égTZI?)llll-lﬂ& TEACHING MICROCONTROLLERS THROUGH SIMU-

Nikunja Swain, South Carolina State University

Dr. Swain is currently a Professor at the South Carolina State University. Dr. Swain has 25+ years of
experience as an engineer and educator. He has more than 50 publications in journals and conference
proceedings, has procured research and development grants from the NSF, NASA, DOT, DOD, and DOE
and reviewed number of books on computer related areas. He is also a reviewer for ACM Computing

Reviews, [JAMT, CIT, ASEE, and other conferences and journals. He is a registered Professional Engineer
in South Carolina.

(©American Society for Engineering Education, 2011

1°'86£T°¢¢ abed

Teaching Microcontrollers through Simulation

Abstract

There are numerous uses of simulation, starting from simulation of simple electric circuits to complex
tasks such as electromagnetic fields, heat transfer through materials, networking, computer circuits,
game programming, electron flow in semiconductors, or beam loading with the ultimate objective of
providing illustrations of concepts that are not easily visualized and difficult to understand. Simulators
are also used as an adjunct to and, in some cases such as distance learning courses, as a substitute for
actual laboratory experiments. In many instances, students are required to verify their theoretical design
through simulation before building and testing the circuit in the laboratory. Studies show that students
who used simulation prior to conducting actual experiments performed better than the students who
conducted the laboratory experiments without conducting simulation first. Also, simulation is used to
model large and complex systems. There is no doubt that simulation cannot replace the physical hands-
on experience, but simulation can enhance the teaching and learning experience. The objective of this
paper is to discuss microcontroller simulation software packages for 8051 and PIC microcontroller and
its effect on education and research.

Introduction

Automation is becoming part and parcel of every industry, and industries need a trained workforce to
manage this new development. Engineering and technology graduates must have a comprehensive
background covering a wider range of technical subjects. The graduates must be proficient in the use of
engineering and scientific equipment, conducting experiments, collecting data, and effectively
presenting the results **#*“. Furthermore, these graduates must be well-trained in courses and
laboratories such as electric and electronic circuits; digital systems and microprocessors; computer
programming; computer aided design; computer organization and architecture; electronic and data
communications; networking; control and robotics; electric machines and power systems; PLC and
virtual instrumentation; microprocessors and microcontrollers and others. One cost-effective way of
achieving this is through the use of simulation software programs, and a number of simulation software
packages are available for these purposes. These software packages play an important role in education
and are used to deliver training for all kinds of activities, from piloting sophisticated aircraft or ships to
operating nuclear power plants or complex chemical processing facilities.

Packages like PSPICE, Multisim, MatLab, Simulink, LogicWorks, RSLogix, Debug, MASM, and
LabVIEW are widely used by engineering and technology programs at other institutions and there is
sufficient information on these in textbooks and on the web. Packages like PIC 18 Simulator IDE and
EDSIM 51 are not that well known and may not be widely used but both these packages have
tremendous potential in enhancing student learning in Microcontroller course. We will be discussing
some of the features of these software packages and the instructional modules developed using these
packages below.

2'86£T1 22 abed

EDSIM51 Instructional Module
Features of EDSIM 51

The EdSim51 ° Simulator is a free simulator for the popular 8051 microcontroller. In EDSIM51, a
virtual 8051 is interfaced with virtual peripherals such as a keypad, motor, display, UART, etc. The
student can write 8051 assembly code, step through the code and observe the effects each line has on the
internal memory and the external peripherals. The following is a list of virtual peripherals in EDSIM51.:

* Analogue-to-Digital Converter (ADC)

» Comparator

* UART

* 4 Multiplexed 7-segment Displays

» 4 X 3 Keypad

* 8 LEDs

* DC Motor

* 8 Switches

* Digital-to-Analogue Converter (DAC) - displayed on oscilloscope

Example of EDSIM51 Simulation Module

This simulation module introduces the student to LCD Module in EDSIM51. The LCD module
connections in EDSIM51 are shown in Figure 1. As shown in Figure 1, the EdASim51 8051 simulator
Port 1 is connected to an LCD module as seen below. The LCD module is a simulation of the Hitachi
HD44780. The LCD module is configured in 4-bit mode, with DB7-DB4 connected to P1.7-P1.4. P1.3 is
connected to the register-select pin and P1.2 is connected to the enable pin.

