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Abstract- In schools of electrical 
engineering around the nation and 
abroad, some curriculums offer a 
limited electromagnetic course or no 
course at all. This is an issue of 
curriculum constraints, thererefore; 
magnetic circuits need to be taught in 
other courses to be able to assure that 
the students are exposed to the 
material. An appropriate course that we 
use is the energy conversion class, 
sometimes called “Electrical 
Machines.” It is no wonder that almost 
all textbooks [1] used in the area have 
extensive chapters dealing with 
magnetic circuits. This paper is a study 
of an effective way of transitioning a 
topic from one area of electric 
engineering to another (from 
Electromagnetic Fields to Electric 
Power Systems) 

 
Symbols: 
 
“E” electric field [V/m] 
“H” magnetic field intensity [A/m] 
“B” magnetic field intensity [Webbers/m

2
]  

     Or [T] 

“φ ” magnetic flux [Webbers] or [Wb] 

“D” displacement flux density [C/m
2
] 

“J” current density [A/m
2
] 

 
I. INTRODUCTION 

Historically magnetic circuits are included 
in “Electromagnetics” courses and 

consequently these courses became 
prerequisites for electric energy conversion. 
In many programs nationwide there is no 
required electromagnetic course prerequisite 
anymore and students end up not knowing 
the basics of magnetic circuits. 
 
However, the background necessary to 
assure understanding of the material comes 
from the first and second college physics 
courses. Furthermore, if the energy 
conversion course is offered, it is done as an 
elective in most institutions. 
 
The effect of graduating students with an 
electrical engineering degree without an 
energy conversion course is very 
detrimental to their basic knowledge. We will 
discuss this issue further down the road in 
this paper. Staying focused on the transition, 
we will show how we teach the concepts 
and how the student’s background from their 
regular physics classes is sufficient to 
understand, comprehend and learn the 
material.  
 
 

 
 
 
 
 

II. MAGNETIC CIRCUITS P
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Magnetic circuits deal with magneto-static 
equations discovered by Maxwell

1
. These 

equations can be of integral and/or 
differential form. We are presenting them 
here for future reference. 
 
The first one is Faraday’s law 
 

∫∫ •−=•
sc

dSB
dt

d
dlE  (1) 

 
A simple explanation is; in a wire the rate 
of change of a magnetic flux density 
induces a voltage. 
 
The differential form of this equation is 
shown in equation 2: 
 

∇ )(B
t

E
∂

∂
−=×   (2) 

 
Where; 
 

∇x     curl of a vector (appendix 1) 
 

Where, “∇” pronounced “del” is a three 
dimensional vector with coordinates in the 
Cartesian, Cylindrical and Spherical 
coordinate system. Remember that we are 
just trying to show the way we develop a 
concept and how it is presented to our 
students. 
 
If we follow the same way of thinking we 
can obtain Maxwell’s equation for 
Ampere’s law. 

∫ ∫ ∫ •+•=•
c s s

dSD
dt

d
dSJdlH     (3) 

 
Which can be explained as follows; the 
flow of current in a wire will induced a 
magnetic flux 
 
In differential form we get: 

∇ )(D
t

JH
∂

∂
+=×          (4) 

                                                 
1
 Maxwell James Clerk developed his set of 

equations in 1873, in Cambridge University 

England 

The remaining Maxwell’s laws are the ones 
for Gauss’s law for the electric field and 
Gauss’s law for Magnetic fields. 
 

∫ ∫=•
s v

dvdSD ρ              (5) 

Again, this equation reads as follows; the 
flow of charges in a wire creates a flow of 
current in a wire. 
 
In differential form; 
 

∇ ρ=•D          (6) 

 
Where  
 

∇•    Divergency of a vector (appendix 1) 
 
Then Maxwell’s equation for Gauss’s law of 
magnetic fields is: 
 

0=•∫ dSB
s

   (7) 

 
This equation reads as follows: The net 
magnetic flux density in a closed surface 
area is zero, i.e. the flux entering an area is 
the same as the one that leaves that same 
area. 
 
In differential form; 
 

∇ 0=• B    (8) 

 
 

III. TRANSFORMATIONS 
For practical engineering use, we carry on 
some simplifications in order to reduce the 
complexity of the equations and be able to 
apply them to our engineering problems. We 
must keep in mind that if our graduating 
students get involved in a sophisticated 
electromagnetic problem, they should at 
least be capable of understanding the 
problem and communicate with the expert in 
the field. 
 
Setting up a table with the equations used 
most frequently, we obtain the following. 
 
