
2023 ASEE Midwest Section Conference

© American Society for Engineering Education, 2023

Teaching Functional Programming Paradigm with F#

Rong Li and Huabo Lu
School of Computing

Wichita State University

Wichita, Kansas

{Rong.Li, Huabo.Lu}@wichita.edu

Abstract

Functional Programming (FP) paradigm is a rising programming paradigm that varies from

imperative and Object-Oriented Programming (OOP) paradigms. Most Computer Science

undergraduate programs require OOP, while the functional programming paradigm is usually

partially covered by a 3-credit-hour class that introduces multiple programming paradigms. F#

(pronounced F Sharp) is a functional-first, general-purpose programming language. It runs on the

.NET platform and is supported on Windows, Linux, and Mac OS operating systems. In this

paper, we summarize our experience of using F# to teach the FP paradigm, list some sample

codes, and make comparisons between the imperative paradigm and the FP paradigm.

Keywords

F#, Functional Programming, Programming Paradigm, Computer Science Curriculum

Introduction

Functional Programming (FP) paradigm is a programming paradigm that constructs computer

programs by creating and using functions. Unlike imperative and Object-Oriented Programming

(OOP) paradigms, which use programming statements and objects to control a program's running

flow and states, FP uses functions to express computation logic. A key feature of FP is that

functions are treated as first-class citizens [1], meaning that functions are treated as entities, and

support a wide range of common operations typically including passing functions as arguments

and returning function entities. FP is well-known for its strength in generating succinct, robust,

and performant code.

Many general-purpose programming languages, such as Java and Python, support multiple

programming paradigms, including OOP and FP. Their support for OOP is widely understood

and is taught in introductory and intermediate programming classes. Meanwhile, FP receives

limited coverage, usually in a 3-credit-hour class that introduces multiple programming

paradigms after students have studied OOP.

Functional Programming had the attention of computer science programming classes back in the

1980s and 1990s. Crawford [2] presented their successful experience at Texas A&M in teaching

FP in the freshman computer science courses, and Hughes [3] expanded the importance of FP

beyond the classroom and to the real world. However, with the rise of new programming

languages and the shift in the industry’s needs, Java and Python started to take the lead in the late

1990s and early 2000s [4], [5].

2023 ASEE Midwest Section Conference

© American Society for Engineering Education, 2023

Recent years mark the next rise of Functional Programming. Ever-larger code repositories

demand robustness and maintainability, whereas FP languages such as F#, Haskell, and Closure

show their strength [6], [7]. Pedagogies of FP can be found at [8], [9].

Starting in 2022, we chose F# as the programming language to teach FP to undergraduate

students in a programming paradigms class (3-credit-hour). F# is a functional-first, multiple-

paradigm programming language that runs on the .NET platform [10]. Visual Studio 2022

(integrated development environment, IDE) and/or Visual Studio Code (code editor) are the tools

of our choice. F# has been supported by the .Net platform since .Net 1.0 back in the early 2000s,

so any recent .Net releases, such as .Net 6.0 and 7.0, can support F# with little to no problem.

The rest of the paper is organized as follows: we list selected topics of FP in Section Methods

and make some comparisons of FP and OOP. Some student evaluation feedback is presented in

Section Results, and we include future work in Section Summary.

Methods

The Functional Programming paradigm has a rich set of features. Due to the page limitation, we

choose to list two features:

- Functions, the rule, and partial application.

- Function composition and pipelining.

Functions, The Rule, and Partial Application

Functions in F# (and many other FP languages) have one rule: they take one input and return one

output. This seeming restriction benefits in many places, such as testing and concurrency.

Students would naturally compare this rule with their experience of OOP, which supports

functions with multiple parameters. For example:

 let f (x: int): int = x + 1

defines a function named f. It takes one input, which is represented by x, of type int, and returns

x + 1 as output.