PB._7/ADF RDAP3 _7
PB_6/ADG URSP3_6
PB.S/ADS T1/P3_5
PB._L4/AD4 TB/P3_ 4
PB_3/AD3 INTA/P3_3
PB_Z2/AD2 INTBsP3 _2
PB_1/AaD1 THDAPZ 1
o — PO_0OsADO RXD/P2.0
LED 7 {—~r]3 P1.7 A1S/P2 _7F
o P1_6 A1L/PZ _6
LED & {—~] P1._5 A13 /P2 .S
i P1_4 A12/P2_ 14
e '“’W“L/_'I) P1.3 A11/,P2_3
P1.2 Al10sP2 .2
LED &
W?',- — P1.1 A9 P2 _1
LED 3 {—] —{ P1.8 ABsPZ_0@
A
LED 2 {3 80851
el
LED 1 E}, DE7— DB
LED B8 o LIRS
E _R/U
- LCD module
L o7
D6
DS
D4
D2
D2 osSp
D1
DBa

Figure 1 — LCD configuration in EDSIM51

To display the text on the LCD module, Port 1 bits will have to be set and cleared to set the bit mode (4

€'86£T 22 abed

or 8), function, entry mode, and display control of the LCD module. Then the values to be sent to the
display can be moved from the RAM of the 8051. The instruction sets and different settings can be
found in the user guide of the HD 44780. To write a program that will send the text 8051 PROGRAM to
the LCD display, the values must be stored in the RAM of the 8051. Also, the LCD display must be set
to properly display the data. Because the LCD module is configured in 4 bit mode, the settings and data
must be sent 4 bits at a time. At the completion of each instruction, P1.2 must be set and then cleared.
This will control the enable bit, which will send the instruction to the LCD module. Once the function,
entry mode, and display on/off control settings have been set, the data can be moved from RAM to the
LCD module in a similar manner (4 bits at a time). The assembly language program to send the text
8051 PROGRAM to the LCD display for this module is shown below and the corresponding simulation
screenshot is shown in Figure 2.

Assembly Language Program

ORG O
; MOVE DATA INTO RAM

MOV 30H, #"8" ; PUT DATA IN RAM
MOV 31H, #"0" ; PUT DATA IN RAM
MOV 32H, #"5" ; PUT DATA IN RAM
MOV 33H, #"1" ; PUT DATA IN RAM
MOV 34H, #° " ; PUT DATA IN RAM
MOV 35H, #"P" ; PUT DATA IN RAM
MOV 36H, #"R"™ ; PUT DATA IN RAM
MOV 37H, #"0" ; PUT DATA IN RAM
MOV 38H, #"G" ; PUT DATA IN RAM
MOV 39H, #"R" ; PUT DATA IN RAM
MOV 3AH, #"A" ; PUT DATA IN RAM
MOV 3BH, #"M"™ ; PUT DATA IN RAM
MOV 3CH, #0 ; END OF DATA MARKER

CLR P1.3 ; CLEAR RS (P1.3) TO INDICATE ;
INSTRUCTIONS BEING SENT TO MODULE

CLR P1.7 ; SET FUNCTION 1st TIME TO TELL
CLR P1.6 ; MODULE TO GO TO 4-BIT MODE
SETB P1.5 ; N =1 (4 BIT MODE)

