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Abstract 
 
Students are taught that the laws of the conservation of mass and the conservation 
of momentum are fundamental in fluid mechanics analysis and design. These 
fundamental principles apply whether the flow is spatially varied or constant, 
temporally unsteady or steady, and closed conduit or open channel. Thus, the 
application of these basic principles to such a wide possibility of fluid flow 
problems presents the student with quite a bit of tasks to accomplish in his/her 
learning process. In the application of one or both of the basic principles, the 
student is faced with the need to learn and apply, at times, tedious and time- 
consuming solution algorithms. As a result, both the teacher and the student are 
presented with auxiliary tasks, which many times, interrupt and hamper the 
teaching and learning process. Specifically, these auxiliary tasks include solution 
algorithms which use: iterative procedures; tedious numerical solutions; diagrams, 
charts, and nomographs; and other indirect and implicit solution procedures. The 
final result is that there is not much time left to focus on the modeling of the 
problem, formulation of the solution, interpretation of the results, changing the 
assumptions, and going back to modeling of the problem, etc., and thus be able to 
conduct a sensitivity analysis (or an experimental procedure) in order to find the 
optimum solution. The use of the mathematical software Mathcad to teach fluid 
mechanics has proven to greatly reduce the drudgery in solving fluid flow 
problems. As an illustration of this learning enhancement, Mathcad is used to 
model the occurrence of critical flow at a change of slope in an open channel flow 
situation. The Mathcad software performs efficient iterative and numerical 
solution procedures and direct solutions. The use of Mathcad has been made a 
requirement for all computational procedures in the Fluid Mechanics courses in 
the Department of Civil Engineering at Howard University. 

 
 
Introduction 

 
     The laws of the conservation of mass and the conservation of momentum are 

fundamental in fluid mechanics analysis and design, whether the flow is spatially 
varied or constant, temporally unsteady or steady, and in a closed conduit or an 
open channel. The application of these basic principles to such a wide variety of 
fluid flow problems presents the student with a long list of tasks to accomplish in 
their learning process. In an effort to keep our students current with the fast-paced 
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technological advances taking place in the scientific field of problem modeling 
and solution formulation, engineering educators are always in search of improved 
techniques to teach challenging subjects in Civil Engineering such as fluid 
mechanics. 
 
Because the solution of many problems in fluid mechanics and hydraulics 
requires repetitive calculations, using programmed procedures can save 
considerable time and tedious effort. There are various programming procedures 
available, which make use of advanced technology: 1) programmable scientific 
calculators and equation solvers, 2) spreadsheets, 3) mathematics software, 4) 
applications software, and 5) programming languages [1]. While each procedure 
may provide certain advantages in varying circumstances, it appears that the 
mathematics software offers the most useful applications for solving engineering 
problems in general, as well as for fluid flow problems in particular. 
 
Solution of many fluid flow problems requires solving a set of simultaneous 
nonlinear equations and /or solving a set of linear or nonlinear ordinary or partial 
differential equations that may be boundary-value or initial value problems. 
Because Mathcad is indeed capable of handling such equations and is user-
friendly, it was the chosen mathematics software used to teach fluid mechanics at 
both the introductory and intermediate levels to our undergraduate students. Prior 
to enrolling in this series of fluid mechanics courses, our students are taught 
Mathcad in the undergraduate courses Computer Essentials and Analysis 
Methods. 
 
In addition to the fluid mechanics course, currently there are three other courses in 
the Department of Civil Engineering at Howard University that integrate Mathcad 
in the teaching and learning process; these courses are statics, dynamics, and 
mechanics of materials [2,3,4]. 

         
Typical Solution Procedure for Fluid Flow Problems 
 
Although the various types of fluid flow problems are vast in number, they each 
require the student to conduct a number of routine steps in order to reach a 
solution. The first step is to study the physical problem and determine the flow 
type: closed conduit or open channel flow, temporally unsteady or steady state 
flow, and spatially varied or constant flow. The second step is to apply the 
appropriate fundamental principles to the physical flow situation and thus 
accurately model the problem with the appropriate equations. The third step is to 
formulate the appropriate and efficient solution procedure in order to obtain 
accurate results. The fourth step is to interpret and possibly verify the achieved 
results. The fifth step is to potentially make changes in the assumed values for one 
or more of the known variables and repeat steps one through four above. The 
sixth step is to study the results of the sensitivity analysis (or experimental 
procedure) accomplished through a series of step five, draw intelligent 
conclusions. 
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Traditional Techniques versus Mathcad Capabilities 
 
Whether the student is taught to use traditional or Mathcad techniques, he/she 
must still follow the typical procedure for fluid flow problems described above. 