 
 
 

P
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Maxwell’s Differential Equations 

Faraday’s Equation 

∫∫ •−=•
sc

dSB
dt

d
dlE  

Transformation Equations 

⇒•∫ dlX
c

∇ x X 

 

∫ ⇒•
s

XdSX  

)(X
t

dSX
dt

d

s

∫ ∂

∂
⇒•  

 
Final Equation Differential form 

∇ )(B
t

E
∂

∂
−=×  

 

Ampere’s Equation 

∫ ∫ ∫ •+•=•
c s s

dSD
dt

d
dSJdlH

 

 
Transformation Equations 

⇒•∫
c

dlX ∇ x X 

 

∫ ⇒•
s

XdSX  

)(X
t

dSX
dt

d

s

∫ ∂

∂
⇒•  

 
Final Equation Differential Form 

∇ )(D
t

JH
∂

∂
+=×  

Gauss’s Electric Field Equation 

∫ ∫=•
s v

dvdSD ρ  

 
Transformation Equations 

⇒•∫ dlX
c

∇ x X 

 

∫ ⇒•
s

XdSX  

 

XdlX
v

⇒•∫
 

 
Final Equation in Differential Form 
 

∇•D=ρ 
 
 
 

Gauss’s Magnetic Field Equation 

0=•∫ dSB
s

 

Transformation  Equation 

∫ ⇒•
s

dSX ∇•X 

Final Equation Differential form 

∇•B=0 

 
 
 

IV. ENGINEERING SIMPLIFICATIONS 
After obtaining Maxwell’s equations in 
differential and integral form, we proceed to 
make engineering assumptions to further 
simplify them in their differential form. 
 
At this particular point we emphasize the 
engineering approach; Let E and H be 
fundamental fields and D and B derived 
fields. The relationship between those fields 
is as follows: 
 
We are assuming that B is uniform across 
the magnetic material (which is assumed in 
most engineering applications). 
 
D = ε E 

 
And 
 

B = µ H 
 
Where: 

roεεε =  

 

roµµµ =  

 
ε  Permittivity of the material 

oε        Permittivity of free space    

            (8.85x10
^-12

 F/m)                     

rε         Relative permittivity of the         

             material 
 
µ  Permeability of the material 

oµ        Permeability of free space    

P
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            ( )/104( 7 mHx −π  

rµ         Relative permeability of the  

             material 
 
In a conductor of radius “r” Faraday’s law 
LHS is: 
 

 ϕ

π

ϕ πϕ rHrdHdlH
c

2

2

0

∫∫ ==•  

 
And the RHS of Faraday’s law is: 
 

r

s

IdSJ =•∫  

 
 
 
 
 
 
 

 
 

Figure1. Conductor with radius “r” 
 
Therefore from 3: 
 

rIrH =ϕπ2  

 
Notice that the “displacement current” (D), 
was thrown out of the equation. The 
reason is that this current is so small 
compared to “J” that virtually it has no 
effect in our applications. 
 
If there are “n” conductors, then; 
 

rnIrH =ϕπ2  

 
Therefore; 

r

NI
H

πϕ
2

=  

Since ϕϕ µHB =  we obtain 
r

NI
B

π
µ

ϕ
2

=  

 
 
Then: 
 

∫ •=
s

dSBϕ  

 
Suppose we have a toroidal winding as 
shown below. 
 
 

Coil with “N” turns

 
Figure 3 Toroid 

 
Then integrating from x to y we get: 
 

)ln(
2

1

2
0

x

y
h

nI
dzdr

r

nI
dSB

hy

xs
π

µ
π

µ
ϕ ϕ ==•= ∫∫∫  

 
More simplifications can be done if we use 
the geometry of the magnetic circuit. For 
example in figure 3, the average length is 

“ avgl ”then avg

c

HldlH =•∫ , this relationship 

is very powerful in magnetic circuits. 
Furthermore: 
 

IHl

dSJdlH

avg

sc

=

•=• ∫∫
 

For several turns “n”; 
 

NIHlavg =  

 

If HB µ= then; 

avgl

NI
B

µ
=  

 

Since BA=ϕ  

 

Then A
l

NI

avg

µ
ϕ =  

 

r 
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Let F  be the magneto-motive force, 

“MMF ” and it is defined as: NIF =  [A-

turns] 
 

Then

avgl

AFµ
ϕ = .Finally, if we define 

reluctance as 
A

l
R

avg

µ
=  then; RF ϕ=  

 
We can make an analogy from magnetic 
circuits to electric circuits; this is shown in 
the table below: 
 
 
 
 
Example 
The magnetic circuit shown if figure 4 has 

the following lengths: 
 

cmlll

cml

cml

cmwidth

cml

cml

cml

cml

cml

leftwcenterwrightw

g

g

m

m

m

m

m

3

2.0

25.0

6.7

96.9

16.10

7.13

24.15

78.17

___

2

1

5

4

3

2

1

===

=

=

=

=

=

=

=

=

 

Where xxxwl _ is the width of the leg 

 
The material is M-27, 24 gage. The 
number of turns is 150. Let the magnetic 
flux in the right leg be 2 mWb find: 

• centerφ  

• leftφ  

• Current necessary in the coil 
 
 

ϕ

lm1
lm3 lm5

lm2 lm4

lg1 lg2

width

Right legCenter legLeft leg

ϕ ϕl
c

R

Current, I w
id

th

 
 

Figure 4 Magnetic-circuit for example 
 

The magnetization curves for magnetic 
materials are shown in figure 5. 
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Figure 5 Magnetization curve for magnetic 

materials 
 

Solution 

7

7

566.12

104

−

−

=

=

e

o πµ
 

 
The magnetic flux density in the right leg is 

calculated using; BA=φ , then: 

 

][135.1 T
A

B
right

right

right ==
φ

 

 
Enter curve in figure 5 and read  

]/[490 mtAH right −=  

 
The equivalent magnetic circuit is shown in 
figure 6. All the electrical theorems hold true 
for equivalent magnetic circuits. For 
example, current division, voltage division 
Kirchoff’s laws, etc. are all applicable. 