CLR P1.4 ; DL =0

SETB P1.2 ; SET NEGATIVE EDGE ON E SO MODULE

CLR P1.2 ; WILL READ HIGH NIBBLE

CALL DELAY ; DELAY TO WAIT FOR BF TO CLEAR

SETB P1.2 ; SET NEGATIVE EDGE ON E SO MODULE

CLR P1.2 ; WILL READ HIGH NIBBLE FOR 2w TIME
SETB P1.7 ; SET LOW NIBBLE OF FUNCTION SET

SETB P1.2 ; SET NEGATIVE EDGE ON E SO MODULE

CLR P1.2 ; WILL READ LOW NIBBLE OF FUNCTION SET
CALL DELAY ; DELAY TO WAIT FOR BF TO CLEAR

CLR P1.7 ; SET HIGH NIBBLE OF ENTRY MODE

¥'86ET 22 9bed

CLR P1.6 ; 0

CLR P1.5 ; O

CLR P1.4 ; O

SETB P1.2 ; SET NEGATIVE EDGE ON E SO MODULE
CLR P1.2 ; WILL READ HIGH NIBBLE OF ENTRY MODE
SETB P1.6 ; SET LOW NIBBLE OF ENTRY MODE

SETB P1.5 ; BITS 5 AND 6 ONLY NEEDED CHANGE
SETB P1.2 ; SET NEGATIVE EDGE ON E SO MODULE
CLR P1.2 ; WILL READ LOW NIBBLE OF ENTRY MODE
CALL DELAY ; DELAY TO WAIT FOR BF TO CLEAR

CLR P1.7 ; SET HIGH NIBBLE OF DISPLAY CONTROL
CLR P1.6 ; 0

CLR P1.5 ; 0

CLR P1.4 ; 0

SETB P1.2 ; SET NEGATIVE EDGE ON E SO MODULE
CLR P1.2 ; WILL READ HIGH NIBBLE OF DISPLAY
SETB P1.7 ; SET LOW NIBBLE OF DISPLAY CONTROL
SETB P1.6 ; 1 = DISPLAY ON

SETB P1.5 ; 1 = CURSOR ON

SETB P1.4 ; 1 = BLINKING ON

SETB P1.2 ; SET NEGATIVE EDGE ON E SO MODULE
CLR P1.2 ; WILL READ THE LOW NIBBLE OF DISPLAY
CALL DELAY ; DELAY TO WAIT FOR BF TO CLEAR

SETB P1.3 ; SEND DATA FROM RAM TO MODULE

MOV R1, #30H ; MOVE DATA TO BE SENT FROM RAM TO R1
LOOP: MOV A, @R1 ; MOVE DATA POINTED TO BY R1 TO A
JZ FINISH ; IF A 1S 0, JUMP OUT OF LOOP

CALL SENDDATA ; SEND DATA TO LCD

INC R1 ; INCREMENT R1 TO POINT TO NEXT DATA
JMP LOOP ; REPEAT UNTIL DONE
FINISH: JMP $; FINISH PROGRAM ONCE DATA IS WRITTEN
SENDDATA: MOV C, ACC.7 ; SEND DATA FROM HIGH BITS OF A
MoV P1.7, C ; TO LCD MODULE

MOV C, ACC.6 ; MOVE BIT 6 TO C

MOV P1.6, C ; MOVE C TO P1.6

MOV C, ACC.5 ; MOVE BIT 5 TO C

MOV P1.5, C ; MOVE C TO P1.5

MOV C, ACC.4 ; MOVE BIT 4 TO C

MOV P1.4, C ; MOVE C TO P1.4

SETB P1.2 ; SET NEGATIVE EDGE ON E SO MODULE
CLR P1.2 ; WILL READ THE HIGH NIBBLE OF DATA
MOV C, ACC.3 ; SEND DATA FROM LOW BITS OF A