            Traditional techniques typically make use of other programmed procedures such 
as programmable scientific calculators and equation solvers or spreadsheets. 
These approaches used to solve fluid flow problems require that the student learn 
and apply tedious and time-consuming solution algorithms. As a result, both the 
teacher and the student are presented with auxiliary tasks that, many times, 
interrupt and hamper the teaching and learning process. Specifically, these 
auxiliary tasks include solution algorithms that use: iterative procedures; tedious 
numerical solutions; diagrams, charts, and nomographs; and other indirect and 
implicit solution procedures. The final result is that there is not much time left to 
focus on the modeling of the problem, formulation of the solution, interpretation 
of the results, changing the assumptions, and going back to modeling of the newly 
formulated problem, etc., and thus be able to conduct a sensitivity analysis (or an 
experimental procedure) in order to find either the optimum solution or various 
solutions corresponding to various assumptions. 
 

 The use of the mathematical software Mathcad to teach fluid mechanics has 
proven to eliminate the drudgery and significantly enhance the solution of fluid 
flow problems for both closed conduit and open channel problems. Mathcad is 
used not only for the actual modeling of the problem and formulating of the 
solution, but also to derive the fundamental equations that apply to a given fluid 
flow problem.  Applying the fundamental principles that describe the fluid flow, 
the Mathcad environment facilitates mathematical derivations of the appropriate 
equations through the symbolic integration and differentiation capabilities and 
arithmetical calculations.  Mathcad is then used to apply the derived equations, to 
model the problem, using either analytical or numerical solve blocks or set up a 
differential equation solver. Finally, Mathcad allows a straightforward 
formulation and presentation of the solution for interpretation, and provides a high 
degree of ease in the possibility of modeling numerous related flow situations.  

 
The Role of Mathcad in Teaching the Undergraduate Fluid Mechanics 
Courses  
 
Mathcad has been extensively used to teach all of the topics covered in both the 
introductory and intermediate undergraduate fluid mechanics courses, which 
include fluid properties, fluid statics, fluid kinematics, and fluid dynamics. While 
the undergraduate topics include both spatially varied and constant flow, in both 
closed conduit and open channel flow, the undergraduate curriculum assumes 
steady state flow. Unsteady flow problems are addressed in a graduate course in 
open channel flow. Students are given Mathcad “worksheets” for lecture notes in 
addition to receiving detailed chalkboard instruction. Illustrated in the worksheets, 
Mathcad is used to derive the appropriate equations starting with the laws of the 
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conservation of mass and the conservation of momentum. Numerous examples for 
each topic are also given in the worksheet. These examples illustrate how to use 
the appropriate derived equations to model a specific problem using either 
analytical or numerical “solve blocks” or set up a differential equation solver. 
Furthermore, the examples clearly show the Mathcad formulation and 
presentation of the solution for the unknown variables. The examples show how 
easy it is to make changes in the assumed values for the one or more of the known 
variables for which Mathcad presents a new solution.  Students are assigned 
projects and homework problems similar to those done in class. Because of the 
significant amount of time and effort saved in using Mathcad as a teaching and 
learning tool, we are able to model a larger spectrum and more complex 
representations of the various fluid flow problems than previously permissible 
using the traditional techniques. 
 
Illustrative Example of Using Mathcad to Teach Fluid Mechanics 
 
There are a large variety of fluid flow problems from which we can choose an 
example in order to demonstrate the power of using Mathcad over traditional 
techniques to solve the problem. Assuming steady state flow, the two general 
categories are closed conduit flow and open channel flow. For each category we 
can further assume spatially varied or constant flow. Because there have been 
several authors [5,6,7] who have already done an excellent job of illustrating the use 
of Mathcad for spatially varied closed conduit flow problems, we have chosen to 
illustrate the use of Mathcad for a spatially varied open channel flow problem. 
 
