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Abstract- In schools of electrical
engineering around the nation and
abroad, some curriculums offer a
limited electromagnetic course or no
course at all. This is an issue of
curriculum constraints, thererefore;
magnetic circuits need to be taught in
other courses to be able to assure that
the students are exposed to the
material. An appropriate course that we
use is the energy conversion class,
sometimes called “Electrical
Machines.” It is no wonder that almost
all textbooks [1] used in the area have
extensive chapters dealing with
magnetic circuits. This paper is a study
of an effective way of transitioning a
topic from one area of electric
engineering to another (from
Electromagnetic Fields to Electric
Power Systems)

Symbols:

“E” electric field [V/m]

“H” magnetic field intensity [A/m]

“B” magnetic field intensity [VVebbers/mz]
Or [T]

“¢ " magnetic flux [Webbers] or [Wb]

“D” displacement flux density [C/m2]

“J” current density [A/m?]

l. INTRODUCTION
Historically magnetic circuits are included
in  “Electromagnetics” courses and

consequently these courses became
prerequisites for electric energy conversion.
In many programs nationwide there is no
required electromagnetic course prerequisite
anymore and students end up not knowing
the basics of magnetic circuits.

However, the background necessary to
assure understanding of the material comes
from the first and second college physics
courses. Furthermore, if the energy
conversion course is offered, it is done as an
elective in most institutions.

The effect of graduating students with an
electrical engineering degree without an
energy  conversion course is  very
detrimental to their basic knowledge. We will
discuss this issue further down the road in
this paper. Staying focused on the transition,
we will show how we teach the concepts
and how the student’s background from their
regular physics classes is sufficient to
understand, comprehend and learn the
material.

II. MAGNETIC CIRCUITS
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Magnetic circuits deal with magneto-static
equations discovered by Maxwell'. These
equations can be of integral and/or
differential form. We are presenting them
here for future reference.

The first one is Faraday’s law

§E-dz=—%j3-ds (1)

A simple explanation is; in a wire the rate
of change of a magnetic flux density
induces a voltage.

The differential form of this equation is
shown in equation 2:

0
E=——(B 2
VX 6t() ()

Where;
Vx _curl of a vector (appendix 1)

Where, “V” pronounced “del” is a three
dimensional vector with coordinates in the
Cartesian, Cylindrical and Spherical
coordinate system. Remember that we are
just trying to show the way we develop a
concept and how it is presented to our
students.

If we follow the same way of thinking we
can obtain Maxwell's equation for
Ampere’s law.

fH-dl:!J-dM%!D-ds 3)

Which can be explained as follows; the
flow of current in a wire will induced a
magnetic flux

In differential form we get:

VxH:J+g(D) (4)
ot

! Maxwell James Clerk developed his set of
equations in 1873, in Cambridge University
England
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The remaining Maxwell's laws are the ones
for Gauss’s law for the electric field and
Gauss’s law for Magnetic fields.

§D o dS = .[ pdv (5)
Again, this equation reads as follows; the
flow of charges in a wire creates a flow of
current in a wire.

In differential form;

VeD=p (6)
Where

Ve Divergency of a vector (appendix 1)

Then Maxwell’s equation for Gauss’s law of
magnetic fields is:

§B-dS=o (7)

This equation reads as follows: The net
magnetic flux density in a closed surface
area is zero, i.e. the flux entering an area is
the same as the one that leaves that same
area.

In differential form;

VeB=0 (8)

[lIl. TRANSFORMATIONS

For practical engineering use, we carry on
some simplifications in order to reduce the
complexity of the equations and be able to
apply them to our engineering problems. We
must keep in mind that if our graduating
students get involved in a sophisticated
electromagnetic problem, they should at
least be capable of understanding the
problem and communicate with the expert in
the field.