Mov P1.7, C ; TO LCD MODULE

MOV C, ACC.2 ; MOVE BIT 2 TO C

MOV P1.6, C ; MOVE C TO P1.6

MOV C, ACC.1 ; MOVE BIT 1 TO C

MOV P1.5, C ; MOVE C TO P1.5
MOV C, ACC.O ; MOVE BIT O TO C
MOV P1.4, C ; MOVE C TO P1.4

G'86ET 22 9bed

SETB P1.2 SET NEGATIVE EDGE ON E SO MODULE

CLR P1.2 ; WILL READ LOW NIBBLE OF DATA
CALL DELAY ; DELAY TO WAIT FOR BF TO CLEAR
DELAY: MOV RO, #50 ; MOVE 50 TO RO

DINZ RO, $; KEEP DECREMENTING RO

RET

Simulation Screen Shot for LCD

Sys. Clock: 12 MH=z= S051
SBTE
RSO WO THO TLO r7| oxoo B| oxoo
oxoo | oxoo] [oxoo| oxoo] me| oxoo rooc| oxam
RHD THD »5| oxoo Psw| oxso
1 1 oD [oxoo] ra| oxoo 2| oxoo
SO D00 oo | oxoo| »r3| oxoo I®| oxoo
r2| oxoo PcOM| oxoo
pins bits THL TL1 ri| oxzBE DPH| oxoo
oxFFE| oxfFF|P3 | oxoo] oxoo] ro| oxz® DPL| oxoo
oxFF| oxFF|P2 . sp| oxoB
oxDE | oxDE|Pa
onrrl onrrloo [oxooao]| [2o (o2 llcdlo] [z][o]2]
Modi Fy RAM
Data Memmo rsy I addrl f_‘le_‘lf_‘ll f_'le_'lf_'llvalue

Figure 2 — Simulation screenshot for EDSIM51 LCD Simulation Module

PIC Microcontroller

A Peripheral Interface Controller (PIC) Microcontroller is a small integrated computer with a complete
control system on a single physical chip, combining EEPROM program memory, data memory (RAM),
data ROM, 1/O ports, processor, Analog/Digital convertor, bus controllers and some other devices to run
a simple application for a specific task. The Microchip PIC family microcontrollers are very popular and
selected by more and more designers ® ”. The PIC family can break up into 8-Bit, 18-Bit, and 32-Bit
groups as illustrated in Figure 3.

9'86£1°2¢ abed

F

PIC16 PIC1O

PIC17 - - PIC12
PIC18 PIC14
PICZ4H - = PICZ4F

dsPIC33F - 16-bit Digital Single . dePIC20
Controller

Q

igure 3 — PIC Microcontroller Family

PIC Microcontrollers are designed using the Harvard Architecture. A typical PIC Microcontroller unit
consists of Microprocessor unit, program memory for instructions, 1/0 ports, memory for data, serial and
parallel port communication, Analog to Digital convertor, and it supports different devices such as

Timers. Figure 4

illustrates the PIC Microcontroller Architecture.

[Microprocessor Unit J

F 3

! !

Program
Memory

Data Stack 1{0) Support
Memory Memory Ports Device

PIC18 Family F

Figure 4 — PIC Microcontroller Architecture

eatures

PIC18 is the last version of 8-bits Microcontrollers family. The earlier versions of this family are 10, 12,
14, 16, and 17. Some peripherals of PIC18F and some of their feature as listed on Microchip’s website ®

are.

 Power Control PWM (PCPWM)

* Quadrature Enc

oder Interface (QEI)

* Input Capture (IC)
* High Speed Analog-to-Digital Converter (ADC)

1'86ET°2¢ abed

PIC Simulator IDE

P1C18 Simulator IDE ° is a powerful simulator to simulate programs (assembly and Basic) for PIC18
microcontrollers. This simulator has number of features such as editing, compiling, assembling,
debugging, linking, loading, simulation, and display of 1/0 module, memory, registers and others.
Limited version (30 starts) of this simulator can be freely downloaded from www.oshonsoft.com. The
following is a brief description of various features of this simulator:

Editor (Basic Compiler and Assembler)

The PIC Simulator IDE supports a Basic Compiler for Basic Language Programming and an Assembler
for Assembly Language programming. Both the Basic compiler and Assembler compile the program and
generate the hex code. The Hex code is then loaded and executed in the simulator and the results are
displayed in the respective display devices.

1/0 Modules (Displays)

I/O devices are essential components of Microcontroller based systems and they are classified into input
and output devices. PIC18F Microcontroller communicates with five 1/0 Ports, including PORTA
through PORTB. Each 1/0 port is associated with the special function registers (SFR) to setup different
function. LEDs, LCD, 7-Segment LED Displays are the common output devices and switches and
Keypad Matrixes are the common input devices in PIC18.