Illustrative Example[8]. Water flows in a rectangular channel that is 5.0 ft wide at 
a discharge of 16.5 cfs. a) Find the surface-water profile through the channel if 
the channel bottom slope changes from 0.0004 between points A and B (channel 
section 1) to 0.025 between points B and C (channel section 2) as shown below. 
Assume Manning’s roughness coefficient n of 0.013. b) Find the specific energy 
diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
Before presenting the solution to this example, it is worthy to highlight the 
significant difference between the two solution approaches, namely the traditional 

 A 
0.0004 B  

0.025 

C    
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approach typically used for this spatially varied open channel flow problem, 
versus the Mathcad approach used herein for this problem.  
 
a) Given that the water-surface profile is sought, the unknowns are: the normal 

depths of flow both upstream of A and downstream of C, the critical depth of 
flow at B and all the spatially varied flow depths in between points A and B 
and points B and C.  

b) Given that the specific energy diagram is sought, the unknown is: the spatially 
varied specific energy.  

 
Governing equations [9,10] used to model part a) of the problem: 
Continuity Equation:  
 

Specific Energy Equation: 

from which the critical depth of flow equation is derived for a minimum specific 
energy: 

 
Momentum Equation: 

from which the Manning’s equation is derived to find normal depths of flow:  

and from which the dynamic equation of gradually spatially varied flow(i.e., the 
resistance equation) is derived (this form is used for the traditional solution 
approach): 

or the form (this form is use for the Mathcad solution approach): 

 
Governing equations used to model part b) of the problem: 
Continuity Equation: (see above) 
Specific Energy Equation: (see above) 
 
The first difference between the two solution approaches is in the choice of the 
form of the resistance equation used to model the gradually spatially varied flow 
problem. The choice made for the typical traditional approach uses the step 
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method, where distance is calculated from depth. The resistance equation is 
applied in the finite-difference form:  

While this modeling choice makes the formulation of the solution very 
cumbersome, the modeling choice made for the Mathcad approach uses numerical 
integration in the solution formulation. Use is made of a “differential equation 
solver” in which rkfixed is called upon; this uses the fourth order Runge-Kutta 
method to solve the first order differential equation describing the initial-value 
problem. 
 
A second difference between the two approaches is the solution of the Manning’s 
equation for the normal depths of flow. While the traditional approach uses a 
systematic trial and error procedure to solve for y, the Mathcad approach uses the 
“solve block” for its solution formulation. Although the example illustrated herein 
assumes a rectangular channel cross-section, the power and ease of using Mathcad 
really soars when a nonrectangular cross section such as a trapezoid is assumed. 
The traditional solution algorithm assuming a trapezoidal section becomes very 
tedious and time consuming, whereas using the Mathcad solve block, the solution 
algorithm is just as easy as for the simpler rectangular section. 
 
A third difference between the two approaches is the solution of the specific 
energy equation for two alternate depths of flow. Although the example illustrated 
herein does not ask to find such depths, it is worthy to highlight that this equation 
is cubic in y in which only the two positive roots are significant. Simply knowing 
which of the two positive roots you are seeking, (subcritical or supercritical) 
guides you to provide the appropriate guess value for y for the Mathcad solve 
block. While the traditional method of solving this equation requires using 
(programming) a numerical method such as Newton’s method of tangents; this 
solution algorithm has proven to be tedious and time consuming. 
 
A fourth difference is Mathcad’s ability to instantly solve for and plot numerous 
colored graphs, in this case for part a) the channel bottom and the water-surface 
profile, and for part b) the specific energy diagram. 
 
Mathcad Solution:  

 
 
a) Because the calculation must start at the control (at point B) and proceed in the   
direction in which the control is being exercised; that is between points B and A, 
and between points B and C; first we must compute the critical depth of flow at    
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point B. Because the slope between A and B appears to be mild, we expect   
subcritical flow upstream of point B, and because the slope between B and C 
appears to be steep, we expect supercritical flow downstream of point B. We will 
compute the normal depth of flow (i.e., uniform flow) for sections upstream   of 
point B and downstream of point B and confirm this. 
 

