scale. 
 

 
Figure 3: Distribution of personal utility 

4.4 General utility 

Figure 4 shows cadet responses to the question “Do you think the average IT105 cadet would be 
interested in content like this?”  Cadets were limited to a yes/no response. 
 
4.5 General comments 

General comments and suggestions were solicited at the end of the survey.  For the most part 
cadets reiterated issues addressed in the survey.  The most prevalent comment is that cadets 



Copyright ASEE Middle Atlantic Regional Conference, 
April 29-30, 2011, Farmingdale State College, SUNY 

wished that more references had been made during class to the videos because they were 
unaware of the content and struggled during the programming exams with errors that the videos 
addressed directly.  The second most common comment was that cadets did not watch the videos 
because they either made no syntax errors or they were able to debug their code without 
assistance, but they felt that the videos were a good resource nonetheless. 
 

 
Figure 4: Distribution of general utility 

4.6 Grade Improvement 

Figure 5 provides a comparison of IT105 grades for three different semesters.  The videos were 
introduced during Fall 2010 between programs 2 and 3.  Fall 2010 is the only semester where all 
sections showed improvement from the program 3 to the final exam, and half the classes showed 
improvement across all three major programming assignments. 
 



Copyright ASEE Middle Atlantic Regional Conference, 
April 29-30, 2011, Farmingdale State College, SUNY 

 
Figure 5: Programming averages across the last three semesters 

 
5. Discussion 

Initially, the 25% percent consumption figure was disappointing, but reality is that many cadets 
do not need this resource.  As Figure 5 shows, the worst class average was a B.  Only a few 
cadets really struggle with error correction, so 25% is fitting.  The more puzzling question is why 
did 27% of people that took the survey decline to answer this particular question. 
 
As expected, most cadets only looked at the videos when they were actually working through the 
labs in the classroom.  It was promising to see that some cadets looked at the labs during the non-
graded event. 
 
Initially cadet responses to the questions of personal and general utility were met with 
skepticism.  All IT105 cadets are freshmen and some of them are still uncomfortable with 
providing negative feedback.  Comparing grades across all sections helped change my 
perception.  Cadets performed better on the programming portion of the final exam than ever 
before.  The combination of the improvement in grades along with the comments was enough for 
me to consider the endeavor worthwhile. 
 
The videos also had a favorable impact on teaching.  A considerable amount of time was devoted 
to helping cadets correct errors in code in the classroom during my first semester of IT105—
sometimes at the expense of teaching.  My rationale was that it was worth it to ensure that cadets 
gained an adequate understanding of how to debug their code.  Some errors seemed important 



Copyright ASEE Middle Atlantic Regional Conference, 
April 29-30, 2011, Farmingdale State College, SUNY 

enough to share with the entire class.  Now I am able to direct the cadet to a video when he or 
she encounters a syntax error; they are free to ask me questions if there is something in the video 
they didn’t understand.  This also helps reinforce the concept that the cadet is responsible for his 
own learning. 
 
6. Summary and Future Work 

A significant number of cadets make mistakes while programming, are at a loss at how to correct 
these mistakes, and reach an impasse.  In response videos were created for cadets to view at their 
leisure that walk them through the process of correcting syntax errors.  There was some 
uncertainty about whether cadets would take advantage of such a resource.  This study shows 
that cadets did watch the videos and found them useful. 
 
The next step is to increase awareness of the videos.  Other professors can be implored to 
mention the videos during their lectures.  More videos need to be created.  The current videos 
cover the most common errors, but only a fraction of the errors cadets might encounter.   
Feedback in the form of direct video comments rather than by survey should also be encouraged. 
 
 
Bibliography 

[1] Martin, C.C., A.W. Terry, W.H. Jeffrey, and M.H. Steven, "RAPTOR: a visual programming environment 
for teaching algorithmic problem solving", Proceedings of the 36th SIGCSE technical symposium on 
Computer science education, St. Louis, Missouri, USA: ACM, 2005. 

[2] Joe, M., F. William, and L. Henry, "Teaching applied computing without programming: a case-based 
introductory course for general education", Proceedings of the thirty-second SIGCSE technical symposium 
on Computer Science Education, Charlotte, North Carolina, United States: ACM, 2001. 

[3] Miguel, U., "Teaching and learning computer programming: a survey of student problems, teaching 
methods, and automated instructional tools": ACM, 1980, pp. 48-64. 

[4] Robert, F.M., "Teaching debugging", Proceedings of the fourth SIGCSE technical symposium on Computer 
science education: ACM, 1974. 

[5] Yasuhiko, M., K. Kunimi, Y. Setsuo, U. Maomi, and M. Youzou, "A Support System for Teaching 
Computer Programming Based on the Analysis of Compilation Errors", Proceedings of the Sixth IEEE 
International Conference on Advanced Learning Technologies: IEEE Computer Society, 2006. 

[6] Jenkins, T., "On the Difficulty of Learning to Program", 3rd annual Conference of LTSN-ICS, 2002. 
[7] Jenkins, T., "Java with BlueJ or Java and BlueJ", 5th Annual Conference of the LTSN Subject Centre for 

Information and Computer Sciences, Newtownabbey, Northern Ireland: Higher Education Academy, 2004. 
[8] Raymond, F., and L. Bob, "Teaching programming collaboratively", Proceedings of the 10th annual 

SIGCSE conference on Innovation and technology in computer science education, Caparica, Portugal: 
ACM, 2005. 

[9] Ala-Mutka, K., "Problems in Learning and Teaching Programming", Codewitz Needs Analysis: Institute of 
Software Systems, Tampere University of Technology. 

[10] Christine, P., and L. Xiaosong, "Teaching introductory programming to Information Systems and 
Computing majors: is there a difference?" Proceedings of the sixth conference on Australasian computing 
education - Volume 30, Dunedin, New Zealand: Australian Computer Society, Inc., 2004. 

[11] Martin, D.C., and R. Blanc," Video-Based Supplemental Instruction (VSI)", Journal of Developmental 
Education Vol. 24, No. 3, 2001, pp. 12-19. 

[12] Painter, S.L., R. Bailey, M. Gilbert, and J. Prior," New Directions for Supplemental Instruction", New 
Directions for Teaching and Learning, 2006. 

[13] Marlene, A., D. Teresa, M.M. Eric, T. Cristina, and H. Linda, "Learning from YouTube: an analysis of 
information literacy in user discourse", Proceedings of the 2011 iConference, Seattle, Washington: ACM, 
2011. 