8 x LED (Light-Emitting Diode)

LEDs are the simplest displays. Common Cathode and Common Anode are two different ways of
configuring the LEDs. In common cathode configuration, cathodes are grounded and anodes are
connected to Power Supply. The common cathode and common anode configurations are shown in
figures 5(a) and 5(b), respectively. Figure 6 shows screen shot of the LED to display AA(hex) 10101010
in binary.

PORTB LED 7 PORTC LED 7
T \‘.\

RB7 > RC7 A —
RB6 A S | Res —'vvv\—|<]7
| rBs > - RC5 —'\/W‘—|<I7
4 —'vv\/\—[>|7 RC4 Fn—k +5V
R N RGS vk ——

RB2 AAAA D} 2 RC2 —'V\N\—|<]7
RB1 >t - RC1 A
RBO > RO Av———
\‘\ 1 L J ’A;.
LED O E LED O

Figure 5-a: Common Cathode Figure 5-b: Common Anode

8'86£1°2¢ abed

sse DTES =0 X

File Edit Tools Options @PICISS\'mulatorIDE-EvaIuat\onCopy = & SBKLE“ =] P
0001 O0RG 0 File Simulation Rate Tools Options Help =
000z MOVLW 00 [FORTE.0.
000: MOVWF TRISC | Pragriam Location | C:\Dshonsoft\LEDTEST hex . FORTE.D .
0004 MOVLW 0xAR | Micocorkoller | PICTBF4520 | Clock Frequency | 40MH: O TR |
000t MOVWF PORTC Last Instruction Nest Instruction i
000¢ SLEEP | SLEEP | SLEEP
PORTL, 2
0007 END |
000¢ | Tntuctians Counter | § | Clock Cycles Counter |~ 24 O
PORTC,3 [
Program Counter and Working Register ’W
Duratian
[pc [ooooos [TCCCCECCCCCECCETRACTT . PORTE 4
6.00ps : .
[W Regster (WREG) [2a FTECECES
O PORTCS [0
Special Function Registers (3FRs) General Pupose Registess (GPRs)
Hex Binary Value Hex Hex
AddessandName Valie 765432110 Addr Value Aod Ve . LI
FFFh 1050 [0 «| | [ooon 00" [oich [o0” ﬁl
— LRI B[S Rl PORTL, 7
TS [ot [0 [0 [0 o .
AT [0 120 [[0 [0
FFCh STKFTR [0 [0 [00_ [073n [00_ W AuaysOnTop _Chee
FFBh PCLATU 00 004h | 00 | O14h | 00 e —— .
FFah PCLATH 0 005h | 00 | 015h | 00 (S Micracontroler View - PIC18F4520 (o] s

I
T
T
Il
I
T
FFoh PCL B T [006h [00 [m6h [00°
FFeh TELFTRU [0~ r 07h [00° [m7n (o0
FF7h TELPTRH [0 r
FFeh TBLFTAL |00 N
FF5h TABLAT [T
FF4h PRODH [T
FFah PRODL [r
FFah INTCONT [00 [l
FFIhINTCONZ [F5 Il
T

FFOh INTCONE [0

[00gh [0 [018h |00
(oo3n [0 [o13n [0
004 [0 [0tk [o0
[008h [0 [01Bk |00
[00ch [0 [oiCh [o0

00Dk [0 [0i0h [0

oo b b - o ot

EENCE
|| we [0 [(o0 2

v

« [i

B
-ZIZ- DDDDD-
===

Lin4, Cal 11 Hum of fines: &

000:0001 000000 ORG 0 j

000€0002 000000 000 MOVLW 00 H.

