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Teaching Physics with Computer Algebra Systems 

 Abstract 

This paper describes some of the merits of using algebra systems in teaching physics courses. Various 

applications of computer algebra systems to the teaching of physics are given. Physicists started to apply 

symbolic computation since their appearance and, hence indirectly promoted the development of 

computer algebra in its contemporary form.  It is therefore fitting that physics is once again at the 

forefront of a new and exciting development: the use of computer algebra in teaching and learning 

processes. Computer algebra systems provide the ability to manipulate, using a computer, expressions 

which are symbolic, algebraic and not limited to numerical evaluation. Computer algebra systems can 

perform many of the mathematical techniques which are part and parcel of a traditional physics course. 

The successful use of the computer algebra systems does not imply that the mathematical skills are no 

longer at a premium: such skills are as important as ever. However, computer algebra systems may 

remove the need for those poorly understood mathematical techniques which are practiced and taught 

simply because they serve as useful tools. The conceptual and reasoning difficulties that many students 

have in introductory and advanced physics courses is well-documented by the physics education 

community about. Those not stemming from students' failure to replace Aristotelean preconceptions 

with Newtonian ideas often stem from difficulties they have in connecting physical concepts and 

situations with relevant mathematical formalisms and representations, for example, graphical 

representations. In this context, a computer algebra system provides a better tool which is both powerful 

and easy to use. Their appropriate use can therefore be an important aid in the training of better 

physicists and engineers. In this presentation we will discuss ways in which computer algebra systems 

like Maple, Mathcad, Macsyma or Mathematica can be used, by instructors and by students, to help 

students make these connections and to use them once they are made. Benefits that accrue to upper-class 

students able to make effective use of a computer algebra systems provide a further rationale for 

introducing student use of these systems into our courses for those who plan to major in physics or other 

technical fields. 

1. Introduction 

Physics is guided by simple principles, but for many topics the physics tends to be obscured in the 

profusion of mathematics. As interactive software for computer algebra, such as Maple, MathCAD, 

Mathematica or MATLAB can assist educators and students to overcome the obstacle of mathematical 

difficulties or to improve the lecture presentations via power visualization, animation and graphic 

facilities of these software packages. The educators and students can take the advantages of the 

mathematical power of symbolic computation so they can concentrate on applying principles of setting 

equations, instead of technical details of solving problems. Moreover, most undergraduate physics 

textbooks were written before advanced computer algebra software became conventionally available. 

The conventional approach to a topic places emphasis on theory and formalism, devoting many 

paragraphs to performing algebraic or calculus operations in deriving equations manually, and other than 

some well known examples, most applications of theory are omitted. One reason that those examples are 
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well known is that they admit analytic solution: they typically represent simplified solutions that 

generally fail to fully reflect the reality. In most situations, analytic solutions simply do not exist, and 

one cannot proceed without the assistance of a computer. Although some textbooks have sections 

discussing numerical methods, many of them contain just the theory of numerical methods, and one is 

required to posses programming skill for practice; this part is hence generally neglected. Essentially all 

experiments in physics measure numbers, so any formulation must eventually be reducible to numbers. 

Under a conventional curriculum, a student’s ability to calculate and to extract numerical results from 

the formalism is somewhat inadequate. The result is not surprising: a student may be weak in those 

areas, and he or she thus achieves only partial comprehension because of technical difficulties. 

Computer algebra systems (CAS) can remedy some of these deficiencies or weaknesses in traditional 

education process and training. Using CAS, one can manipulate equations and diminish tedious paper 

work that distracts from main focus of learning physics. To become proficient problem-solvers, physics 

or engineering students need to form a coherent and flexible understanding of problem situations with 

which they are confronted. Still, many students have only limited representations of the problems on 

which they are working. In introductory physics courses a rich understanding of situations is more useful 

than procedural ability [1]. When students start to learn calculus-based physics the emphasis is shifted. 