A “counter-example”:

 let area (height: float) (base: float): float = height * base / 2.0

seems to be breaking the rule by allowing two inputs, height and base, to the function named

area. F# can handle multiple parameters/arguments with no problem: it will generate the intended

result, by breaking this function into two smaller one-parameter functions, such as:

 let area_1 (height: float): float =

 let subArea (base: float): float =

 height * base / 2.0

 subArea

and to call this function:

2023 ASEE Midwest Section Conference

© American Society for Engineering Education, 2023

let intermediateArea = area_1 height

let area_result = intermediateArea base

where the intermediateArea is a function as the result of calling area_1 with one argument

height, then the intermediate function is called with one argument base to calculate the area of a

triangle. The method of handling multiple parameters/arguments, while obeying the “one input,

one output” rule, is referred to as function currying and is a FP character [11].

Function currying is in fact a case of partial application. If we call the original area function,

which needs two arguments to return the calculated value, with only one argument at a time:

let area_missing_base = area height
let area_result = area_missing_base base

then the partial application is automatically triggered. The partial application allows fewer than

the expected number of arguments to be passed to a function. As a result, a new/intermediate

function, such as area_missing_base is created. This new function can be used with the rest of

the expected arguments to complete the original function call.

As a comparison to OOP, Java did not support partial application until Java 8, which was

released in 2014 [12]. It is referred to as the “functional interface” in Java’s terms. Note that this

feature is not covered in most introductory programming or OOP courses.

Our students had a learning curve when studying function currying and partial application.

However, once understood, they appreciated that functions in FP can accept partial arguments

and create intermediate functions that can be called when rest arguments are available. To give

an analogy, partial application is like preheating the oven so it will be ready to bake any food (at

that preheated temperature.)

Function Composition and Pipelining

Assume we need a function to calculate an expression 3 * x + 5, where the input x is an integer.

In Java, this function can be written as (assume there is no integer overflow):

 public static int calculate(int x) {

 return 3 * x + 5;
 }

We can write something similar in F#, or use Function Composition to demonstrate that there are

two calculations/functions:

let mul3 x = x * 3

let add5 x = x + 5

let mul3add5 = mul3 >> add5
mul3add5 2

There are three functions defined in the example. Function mul3 and add5 are obvious, whereas

the third function, mul3add5, is defined by using function composition [13]. This feature allows

2023 ASEE Midwest Section Conference

© American Society for Engineering Education, 2023

compatible functions to be composed together, using the composition operator >>. Functions are

compatible when the output from the first function is of the same type as the input of the second

function. Our students liked this feature in their studies, as it enables a convenient way to create

new functions from predefined functions.

Function Pipelining works differently: similar to function composition’s “put functions

together”, function pipelining enables function calls to be chained together as successive

operations. Note that function pipelining is designed to allow value/function to flow through the

pipe, rather than composing a new function [14]:

let ten_mul3add5 = 10 |> mul3 |> add5

the value 10 will be passed through the function mul3, and the result (3 * 10 = 30) will be passed

through the function add5, to form the final result 3 * 10 + 5 = 35. No new functions were

created: the ten_mul3add5 is a value in this case.

Results

Our students showed mild to strong likes of F# functional programming language and a majority

provided positive feedback, partially thanks to their familiarity with Visual Studio and .Net

environment, which is the same tool/environment as their fundamental programming classes.

Challenges exist, including the F# language’s syntax, FP paradigm thinking, number of

exercises, etc.

We found comparisons between different paradigms, OOP vs. FP in our case, to be effective in

helping students learn new paradigms. Comparison can happen at all levels, such as at the

statement level, module level, and project level.

Our class concluded the discussion of FP by completing a project using F# (learn by doing), and

students presented an improved understanding of FP afterward.

Summary

We present our experience of teaching F# as a functional programming language to

undergraduate students. The feedback from students provides us with the confidence to use this

language further.

Comparisons between Functional Programming and other paradigms such as OOP add a good

part to students’ understanding. We plan to list more comparisons in the future, such as redoing

some homework exercises from previous programming classes using F#. More applied learning

projects, such as designing a web app, will find an opportunity to be added to our class. A high-

quality reference, F# for Fun and Profit [15], will be formally introduced as a reference in the

class syllabus.

2023 ASEE Midwest Section Conference

© American Society for Engineering Education, 2023

Reference

[1] M. Scott, Programming Language Pragmatics, San Francisco, CA: Morgan Kaufmann

Publishers, 2006.