Setting up a table with the equations used
most frequently, we obtain the following.
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Maxwell’s Differential Equations
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Faraday’s Equation

d
§Eedl=——[Beds
c dt )
Transformation Equations
§X odl=vxx
[Xeds=x
1§X eds = 20
de ot

Final Equation Differential form

0
VxE=——(B
X 6t()

VeD=p

Gauss’s Magnetic Field Equation

§B-d5=o

Transformation Equation
§X o dS = vex

Final Equation Differential form
VeB=0

Ampere’s Equation

fH-dl:[J-ds +j—t_[DodS

Transformation Equations
fX 0dl =vxx

IX-dS:>X

d d

— b XedS = —(X
dtf a™

Final Equation Differential Form

VX H =J+2(D)
ot

Gauss'’s Electric Field Equation

§Deds = [ pdv

Transformation Equations
§X odl =vxx

jX-dS:X
IX-dlaX

Final Equation in Differential Form

IV. ENGINEERING SIMPLIFICATIONS
After obtaining Maxwell's equations in
differential and integral form, we proceed to
make engineering assumptions to further
simplify them in their differential form.

At this particular point we emphasize the
engineering approach; Let E and H be
fundamental fields and D and B derived
fields. The relationship between those fields
is as follows:

We are assuming that B is uniform across
the magnetic material (which is assumed in
most engineering applications).

D=¢E

And

B=pH

Where:

E=¢&,E,

H=HH,

& Permittivity of the material

g, Permittivity of free space
(8.85x10""? F/m)

g, Relative permittivity of the
material

MU Permeability of the material

M, Permeability of free space
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(42107 H / m)

M, Relative permeability of the
material

In a conductor of radius “r” Faraday’s law
LHS is:

fH odl = TH(prd(o =2mH,
c 0

And the RHS of Faraday’s law is:

[seds=1,

Figure1. Conductor with radius “r’

Therefore from 3:
2mrH o= I .

Notice that the “displacement current” (D),
was thrown out of the equation. The
reason is that this current is so small
compared to “J” that virtually it has no
effect in our applications.

If there are “n” conductors, then;
2mH, =nl,
Therefore;
.
2
Since B, = uH , we obtain B, :%

Then:
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Q= IB odS

Suppose we have a toroidal winding as
shown below.

Figure 3 Toroid

Then integrating from x to y we get:

unl 31, ¢ unl %
=|B, ,edS="—|—dr|dz="—hIn(=
4 J; ’ 27 !r ;‘; 2z (x

More simplifications can be done if we use
the geometry of the magnetic circuit. For
example in figure 3, the average length is

“l,,, "then §H edl = Hi, , this relationship

avg

is very powerful in magnetic circuits.
Furthermore:

jSH-dJ:jJ-dS

Hi =1

avg

For several turns “n”;

Hl,, = NI

If B = uH then; Bz#

avg

Since ¢ = BA

Then @ :ﬂA

avg

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright© 2005, American Society for Engineering Education”

¥'G12T 0T abed



Let I be the magneto-motive force,
“MMF"™ and it is defined as: F' = NI [A-
turns]

Fud

Then @ = —— .Finally, if we define

avg
lavg
reluctance as R = — then; F' = ¢R
We can make an analogy from magnetic

circuits to electric circuits; this is shown in
the table below:

Example

The magnetic circuit shown if figure 4 has

Magnetic Variable Electric
Equivalent

R (Reluctance) R (Resistance)

F (MMF) V (Voltage)

@ (Magnetic Flux) | (Current)

the following lengths:

[, =17.78cm

[ ,=1524cm

[ ,=13.Tcm

[, ,=10.16cm

[, s=996cm

width =7.6cm

l,, =0.25¢cm

l,, =02cm

lwiright = lwicemer = lwileﬁ =3cm

Where lwim is the width of the leg

The material is M-27, 24 gage. The
number of turns is 150. Let the magnetic
flux in the right leg be 2 mWhb find:

° ¢cen ter
o D

e Current necessary in the caoill
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width /
=
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Figure 4 Magnetic-circuit for example

The magnetization curves for magnetic
materials are shown in figure 5.
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Figure 5 Magnetization curve for magnetic

materials
Solution
u, =4r107
=12.566¢"’