Although situational understanding and the ability to identify a problem remain crucial to deep 

understanding and problem solving [2, 3], learning to carry out solution procedures simply consumes a 

large portion of the students’ attention and takes up the available time.  Therefore, it has been 

unavoidable that more challenges are postponed until procedural mastery has been achieved. Recent 

development in user-friendly computer algebra software may offer new opportunities and tools to do 

some more substantial analysis in calculus-based physics courses.   

This paper discusses the use of Computer Algebra Systems (CAS) in physics education as a teaching and 

learning aid. A brief overview of the challenges and problems of computer algebra-based lecturing and 

learning is given. From this point of view, the power and limitations of CAS as systems for doing 

mathematics and simulations, calculators with infinite precision, teaching-tools for non-trivial examples, 

and learning-tools for experimental examples are shown. New skills are necessary in order for students 

to manipulate symbolic computation programming languages and to judge the results; the new skills are 

discussed and it is argued that the fear that students will forget their basic mathematical knowledge is 

unjustified. A system of learning and teaching support modules of various physics topics developed 

and/or underway to be developed by the authors are presented and discussed. We believe it is 

worthwhile to develop new ways of teaching and learning physics, by taking advantage of the 

unprecedented developments of the last two decades in computer hardware, software, programming 

languages and Internet.  The materials presented herein can be used as the starting point for other 

instructors considering using similar tools in undergraduate level physics courses. The authors also 

strongly believe that discussions and feedback from other educators will advance physics education 

through introduction of new topics, laboratory experiments or new emerging computer applications in 

delivering lecture or in doing experiments, as well in the development of new courses, new methods in 

supporting teaching and learning physics and help of faculty, especially the younger ones interested in 

research and teaching in this field.                       
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2. Computer Algebra Systems Features and Physics Applications  

Computer algebra systems have from their earliest days been concerned with providing tools with which 

researchers and scientists in other fields can determine new results.  A computer algebra system (CAS) 

in itself is no more than a high level programming language for visualization, symbolic and numerical 

computation. Basically, computer algebra systems are programs designed for symbolic manipulation of 

mathematical objects such as polynomials, vector and matrix manipulations, integrals, equations, etc. 

Typical actions are simplification or expansion of expressions, solving (systems of) differential or 

algebraic equations, data analysis and statistical methods, etc. Most CAS allow the user at least to write 

sequential programs for complex tasks, in a manner similar to writing mathematical equations, and have 

all features of high-level programming languages available. As well as such features, CAS also have 

most of the features of numerical systems for visualization (2-D plots, 3-D plots, animations) and 

numerical computations (numerical equation solving, numerical integration and differentiation). 

However, numerical systems are typically faster in regards to the numerical handling of floats with fixed 

precision. Some CAS packages solve these problems by offering links to such numerical software as 

MATLAB (i.e. MAPLE V). Besides being a tool for the manipulation of formulas, CAS should be 

expert systems knowing all of mathematics in a good mathematical handbook. This has not really been 

achieved yet, but significant progress was made in the last decades, and it is expected that a CAS should 

know all integrals found in, for example Gradshteyn and Ryzhik [4] and all differential equations from 

Coddington’s  book [5]. The first computer algebra systems, which become available in late 1980s, were 

mainly of only theoretical interests. Over the last two decades, some of these software packages have 

evolved into more practical computation and visualization tools that can take over many routine problem 

solving tasks. At the same time the required hardware has become more affordable.  

Computer algebras was from the very begging a tool for building activities?, and was accepted without 

reservations by physicists and theoretical chemists from the earliest days of symbolic computation. One 

of the earliest areas of CAS applications in physics was that of celestial mechanics, as well classical 

mechanics where it becomes an everyday tool for many researchers. In many applications in this area, 

such problems as gyroscopia, space dynamics, obits’ computation, or the representations of the 

equations of motion in symbolic form avoids unreasonably large numerical experiments and simulates 

effective usage and development of algorithms for qualitative methods of analysis of equations 

constructed. In these areas, CASs usually suggest substantial aid both in the modeling stage 