Magnetic Variable Electric 
Equivalent 

R (Reluctance) R (Resistance) 

F (MMF) V (Voltage) 

ϕ  (Magnetic Flux) I (Current) 
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Figure 6 Equivalent magnetic-circuit 
 

From now on we will state the expressions 
and curves that will help us solve the 
problem. The arithmetic is left for the 
student to do and practice. Grouping 
reluctances as if they were resistors, we 
obtain: 
 

left

right

center

RRRR

RRRRR

RRRR

=++

=+++

=++

1211

9876

543

 

 
The flux flowing in the right leg produces 
an MMF using the following relationship: 
 

rightrightright RF φ=  

 
Taking KVL on the right side of the circuit 
we obtain: 

rightrightcenter FRRF ++= )( 106φ  

 
Since the MMF in the center leg is also: 
 

centercentercenter RF φ=  

 
And solving for the magnetic flux in the 
center leg, we get: 
 

center

center

center
R

F
=φ  

 
Using KCL in the magnetic circuit, we find 
the magnetic flux produced by the coil: 
 

rightcenterleft φφφ +=  

 
The magnetic flux density is found as 
follows: 
 

left

left

left
A

B
φ

=  

 
Using figure 5 we find the magnetic field 

intensity. Enter leftB and read off leftH . 

Finally we can determine the current in the 
coil that is necessary to produce the 
magnetic flux in the right leg as stated in the 
beginning of this problem. 
 

)2( 21 mmleftleft llHNIF +==  

 
And the current is calculated as follows: 
 

N

F
I

left=  

 
 
 

V. CONCLUSIONS 
Due to the low frequency operation used in 
electric power systems, and energy 
conversion, some terms in the different 
Maxwell’s equations can be neglected. This 
is called “lumped –circuit theory.” Then the 
time-varying term in equation 4 can be 
eliminated. This term is: 
 

)(D
t∂

∂
 

 

Consequently the “time-varying” term in 
equation 2 can be neglected as well. 
 
Wave propagation and transmission lines 
theories are based on the complete set of 
Maxwell’s equations with all the terms 
included. 
 
As it can be observed the basic application 
of Maxwell’s equations is not that difficult. 
However, the proofs and mathematical 
developments can be overwhelming to the 
average student. It is for this reason that we 
focus in the understanding of the equations, 
and their application. As a reference we use 
simple examples of vector algebra and 
definitions as is shown in appendix I just to 
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clarify the math involved with the curl and 
divergency operator. 
 
Furthermore, we do not use more than two 
lectures to explain all the material 
presented in this paper. We explain an 
equation, derive its solution, simplify it and 
then apply it. Then homework is given to 
reinforce the concept. While this approach 
is not perfect the response of the students 
has been positive and induced a better 
understanding of the material than the 
classic mathematical approach used in the 
past. 
 
We will start documenting, assessing, and 
the results of this approach will be better 
as soon as we get significant data. So far 
we have used feedback from students in 
informal conversations. 
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VII APPENDIX I 
 
(A) Curl of a vector. 
 

Cartesian: 

zyx

zyx

AAA

zyx

iii

A
∂

∂

∂

∂

∂

∂
=×∇  

 

Cylindrical: 

zr

zyx

ArAA
zr

iii

A

ϕ

ϕ ∂

∂

∂

∂

∂

∂
=×∇  

 
 
 
Spherical: 
 

ϕθ θ
ϕθ

θθ

ArrAA
r

r

i

r

i

r

i

A

r

zyr

sin

sinsin2

∂

∂

∂

∂

∂

∂
=×∇  

 
Example:  
Determine the curl of the following vectors:  
 

xx xiyiA 24 −=   

 

ϕiA 2=  

 
Solution: 
 

024 xx

zyx

ii

zyx

iii

A

−
∂

∂

∂

∂

∂

∂
=×∇  

 

zi6−=  

 
Also: 

 

020 r
zr

iii

A

zyx

∂

∂

∂

∂

∂

∂
=×∇

ϕ
 

 

r

iz2
=  

 
(B) Divergence of a vector 
 
Cartesian: 
 
 

 

z

zyx A

y

A

x

A
A

∂

∂
+

∂

∂
+

∂

∂
=•∇  

 
Cylindrical: 
 

z

AA

rr

rA

r
A zr

∂

∂
+

∂

∂
+

∂

∂
=•∇

ϕ
ϕ1)(1

 

 
Spherical: 
 

ϕϕθ
θ

θ
ϕθ

∂

∂
+

∂

∂
+

∂

∂
=•∇

A

r

A

rr

Ar

r
A r

sin

1)sin(

sin

1)(1
2

2
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