The magnetic flux density in the right leg is
calculated using; ¢ = BA , then:

_ ¢ri ght

right —

B

=1.135[T]

right

Enter curve in figure 5 and read
H_., =490[4—t/m]

right

The equivalent magnetic circuit is shown in
figure 6. All the electrical theorems hold true
for equivalent magnetic circuits. For
example, current division, voltage division
Kirchoff’'s laws, etc. are all applicable.
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Figure 6 Equivalent magnetic-circuit

From now on we will state the expressions
and curves that will help us solve the
problem. The arithmetic is left for the
student to do and practice. Grouping
reluctances as if they were resistors, we
obtain:

R3 + R4 +R5 = Rcenter
R, +R,+R;+Ry, =R
R,+R,+R = Rleﬁ

right

The flux flowing in the right leg produces
an MMF using the following relationship:

Fright = ¢righthight

Taking KVL on the right side of the circuit
we obtain:

Fcenter = ¢right (RG + RIO) + Fright

Since the MMF in the center leg is also:

F

center - ¢center center

And solving for the magnetic flux in the
center leg, we get:

¢ __ * center
center

R

center

Using KCL in the magnetic circuit, we find
the magnetic flux produced by the coil:

¢le_ﬂ = ¢cemer + ¢right
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The magnetic flux density is found as
follows:

_ ¢1¢ft

Bleft - A

left

Using figure 5 we find the magnetic field
intensity. Enter B, and read off ;.

Finally we can determine the current in the
coil that is necessary to produce the
magnetic flux in the right leg as stated in the
beginning of this problem.

Eq/i = N[ = ch{/i (l + 2ln12)

ml
And the current is calculated as follows:

I = F'left

N

V. CONCLUSIONS

Due to the low frequency operation used in
electric power systems, and energy
conversion, some terms in the different
Maxwell's equations can be neglected. This
is called “lumped —circuit theory.” Then the
time-varying term in equation 4 can be
eliminated. This term is:

0
o (D)

Consequently the “time-varying” term in
equation 2 can be neglected as well.

Wave propagation and transmission lines
theories are based on the complete set of
Maxwell's equations with all the terms
included.

As it can be observed the basic application
of Maxwell's equations is not that difficult.
However, the proofs and mathematical
developments can be overwhelming to the
average student. It is for this reason that we
focus in the understanding of the equations,
and their application. As a reference we use
simple examples of vector algebra and
definitions as is shown in appendix | just to
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clarify the math involved with the curl and
divergency operator.

Furthermore, we do not use more than two
lectures to explain all the material
presented in this paper. We explain an
equation, derive its solution, simplify it and
then apply it. Then homework is given to
reinforce the concept. While this approach
is not perfect the response of the students
has been positive and induced a better
understanding of the material than the
classic mathematical approach used in the
past.

We will start documenting, assessing, and
the results of this approach will be better
as soon as we get significant data. So far
we have used feedback from students in
informal conversations.
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VIl APPENDIX |

(A) Curl of a vector.

i, 1, 1
Cartesian: VxA4= 2 2 2
ox Oy Oz
A Ay A,
i, I,
Cylindrical: VxA= i - 2
or Op Oz
A, rd, A
Spherical:
[, i i
r’sin@ rsiné r
VxA= i i i
or 00 op
A, rd,  rsinfA,
Example:

Determine the curl of the following vectors:

A=4yi —2xi

A= 2i¢

Solution:
i i i

vad=|2 2 9
ox Oy 0Oz
4 -2, 0

=—61,

Also:
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X ¥y z
vxd=|2 9 2
or Op Oz
0 2r 0
21,
r

(B) Divergence of a vector

Cartesian:
0A4
Ve~ 04, vy 0A
ox oy O,
Cylindrical:
04
Ve A :la(rAr) +l 0, 0A,
r or r op 0z
Spherical:

Goso LECA) 1 dAdsi) 1,

r- o rsind 00 rsing Op
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