(construction of the kinetic energy and the force function for mechanical system, derivation of equations 

of motion) and during qualitative analysis of obtained equations. This aid is appreciable even for objects 

of moderate dimension. Another area where CAS was useful is general relativity, with applications such 

as classification of Riemann tensor based on studies of the multiplicity roots of a quartic equation or on 

the equivalence problem. Quantum theory and high energy physics have been other active areas for the 

applications of symbolic computation.  A good example is the use of the algebra systems in quantum 

field theory to check the accuracy of the answer with experimental results. Electromagnetic field theory 

is one of the areas of physics and engine engineering where symbolic computation is applied on an  
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extended scale due to their capabilities in solving differential equations and visualization and graphic 

capabilities.           

Some of the advantages of using a CAS packages are: a) students can write down mathematics in a 

programming-like way, using symbolic notations; b) less time spent with calculations leaves more time 

for physical analysis; c) geometric visualization of results; d) learning and become proficient in a high-

level programming language; and e) the availability of free software applications, using well-

documented algorithms. Dirive and Mathcad are already implemented on a pocket calculator, and more 

extensive packages, such as Mathematica and Maple, run on any desktop computer. In several branches 

of mathematics, physics and engineering, computer algebra systems have seen increasing popularity as a 

tool for constructing proofs, solutions and visualizing the results. Also in introductory mathematics 

courses at the university level, there is an increasing use of computer algebra software packages in 

teaching and learning. However, there are fewer examples where computer algebra systems were 

integrated throughout physics courses, especially at the introductory levels. That is not to say that 

computers have not been used extensively in physics and engineering courses, but their use has been 

mainly restricted to numerical applications, course delivery, presentations, data analysis, simulations, 

which are central to a calculus-based course. This implied that the central part of the course – 

introducing the theory, and proving the formulas – had be done most of the time by hand, more or less in 

student assignments. In this study we will argue that a CAS could be used, via several examples to 

promote students’ understanding of problems and to support the formulation of associations between 

problem representations and solution information and a didactic approach for using such software to 

improve learning and teaching process in physics will be suggested.               

There are many commercial and non-commercial products available. The most popular are 

Mathematica
TM

 [9] and Maple
TM

 [10] which will, in a (hopefully) everlasting contest, continue to 

evolve. Other systems are REDUCE
TM

 [13], AXIOM
TM

 [11], MuPAD
TM

 [12] or Derive. All systems can 

be used for high-school to university mathematics, but they differ in comfort and complexity and each 

has a different look and feel. There are also some so-called hybrid software packages that allow 

symbolic computations as a feature of numerical systems (Symbolic Toolbox for MATLAB
TM

 [14], 

Mathcad
TM

 [15], and PV Wave
TM

 [20]), and text processors (Scientific Workplace
TM

 [17]) that have 

embedded a full CAS. All these programs contain a kernel of the Maple CAS. The problem with such 

hybrids is that in general they are fixed to a certain release of the underlying kernel or linked CAS and 

that normally they could not be used across platforms. Throughout this paper, Maple V is used as 

exemplary CAS, for two reasons: first one of the author preference and the second its availability at our 

universities. However, for most of the points discussed here it is a simple matter of taste as to which 

programs are used. Computer Algebra Systems can have a significant impact on the way mathematic, 

physics or engineering courses are taught and applied. The situation can in some sense be compared to 

the pocket calculators. Today, even in primary or elementary schools, these are simply a tool and it has 

not meant to decline of mathematics. It is however no longer necessary to memorize the multiplication 

table up to twenty-five. In teaching mathematics or physics now, it is possible to concentrate on 

mathematical or physics content, rather than on counting numbers of finding solutions of the exotic 
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equations or integrals. By using CAS it is possible to go one step further. Instead of training integration 

rules one exotic case over and over again, for example, it is possible to concentrate on the meaning of a 

physics problem and variants of it. We are also no longer limited to trivial examples that work. Students 

are invited to play with physics. They learn that real life examples normally do not lead to closed 

formulas. But they can even play with and visualize the results and different approximations and they 

also learn to judge the results. They also learn that there are a lot of mathematical tools, each with their 

own rights and applicability.       