 
We can use Manning’s equation to solve for the uniform depth of flow upstream 
of point B. 

 
 
 
Since y is greater than the critical depth, flow is subcritical upstream of point B. 
Once again, we can use the Manning’s equation to solve for the uniform depth of 

flow downstream of point B.  
 
 
 
 
Since y is less than the critical depth, flow is supercritical downstream of point B.  
Starting with the calculation at the control (point B) where the flow is critical, we 
can compute the surface-water profile for section AB using the resistance 
equation. The profile begins at point B where flow is critical to point A where the 
depth of flow is normal. 
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Theoretically 

but because when y is critical, the resistance equation indicates that dy/dx equals 
infinity; there is a discontinuity in the surface- water profile. Therefore, we must 
begin calculation at a point just upstream of x0=0, say at x0= -20 ft and thus set 
y0 at yc + 0.1 for instance. Enter the initial value problem specifics: 

 
 Enter the desired solution parameters: 

Define solver parameters: 

 
Solution matrix: 

Plot of the surface-water profile for channel section 1 relative to the elevation 
datum defined through point B: 

 
Next, starting the calculation at the control (point B) where the flow is critical, we 
can compute the surface-water profile for section BC using the resistance 
equation. The profile begins at point B where the flow is critical to point C where 
the depth of flow is normal. 
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Theoretically 

but because when y is critical, the resistance equation indicates that dy/dx equals 
infinity; there is a discontinuity in the surface- water profile. Therefore we must 
begin calculation at a point just downstream of x0, say at x0=0.7 ft and thus set y0 
at yc-0.1, for instance. Enter the initial value problem specifics: 

Enter the desired solution parameters: 

Define solver parameters: 

 
Solution matrix: 

Plot of the surface-water profile for channel section 2 relative to the elevation 
datum defined through point B. 
 

 
 
Finally we will plot the entire surface-water profile for both channel sections 1 
and 2 between points A and C relative to elevations Z1 and Z2 of the respective 
channel bottom slopes. This is called the hydraulic grade line HGL. First we must 
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reverse the order of the values stored in X1Y1 for channel section 1 so that we 
can plot the HGL starting from point A to point C. 

 
Next, we can define the elevations Z1 and Z2 for each of the channel bottom 
slopes, and the elevation ZC defined at point B, the origin (0,0). 

 
Finally we can define the HGL for the two channel sections, and at point B where 
flow depth is critical and the elevation of the channel bottom equals zero. 

Below is a plot of the entire surface-water profile for the entire channel. Because 
the upstream slope is mild, the flow upstream of point A and between points A 
and B is subcritical and the surface-water profile is a type M2 drawdown curve. 
Because the downstream slope is steep, the flow downstream of point C and 
between points B and C is supercritical and surface-water profile is a type S2 
drawdown curve. At point B where the flow changes from subcritcal to 
supercritical, the depth must pass through the critical depth. The break in slope at 
point B is known as a control section. 
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b) Below is a plot of the specific energy (E-y plot) for a unit discharge q of 3.3     
cfs/ft 

 

Note that the E-y plot for the subcritical flow is displayed on the upper limb, 
while for the supercritical flow it is displayed on the lower limb. As for the 
minimum E occurring at critical flow at point B, it is displayed by the crest of the 
E-y plot.  
Base units: Length=ft     Mass=lb   Time=sec 
 
Conclusions 
 
Using Mathcad to teach fluid mechanics to our undergraduate students allows 
them to tackle numerous more possibilities for the known variables and to achieve 
instant results. For instance, the students may, just by reversing the slope values 
for the two channel sections in the illustrative example above, model the 
hydraulic jump phenomena. Or by eliminating the second channel section, they 
can model the free overfall situation. Not to mention using Mathcad’s ability to 
easily manipulate matrices, instantly plot multiple colored graphs, and write 
reports.  Furthermore, the students are exposed to a larger spectrum and more 
complex problems than was possible with traditional techniques. Finally, the 
students can concentrate on modeling the problem and formulating the solution 
rather than laboring over tedious time-consuming solution algorithms.  
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