
Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Teaching Introductory Programming Concepts: A Comparison of
Scratch and Arduino

Anne Beug, Phillip L. Nico

Department of Computer Science,
California Polytechnic State University, San Luis Obispo

Abstract

In this paper we present our experiences developing and delivering two separate introductory
computer programming units for high school students—one based on the Scratch visual
programming environment and the other based on the Arduino embedded system prototyping
platform. Scratch is a well-proven educational software development platform that teaches core
programming concepts through a graphical programming interface, aimed at junior high and high
school-aged students. The Arduino platform consists of both hardware and software: an open
source microcontroller system programmed in a C-like language. We developed parallel
curricula in Scratch and Arduino and compared the two in the setting of five high school
classrooms. Each course consisted of five sessions (with a lecture and a lab), each covering a
different topic, building on previous sessions. While the results of our quantitative study have not
been conclusive, our experience suggests that the Arduino platform is not yet ready for teaching
core programming concepts to computing novices. The combination of the C-like language and
the hardware were too complex for novice programmers to use in learning programming
concepts.

Introduction

We performed a study to evaluate the suitability of the Arduino platform in teaching core
computing concepts to high school students. We held series of five sessions with various classes
at two local high schools—both programming classes and computer application (Word, Excel,
etc.) classes. Students in the classes had diverse educational and computing backgrounds—some
had no computing education and did not feel comfortable with computers and others had
completed an AP Computer Science course in Java.

During each class session, we covered a core programming concept, with each session building
on previous sessions. The first session introduced the students to computer programming, as well
as either the Scratch or Arduino programming environment. During the remaining sessions, we
introduced the concepts of variables, conditionals (if-else statements), iteration (loops) and
functions. We wanted to see how well each environment would work for teaching each concept
and programming in general.

We assessed the students' grasp of the chosen concepts and experiences through a pre-survey and
a post-survey with quantitative and qualitative questions. Both surveys also asked the students
about their computing background and attitudes toward computing.

604

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Platform Choice

We chose Arduino as our experimental platform to study because
of its growing popularity with electronics hobbyists [14] and recent
introduction into embedded systems curricula [11] [14]. We found a
dearth of research on using Arduino to teach introductory
programming education. The Arduino platform consists of a set of
microcontrollers, a programming language and an IDE. All
components of the platform are open source. The language is
based on the Wiring and Processing [1] languages that were created
to teach core programming and computing concepts through
electronics and visual arts respectively. Arduino as a language is
syntactically similar to C and Java.

Scratch, on the other hand, grew out of academic
work in MIT's Lifelong Kindergarten Lab, officially
launching in 2007 as a new educational
programming and computing platform. From its
website, "Scratch is designed to help young people
(ages 8 and up) develop 21st century learning skills.
As they create Scratch projects, young people learn
important mathematical and computational ideas,
while also gaining a deeper understanding of the
process of design. With Scratch, kids can create their
own interactive stories, games, music, and
animations… [2]"

Scratch's visual programming interface allows users
to build programs by selecting "blocks"

(programming instructions) from a palette on to a script area. The blocks click together only in
meaningful ways, preventing syntactical errors.

Because Scratch does not have built in functions, we taught the last Scratch lab (functions) in
BYOB 3.1 (Build Your Own Blocks). BYOB is an extension to Scratch that includes the ability
to create custom blocks [13].

Multiple studies have been performed investigating the effectiveness of Scratch in teaching
introductory programming concepts [6][7][8][15][16][17]. It works well for some concepts (loops and
conditionals) but not for others (variables and functions) [8]. Scratch has been accepted as a
platform for teaching novice programmers in junior high [5], high school and at the university
level [7][8][15][16][17][18].

The other platform we considered for our control group was Alice [19]. However, we chose to use
Scratch as it is already used in many of our university outreach programs as well as in the local
elementary and secondary school district. Using BYOB in the final lab alleviated our main
concern with Scratch–that it does not have the capability to express functions.

Figure 1: Arduino microcontroller

Figure 1: Scratch development environment

605

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Related Works

There is a diverse and large body of research in the area of computer science education, focused
on primary, secondary and tertiary schools, starting in the 1970's [3]. One common theme in
many papers is the fact that learning and teaching programming is difficult [3][4][5]. Other work
studies the specific problems novice programmers encounter. Pea writes about different
"conceptual bugs" in novice programming [4] – misunderstanding the order in which programs
execute, attributing intentionality to programs and assuming the programs can read the
programmer's mind.