00070003 000002 @E94 MOVWF TRISC 1

000£0004 000004 OERA MOVLW 0xAA I Hos O Top

000£0005 000006 @EB2 MOVWF PORTC

001C0006 000008 0003 SLEEP \

00110007 00000A END

00120008 00000A

001:

001¢Number of errors = 0 _

001 -
« [y Tl

Lin15, Cal 0 Hum of fines: 15

Figure 6: The simulation result of a LED Displayer
LCD (Liquid Cristal Display)

LCD represents ASCII characters. It is varied from 1 to 4 lines and at most represents 80 characters. It
has a display Data Registers (ASCII characters) which has its own address that communicates with its
location on the line and stores data in 8-Bit character code. Figure 7 illustrates how registers and power
are connected to the LCD with driver HD44780 and PIC18F452/4520 Microcontroller.

6'86£T 22 abed

HD 44780

Controller
RD7 DB7
RD6& LCD-
RD5 20% 2 +5V
RD4 VoD
RD3
RD2 Vol o
RD1
RDO DBO Vss
RS R/W E| L
RA3 |——]
RA2
RA1
PIC18F
452 / 4520

Figure 7: LCD with HD44780 driver and PIC18F452/4520

Figure 8 shows the simulation result of interfacing a 2 line x 16 characters LCD module on PIC18
simulator. The Basic program is designed to display is designed to display Analog Input ANO Value and
the data on ANO/ANT line in the microcontroller °.

» Computer » R ble Disk (E:) »
@ASIC Compiler -led bas {5 PIC1B Simulator IDE - Evaluation Copy E‘Jﬂ_hl
File Edit Tools Options File Simulation Rate Tools Options Help | S
.| | Microcontroller: PICT8F4520; Clack Frequency: 4.0 MHz &
o' - | Program Location | C:A\Oshonsoftilcd hex A
0005 Define LCD DBIT = 0 'O or 4 for 4-bit A
10006 Define LCD RSREG = BORTD | Microcontraller | PICTBF4520 | Clock Frequency | 4.0MHz A
0007 Define LCD RSBIT = 1 Last Instruction Nest Instruction l
0008 Define LCD _EREG = PORTD [BRA -2 [DECFSZ 0x004.F A A
0009 Define LCD EBIT = 3 A
0010 Define LCD_RWREG = PORTD | Instructions Counter | 27593 | Clock Cycles Counter | 212108 Al
o X BIT = 2 ¢
;;:E g:;i: EEE_ES;EENDU; _ Frogram Counter and Working Register ’W I
0013 Define LCD DATAUS = 50 [PC [Tooomaz [TETETTTTTTT EECECTTE Duralion 1
0014 Define LCD INITMS = 2 [W Fegister (WREG) [0D [[[W 53027.00 ps ¥
0015 'the last three Define T
0016 Dim an0 As Word Special Function Registers (SFRs| Gieneral Purpose Registers (GPRs) }
fjjooL7 TRISA = Oxff * 11 POR Hex BinaryYalue Hex Hex B
0018 ADCON1 = 0 'se Address andName Value 76543210 Addr. Walue Add. Value
33':9 Ledinit 1 EFfh ToS0 Mg Frrrrrr— o« rooon (o1 [ofon [0 ﬁJ [Always On Tap
iw e naanarc i ol
- o FFDh TOSL gc LT EEELT 00zh (02 | 012h |00
0022 Ledcmaout LedClear lay FE e == o | o © 1D Module = =
{[°023 Ledout "Analog inpu Freh PoLaT0 oo [CCCCCCT Tooéh [0C [O1dh | 34
3334 LCdCleﬂ'::LE' _LchlnaZflmre FFAR PCLATH Mg rrrrrrs I IRERED
e e e MR || o[
s i . FF&h TBLPTRU oo [TTTTTTT o07h |00 [017k | 00
3332 Goto loop 'loop forever - FF7h TBLPTRH o FErrrrrT Tooeh | FE [o7en (00
00z8| I e g O U [005h [FF_ [019n |00 [~ Alwsys On Top
af i Fon TeBLar |0 [[T [00éh [0 [Oih [F1_
LLin 26, Cal 0 Hurn of lines: 21 FFah PRODH oo CCCrrrrs Tooeh |00 [ofeh 01
FF3h PRODL (oo T [00Ch |00 [OfCh 07
@ FFan INTCONT [0 [T [00Dh |00 [oiDh [F1_
oS Frih NTCONZ | 5 MEEECEC [00Eh |00 [CiEh |07
Feoh INTeons [oo MECCCCCT «| || e (o0 [oen [0 =