We attempt to devise an instructional approach to promote students’ understanding of these problems 

and to support them in forming associations between problem features and solution methods. The 

approach is to use symbolic computation packages as tools for problem solving and visualization. A set 

of modules, such as: harmonic oscillator, electrostatics, etc. were implemented based on this 

instructional approach. Other models from the fields of thermodynamics, acoustics, electromagnetism, 

optics or quantum mechanics are underway to be implemented in the near future This approach in 

teaching physics is unconventional in several aspects: its content reflects needs for high-tech physicists 

and engineers, the approach is strongly computer-supported, symbolic computing and other IT tools are 

systematically applied, problem-solving skills are intensely stressed.  

The primary purpose of traditional courses in physics and/or modern physics is to introduce the students 

to the concepts and ideas of the twenty-first century physics. The topics covered in these courses include 

usually dynamics, waves, heat and thermal physics, kinetic theory of gases, electricity and magnetism, 

fluid mechanics, acoustics, optics, special relativity, elementary quantum mechanics, and atomic, 

molecular, solid state, nuclear and particle physics.     

3. The Learning and Teaching Process 

Learning physics, in particular how to solve a given class of physics problems is a complex and time-

consuming process. As a primer a student may listen to a lecture, read the appropriate physics textbooks, 

or interact with a computer simulation to become acquainted with the with the domain concepts. It is 

only after this first encounter, however, that the student begins to learn how to solve problems. The 

continued learning process first requires the learner to combine information from different sources, such 

as textbooks, physics problems’ collections, previous problem-solving experiences, mathematics and 

physics pre-knowledge. Second, it requires the learner to go beyond the literal information presented in 

order to create understanding, to see implicit regularities, and to learn to routinely apply domain 

theories. It is common that impasses and misunderstandings arise during the process, and insight often 

comes only after a period of time and several attempts and trials. After the initial conceptual barriers 

have been overcome, it still requires considerable practice to become fluent in selecting and finding the 

right solution step in a particular circumstance in recovering from errors, and in carrying out the selected 

solution steps and in solving the specific problem. From information processing point of view, there are 

two relevant approaches to the learning process described earlier: one is the broad-class of production-

rule theories; the other is the schema theoretic approach.            
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Current learning theories suggest that problem representations are best constructed by the students 

themselves, and that an adequate problem representation has to be constructed in context of real problem 

solving activity [2, 3]. Therefore, the approach used in this study was to support the formation of 

problem representations during practice problem solving aiming to make a proper situation analysis 

intrinsically rewarding, rather than having it imposed by a teacher. Our review of several learning 

supporting tools leads us to the conclusions that a computer algebra system may offer the right 

functionality to achieve this goal. Three properties of CASs are of importance: a) CASs demand precise 

specification of a problem, in a highly constrained formal specification language; b) CASs takes over 

algebraic calculations; and c) CAS packages have powerful visualization and graphic facilities. The 

required precise specification of the problem and the assistance in algebraic computations can be used to 

direct students’ attention to the properties of the problem situation and/or to the theory and phenomena 

behind the problem.        

Teaching physics with software for symbolic computation, as we pointed out in previous sections allows 

an instructor to explore a topic from several points of view: a formal statement in words, just according 

to the tradition, including emphasis on definitions of terms; an algebraic and symbolic treatment, which 

can expand to take advantage of the speed and scope of software for algebraic operations; numerical 

aspects, with test cases over a large range, with numerical examples used to introduce topics as much as 

practicable; graphics, showing geometrical interpretations in two or three dimensions, with animations, 

in a way that it is entirely new and impracticable using traditional teaching methods; focusing on 

phenomena rather than on methods on solving. The advantage of visualization can not be overestimated: 