Studies have found various results using Scratch to teach core computing concepts. Colleen
Lewis reports students learned conditional statements better through Scratch than Logo [6], but,
surprisingly, did not show greater comprehension of loops. In "Habits of Programming in
Scratch," Meerbaum-Salant, et al. [7] found that while Scratch encourages self-directed learning,
students only really learned programming concepts when explicitly taught the concepts. Rivzi, et
al. [8] describe a new Scratch-based undergraduate course (CS0) inserted before the traditional
first programming course (CS1) aimed to increase student retention. One set of students enrolled
directly in CS1, while the others enrolled first in CS0. Amongst the CS0 set, the researchers
found increased interest in computer science as well as improved learning outcomes. Another
study investigated learning results of computer science concepts by students learning in the
Scratch environment [9]. A Scratch-based curriculum was developed for middle-school-aged
children. Middle school teachers taught the course during regular school hours. Students
performed well with loop concepts, but less so with variables.

Far less research has been performed with Arduino, perhaps because it was not conceived as an
educational platform. Most work describes integrating Arduino in to existing microcontroller or
robotics courses [10][11][12].

Courses

We taught the parallel courses at two high schools to a total of five classes. Two of the classes
were computer applications classes—Word, Excel, PowerPoint. Both of these groups, of which
few students had any programming experience, completed the Scratch version of the course.

Another two classes were programming courses—a mix of first, second and third semester
programming students. These groups completed the Arduino version of the course. The final
class was a manufacturing concepts class that included a section on electronics. This group
completed sections 1 – 4 of both the Scratch and Arduino versions of the course.

The course itself was divided in to five sections – introduction, variables, conditionals, iteration
and functions. Each section included a short 10-minute lecture introducing the given concept
through analogy and examples. The rest of the time (between 40 – 70 minutes, depending on the
school, course and day) was spent with the students working on a lab exercise either individually
or in small groups, depending on available resources.

606

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

The Scratch and Arduino labs are described in Table 1.

Lab Scratch Arduino
1 – Introduction Create animation with multiple

sprites.
Blink LED off and on.

2 - Variables Create MadLibs-style word game,
using variables to store user-
entered data.

Use potentiometer to create
dimmer light switch.

3 – Conditionals Create animated tag game with
user controls based on keyboard
input.

Create push button light switch to
control an LED.

4 – Iteration Create interactive musical
animation with multiple sounds.

Play a song using a Piezo buzzer.

5 – Functions Create calculator with sum and
average functions.

Read temperature (in °C) and write
function to convert to °F.

Table 1: Labs

For the Scratch labs, students built game-like programs. In each, they were able to either draw
their own sprites (graphical programmatic elements) or use Scratch-provided sprites. Many
students chose to spend time drawing their own sprites. In the fourth lab, we explicitly asked
students to include sound in to their program; however, most had already been using sound
starting with the first program. Students also discovered that they could download others' Scratch
programs from the Scratch website and incorporate parts of those programs into their own or
extend those programs.

The Arduino labs required much more work to set up. Before each session, we had to wire up the
boards, LEDs and other electronic components. One significant challenge these classes faced
was getting their lab computers to communicate with the Arduino boards. It took us the first
couple sessions to iron out all the problems with the Arduino drivers. And once all the boards
were set up correctly, it was easy for students to jostle the boards enough to loosen wires. Once
wires cam undone, students did not have enough electronics background to read the provided
wiring diagrams.

Survey

Feedback on the course was gathered through a short (10 -15-minute) pre- and post-survey. The
pre-survey contained a subset of questions from the post-survey. Of the five groups, three groups
reported an increase in "comfort with computing," while two groups (one working with Scratch
the other with both Scratch and Arduino) related a decrease in comfort.

In all groups, there were a total of 119 participants. Of those participants, 93 completed the pre-
survey (78.15%) and 85 (71.43%) the post-survey; 59 (49.58%) completed both the pre- and
post-surveys, 34 (28.57%) only the pre-survey and 26 (21.85%) only the post-survey.

Overall, we question the accuracy of the survey answers–for instance, in one case, a student lost

607

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

an entire year of programming experience between taking the pre-survey and the post-survey, six
weeks apart. This points out the possibility that students were confused by the survey questions.
In addition, students were not given any class credit for participation, program or survey
completion.

The quantitative objective learning assessments came back with mixed results for both Scratch
and Arduino. Some students showed an improvement in answering the questions correctly after
going through the course; however, other student which had initially answered the questions
correctly in the pre-survey, failed to answer them in the post-survey.

At the end of the following code, what is c equal to?
 a = 3
 b = a – 1
 a = b * 2 c is _________
 c = a + b + 1

Table 2: Sample quantitative survey question

From the students free-form comments on the course, the most common things students liked
was that the course was "fun" and "interesting." The dislikes included that the course was "too
hard," "boring" and "confusing". Students from the Scratch courses frequently mentioned
enjoying drawing their own sprites and being able to add sounds into their programs. On the
other hand, students in the Arduino courses expressed frustration at getting their Arduino boards
to work at all with their computers.