~WRLO005tmp Date medified: 3/11/2011 1:34 PM Date created: 3/11/2011 1:37 PM
TMP File Size: 103 MB

Figure 8: LCD Simulation result

0T'86ET 22 abed

7-Segment LED Displays Panel
Seven-Segment LED is another type of output module of I/O Port. It is a group of 7 LEDs (segments)

physically built up in the form of number 8 and a decimal point as illustrated in figure 9. It is used to
show decimal number 0 through 9 and alphabets A through F.

A"

- d | |
—————1 -

Figure 9: 7-Segment LEDs panel

The Basic program to simulate a seven segment display is shown below and the corresponding
simulation result is shown in Figure 10 °. The basic program displays numbers from 0 to 99 on the two
7-segment LED displays with parallel connection and two enable lines using TMRO interrupt
multiplexing procedure. The basic file was generated using integrated Basic compiler. The hex file was
generated using integrated assembler.

Dim digit As Byte 'input variable for GETMASK subroutine

Dim digitl As Byte ‘current high digit

Dim digit2 As Byte ‘current low digit

Dim mask As Byte ‘output variable from GETMASK subroutine

Dim maskl As Byte ‘current high digit mask

Dim mask2 As Byte ‘current low digit mask

Dim i As Byte

Dim phase As Bit

Symbol dlenable = PORTC.0 ‘enable line for higher 7-segment display
Symbol d2enable = PORTC.1 ‘enable line for lower 7-segment display
TRISB = %00000000 ‘set PORTB pins as outputs

TRISC.0 =0 'set RCO pin as output

TRISC.1 =0 'set RCL1 pin as output

dlenable = False

d2enable = False

maskl =0

mask2 =0

phase =0

INTCON.TOIE =1 'enable Timer0 interrupts

INTCON.GIE =1 'enable all un-masked interrupts
OPTION_REG.TOCS =0 'set Timer0 clock source to internal instruction
cycle clock

loop:

TT1'86ET 22 abed

Fori=0To99

digitl =i/ 10 'get current high digit

digit2 =i Mod 10 'get current low digit

TMRO =0 'reset Timer0 to prevent its interrupt before both masks are
determined

digit = digitl

Gosub getmask ‘get mask for high digit

maskl = mask

digit = digit2

Gosub getmask 'get mask for low digit

mask2 = mask

Gosub show1 ‘display new mask

Gosub show? 'display new mask

WaitUs 500 'delay interval suitable for simulation
‘use large delay for the real device, say WAITMS 500
Next i

Goto loop

End

On Interrupt Timer0O interrupt routine

‘continuously switch between high and low digit displays
If phase =0 Then

phase =1

Gosub show1l

Else

phase =0

Gosub show?2

Endif

INTCON.TOIF =0 'enable new TMRO interrupts
Resume

getmask: 'get appropriate 7-segment mask for input digit
mask = LookUp(0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, Ox7f, 0x6f), digit
Return

showl: 'show high digit on its display

d2enable = False

PORTB = maskl

dlenable = True

Return

show?: 'show low digit on its display

dlenable = False

PORTB = mask2

d2enable = True

Return

Z1'86ET 22 9bed

PIC Simulator IDE o]