a picture or a 3-D graphic  representation of a phenomenon with no everyday life representation, such as 

an electromagnetic wave is certainly worth a thousand words of jargon, and makes the concept 

memorable to even a physics disinclined student. The capacity of contemporary software for symbolic 

computation to produce outstanding graphs and plots is astonishing; today teaching physics, 

mathematics or engineering without the use of such displays, if the CAS packages are available is in our 

opinion a disservice to the students. In a physics course, emphasis on concepts, reasoning and problem 

solving skills can replace drills on technical details of manipulating mathematical equations or 

operations required to solve routine exercises, and plots of results can underpin those concepts and 

critically enliven the reasoning and understanding of physics phenomena.     

4. Design of the CAS-Supported Learning Environment; Examples of the Use of Symbolic 

Computation in Teaching and Learning Physics. 

I illustrate a few aspects of teaching physics in various areas, employing Maple and/or Mathematica 

software packages for this purpose, via a few examples of physics teaching and learning modules. Maple 

was developed originally at University of Waterloo in Canada primarily to assist students in science and 

engineering to undertake mathematical operations on a computer in a way that a Fortran or C complier 

enables execution directly; although it has become a major commercial product, its devotion to an 

educational mission remains steadfast, and at present Maple sets a standard according to which other 

mathematical software can be assessed. Freely available software that is readily acquired through the 

Internet includes comprehensive courses, problems and applications in traditional areas of physics, such 
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as mechanics, celestial mechanics, waves, electromagnetics, optics, quantum mechanics, mathematical 

and computational physics, and other applications in many areas of mathematics, science and 

engineering. The interrelations between science, engineering, mathematics and computing are shown in 

Figure 1.  

 

Figure 1 The definition of computational science and engineering. 

Each module has three main components: lecture(s), which are part of physics or engineering courses; 

CAS solved related-examples; work groups and home-works. In the lecture(s), the theory is presented 

and examples of typical and/or real life problems are worked out using the facilities of the CAS. During 

the work groups, typically during the tutoring session, small groups or individual students are assigned a 

set of problems to solve. Students are expected to solve additional problems and to study the course text. 

The project total workload for a term course is about 80 hours for the average student. The main aim of 

the courses and the CAS-based course-supported modules is to give students a thorough understanding 

of fundamental concepts and approaches. Here, the groundwork is laid both for more advanced and for 

application-oriented technical courses. In our approach we are underway to implement or plan to 

develop about 15 course-supporting modules. These include: Equations of Motion, Oscillatory Motion, 

Electrostatics Module, Electric Circuits, Waves, Acoustics, Electromagnetic Waves, Thermodynamics, 

Magnetostatics, Physical Optics, Special Relativity, Quantum Phenomena, and Schrodinger Equation in 

One Dimension.  

The first two physics teaching modules developed were form classical mechanics. One module is 

dedicated to the treatment of the equations of motion, while the other focused on the treatment of the 

oscillatory motion. Problems such as solving a system of equations and solving differential equations 

with constant coefficients can be readily accomplished with any CAS software and are easily handle by 

Maple. Among the problems studied in these modules are: pendulum and double pendulum problems, 

central force problem, simple harmonic motion, dumped oscillator and sinusoidally driven oscillator. In 
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the future we intend to extend the equations of motion module to include the motion of a symmetric top 

and nonlinear oscillation problems (see table 1). Instructors or students can easily change the values or 

equations or include new graphs to include new graphical representations. 

Table 1: Maple worksheet for under-damped and damped oscillator            

 

>  

>  

 

>  
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>  

 

We then proceed to consider electromagnetism in static conditions.  The electrostatics module is taken 

from the standard curriculum for first-year physics majors and from standard third year engineering 

electromagnetics. The module is taken as a part of a longer course on electrodynamics. Topics covered 

in this module include charge distributions, symmetries, Coulomb’s law, Gauss’ law, dipoles, multi-

poles, conductors, computation of potentials with given boundaries conditions, dielectrics and 

polarization.  