A full listing of survey questions and responses can be found in [13].

Future Work

We found two interesting areas of future work—first, to further the study in a controlled
environment such that the outcomes for the two groups (Scratch learners and Arduino learners)
could be directly compared; and next, to study how students translate learnings from the two
courses into further course work—either AP Computer Science in Java or CS1 courses in a
university.

Conclusion

Based on our observances in the two parallel courses, we conclude that Arduino is not a suitable
platform for teaching introductory programming to high school students. The platform
overwhelmed the novice students with the addition of the hardware element to the software
element. Scratch was much easier for the new programmers to pick up quickly, with the
exception of the fifth lab (functions in BYOB), which proved to be overly complex.

Both high schools, though, will continue to integrate more computing in to their classes. They
intend to use Scratch in their computer applications classes and Arduino in their programming
classes, after an introduction through Scratch.

608

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

References

1. “Overview \ Processing.org.” [Online]. Available: http://processing.org/about/. [Accessed:

09-Apr-2012].
2. “Scratch Homepage.” [Online]. Available: http://scratch.mit.edu/. [Accessed: 09-Apr-2012].
A. Robins, J. Rountree, and N. Rountree, “Learning and teaching programming: A review and

discussion,” Computer Science Education, vol. 13, no. 2, pp. 137–172, 2003.
3. L. McIver and D. Conway, “Seven deadly sins of introductory programming language

design,” in Software Engineering: Education and Practice, 1996. Proceedings. International
Conference, 1996, pp. 309 –316.

4. R. D. Pea, “Language-independent conceptual‘ bugs’ in novice programming,” Journal of
Educational Computing Research, vol. 2, no. 1, pp. 25–36, 1986.

5. C. M. Lewis, “How programming environment shapes perception, learning and goals: logo
vs. scratch,” in Proceedings of the 41st ACM technical symposium on Computer science
education, New York, NY, USA, 2010, pp. 346–350.

6. O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Habits of programming in scratch,” in
Proceedings of the 16th annual joint conference on Innovation and technology in computer
science education, 2011, pp. 168–172.

7. M. Rizvi, T. Humphries, D. Major, M. Jones, and H. Lauzun, “A CS0 course using Scratch,”
J. Comput. Sci. Coll., vol. 26, no. 3, pp. 19–27, Jan. 2011.

8. O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari, “Learning computer science concepts
with scratch,” in Proceedings of the Sixth international workshop on Computing education
research, 2010, pp. 69–76.

9. P. Bender and K. Kussmann, “Arduino based projects in the computer science capstone
course,” J. Comput. Sci. Coll., vol. 27, no. 5, pp. 152–157, May 2012.

10. P. Jamieson, “Arduino for Teaching Embedded Systems. Are Computer Scientists and
Engineering Educators Missing the Boat?,” in International Conference on Frontiers in
Education: Computer Science and Computer Engineering, 2011.

11. R. Balogh, “Educational robotic platform based on arduino,” in Proceedings of the 1st
international conference on Robotics in Education, RiE2010. FEI STU, Slovakia, 2010, pp.
119–122.

12. “Build Your Own Blocks Homepage.” [Online]. Available: http:// http://byob.berkeley.edu/.
[Accessed: 05-Jan-2013].

13. A. Beug, "Teaching Introductory Programming Concepts: A Comparison of Scratch and
Arduino." [Online]. Available [Accessed: 03-10-2013].

14. J. Sarik and I. Kymissis, “Lab kits using the Arduino prototyping platform,” in Frontiers in
Education Conference (FIE), 2010 IEEE, 2010, p. T3C–1 –T3C–5.

15. M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A.
Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai, “Scratch: programming for
all,” Commun. ACM, vol. 52, no. 11, pp. 60–67, Nov. 2009.

16. D. J. Malan and H. H. Leitner, “Scratch for budding computer scientists,” in Proceedings of
the 38th SIGCSE technical symposium on Computer science education, New York, NY,
USA, 2007, pp. 223–227.

17. U. Wolz, H. H. Leitner, D. J. Malan, and J. Maloney, “Starting with scratch in CS1,” ACM
SIGCSE Bulletin, vol. 41, no. 1, pp. 2–3, 2009.

609

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

18. U. Wolz, J. Maloney, and S. M. Pulimood, “ ‘Scratch’ your way to introductory CS,” ACM
SIGCSE Bulletin, vol. 40, no. 1, pp. 298–299, 2008.

19. “Alice.org,” Alice.org. [Online]. Available: http://alice.org/. [Accessed: 28-May-2012].

610