File Simulation Rate Tools Options Help STEF

| Program Location | L:WProgram Files'PIC Simulator IDENF zegment. hex
| Microcortraller | PICTEFS77
r Last Instruction Mext Instruction : o] 1
[BCF STATUS.C (| RLF 0x20.F
- Program Counter and ' Registet———————— | Instructions Counter | 32418
[FC [FCCCCECCEERECE | [Clock Cycles Counter | 150368
[W Register [vi” CCCCCTCRE | [Real Time Duration | 39592.0 ps
r Special Function Registers [SFRg]————— — General Purpose Registers [GPRg)—
Hex Binary Yalue Hes Hex
Addresz and Mame VWalue 76543210 Addr. Walue Addr WValue
00Th TMRD 55 FCCECEEC 4 0z0h [00 [030h [0 |« | [f AlwaysOnTop [Keep Last Display
00zh PCL o RCCEEECE 02th [34 [031h [56
03h STATUS i CCCEEEEC Ozzh [0a [oszh [6D a
i04h F5F m CCCCCrrr 023h [00 [m3h [1A b
D05h PORTA 50 02eh |00 [034h |00 - | LED Color |
i06h FORTE g TECEECER 025h [00 [ossn [oo 3
D07h FORTC o CCCCCCCR 026h_ |07 [03eh |00 . Dtz btz
O0sh PORTD S o 027h [00 [os7h [oo i
009 FORTE oo CECrErrrr 028h [Fa [038h [o0 .
004h PCLATH 0 025h [FF_ [023h [0 h
0B INTCOM a3 RCECCCERE 024k [00 [03ah [oo
DOCh PIRT oo Crrrrrer 0z2Bh [00 [03Bh [O0 Display Enable [JPORTL.D Inwerted Level
00Dh FIRZ m e 02Ch 01 [03Ch [oo
O0Eh TMRTL T R I o o 020k [05 [030h [00
00Fkh THRTH oo e 02h [02 [03ER |00
010h T1CON o CCCCCCTT «f | | [o2rn [o5 [oaes [0 =

Figure 10 - The Seven Segment LCD simulation result
Summary and Conclusions

The sample modules presented above are user friendly and performed satisfactorily under various input
conditions. These and other modules helped the students to understand the concepts in more detail. The
students were able to compare their theoretical calculation (machine code) with the machine code
generate by the simulator. They were also able to observe various register and memory by using single
stepping. Simulator was also helpful to explain difficult concepts such as interfacing LCD, Multiplexing
in Seven Segment Displays, Timers and A/D conversion to students. The simulators were also used in an
online course and were well liked the students. The PIC Simulator IDE is powerful application that
supplies PIC developers with user-friendly graphical development environment for Windows with
integrated simulator (emulator), Basic compiler, assembler, disassembler and debugger. PIC Simulator
IDE currently supports the PIC 12, PIC 16 and PIC 18 microcontrollers from the Microchip. The
student version of the simulator is approximately $30.00 and the department license is approximately
$200.00. The EDISM 51 simulator is for 8051 microcontroller and it is available free of charge. These
simulators can be used in conjunction with other teaching aids to enhance student learning in various
courses and will provide a truly modern environment in which students and faculty members can study
engineering, technology, and sciences at a level of detail.

€1°86ET ¢ abed

Acknowledgement

This work was funded in part by a grant from the NSF-HBCU-UP/RISC grant. We are thankful to the
NSF for providing us with this help.

References

1. Swain, N. K., Korrapati, R., Anderson, J. A. (1999) “Revitalizing Undergraduate Engineering, Technology, and Science
Education Through Virtual Instrumentation”, NI Week Conference, Austin, TX..

2. Elaine L., Mack, Lynn G. (2001), “Developing and Implementing an Integrated Problem-based Engineering Technology
Curriculum in an American Technical College System” Community College Journal of Research and Practice, Vol. 25, No.
5-6, pp. 425-439.

3. Buniyamin, N, Mohamad, Z., 2000 “Engineering Curriculum Development: Balancing Employer Needs and National
Interest--A Case Study” — Retrieved from ERIC database.

4. Kellie, Andrew C., And Others. (1984), “Experience with Computer-Assisted Instruction in Engineering Technology”,
Engineering Education, Vol. 74, No. 8, pp712-715.

5. URL: http://www.EDSIM51.com

6. Brey, Barry B. “Applying PIC18 Microcontrollers Architecture, Programming, and Interfacing Using C and Assembly”,
Pearson Education, Inc. 2008.

7. Katzen, Sid. “The Quintessential PIC Microcontroller”, 1st edition. Springer-Verlag, 2000. http://padabum.com/data/.pdf
8. http://www.microchip.com

9. http://www.oshonosoft.com

v1'86ET ¢ abed