[2] A. L. Crawford, “Functional programming for freshman computer science majors,” ACM

SIGCSE Bulletin, vol. 19, no. 1, pp. 165–169, Feb. 1987, doi:

https://doi.org/10.1145/31726.31753.

[3] J. Hughes, “Why Functional Programming Matters,” The Computer Journal, vol. 32, no. 2,

pp. 98–107, Feb. 1989, doi: https://doi.org/10.1093/comjnl/32.2.98.

[4] C. M. Boroni, F. W. Goosey, M. T. Grinder, and R. J. Ross, “A paradigm shift! The

Internet, the Web, browsers, Java and the future of computer science education,” ACM

SIGCSE Bulletin, vol. 30, no. 1, pp. 145–152, Mar. 1998, doi:

https://doi.org/10.1145/274790.273181.

[5] Said Hadjerrouit, “A constructivist framework for integrating the Java paradigm into the

undergraduate curriculum,” Aug. 1998, doi: https://doi.org/10.1145/282991.283079.

[6] “Functional programming is finally going mainstream,” GitHub.

https://github.com/readme/featured/functional-programming (accessed Aug. 07, 2023).

[7] https://www.facebook.com/48576411181, “Why Functional Programming Should Be the

Future of Software Development - IEEE Spectrum,” spectrum.ieee.org.

https://spectrum.ieee.org/functional-programming (accessed Aug. 07, 2023).

[8] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi, “The structure and

interpretation of the computer science curriculum,” Journal of Functional Programming,

vol. 14, no. 4, pp. 365–378, Jul. 2004, doi: https://doi.org/10.1017/S0956796804005076.

[9] A. Khanfor and Y. Yang, “An Overview of Practical Impacts of Functional Programming,”

2017 24th Asia-Pacific Software Engineering Conference Workshops (APSECW), Dec.

2017, doi: https://doi.org/10.1109/apsecw.2017.27.

[10] “F# | Succinct, robust and performant language for .NET,” Microsoft.

https://dotnet.microsoft.com/en-us/languages/fsharp (accessed Aug. 07, 2023).

[11] “Using functions in F# - F#,” learn.microsoft.com, Nov. 04, 2021.

https://learn.microsoft.com/en-us/dotnet/fsharp/tutorials/using-

functions?source=recommendations#curried-functions (accessed Aug. 07, 2023).

[12] “What’s New in JDK 8,” Oracle.com, 2018.

https://www.oracle.com/java/technologies/javase/8-whats-new.html (accessed Aug. 07,

2023).

[13] “Functions - F#,” learn.microsoft.com, Jun. 25, 2022. https://learn.microsoft.com/en-

us/dotnet/fsharp/language-reference/functions/#function-composition (accessed Aug. 07,

2023).

[14] “Functions - F#,” learn.microsoft.com, Jun. 25, 2022. https://learn.microsoft.com/en-

us/dotnet/fsharp/language-reference/functions/#pipelines (accessed Aug. 07, 2023).

[15] “F# for fun and profit,” fsharpforfunandprofit.com. https://fsharpforfunandprofit.com/

(accessed Aug. 07, 2023).

Rong Li (She/Her/Hers)

Rong Li obtained her Master of Science in Computer Networking degree from Wichita State

University in 2011. She joined Wichita State University as an Assistant Engineering Educator in

2022. Before WSU, she was a Computer Science Instructor at Hutchinson Community College,

2023 ASEE Midwest Section Conference

© American Society for Engineering Education, 2023

Hutchinson, Kansas. She teaches programming classes such as Object-Oriented Programming,

Data Structures, and Programming Paradigms. Her research includes Functional Programming

and Computer Science Education.

Huabo Lu (He/Him/His)

Huabo Lu obtained his Doctor of Philosophy in Electrical Engineering and Computer Science

degree from Wichita State University in 2018. He joined Wichita State University in 2019, as an

Assistant Teaching Professor. Before joining WSU, he was an Assistant Professor at

Southwestern College, Winfield, Kansas. His research includes Web Anonymity, Data Privacy,

and Computer Science Education. He teaches design courses for computer science students.