                                  

Figure 1: The straight filamentary conductor with the finite length crossed by the electric current (left 

panel), 3D image the magnetic field in the case of the straight filamentary conductor with the finite 

length (right panel). 

 

The fundamental concern of electromagnetism is to solve Maxwell’s equations, and much of the course 

on this subject is devoted to vector calculus. To calculate an electric field and/or a magnetic field, we 

can perform integration directly from Coulomb’s law and Biot-Savart Law, using the functions of the 

CAS mathematical library. For example with Maple, we can concentrate on physics, such as 

distinguishing the coordinates of the source point and the field point, and their separation, instead of 

properties of elliptic integrals. Maple provides the necessary operations such as gradient, curl/rotor and 

divergence in curvilinear coordinates, so one needs to spend less time on mathematics and concentrate 

on physics. Nowadays there is an increased tendency to use numerical methods for the electromagnetic 

field computation. However, the numerical approach in electromagnetic field analysis has a series of 

disadvantages: a) the study of the limit cases or of the result dependence of the problem parameters is 
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made more difficult with numerical methods, b) using numerical methods leads often to the loss of the 

physical meanings of the problem. These drawbacks can be eliminated by the use of symbolic methods, 

besides the numerical ones. The main advantages of the utilization of the symbolic computations are: a) 

the automatic writing of the general expressions (in any point from the space) of the magnetic field (or 

of the vector magnetic potential) by the adequate choice of the co-ordinates system (function of the 

problem symmetry) and the accurate calculation of these; b) the automatic drawing of the 2D and 3D 

magnetic field spectra, allowing suggestive images to be obtained;  

c) the calculation of the particular solutions for which simple formulas are know, can help increase the 

student's confidence that the analysis was realized correctly. Some applications are now presented. 

 

For example in Figures 2 and the magnetic field of a straight filamentary conductor of length l, carrying 

the current Io, in an exterior point placed at the distance r from the conductor. The magnitude of the 

magnetic field intensity is H = [(Io)/(2 ρ r)], in which r = ¬{x
2
 + y

2
} represents the distance from the 

point P (in which the field is computed) to the conductor. In order to calculate the field components, the 

vector product of the unit vector of the current direction and the unit vector of the position vector in the 

xOy plane, must be computed:  

H = (k x r / r) H.  (1) 
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Figure 3: 2-D and 3D Magnetic flux density in an axial section in the case of the conductor with the 

finite length. The magnetic field visualization. 

 

 

Figure 4: The straight circular single turn crossed by the electric current (left panel), 3D spectrum for the 

magnetic field in the case of the circular loop (right panel). 

 

The magnetic field and the vector magnetic potential generated by the straight circular single turn 

crossed by the electric current is shown in Figure 4. The 3D magnetic field spectrum (fig. 5) and the 3D 

variations of the magnetic flux density in a parallel plane with the turn placed to a distance z and in an 

axial section (fig. 7, 8) were plotted on the basis of the obtained solutions. The values of the parameters 

are: electric current intensity I ?∀100 A, turn radius a ?∀2 cm. These examples show the advantages of 

CAS software packages in visualization of electromagnetic fields, which significantly enhance the 

student understanding of such phenomena.  

 

  
 

P
age 14.1147.12



Figure 5: 3D variation of the magnetic flux density in a parallel plane with the turn placed to a distance z 

in the case of the straight circular single turn (left panel), 3D variation of the magnetic flux density in an 

axial section in the case of the straight circular single turn. 

 

The module referring to the electric circuit focuses on two main topics: a) DC circuit, including the RC, 

RL and RLC circuits; and b) on the AC circuits. The solving electric circuits involve the applications of 

solving a system of algebraic and differential equations, a topic similar to oscillatory motion, which is 

one of the strong capabilities of every CAS software, and in particular of Maple. In this module we also 

use Maple’s capability of complex numbers to treat problems of alternating-current circuits. Figure 7 

and Table 2 are showing the Maple solving of RLC circuits.  

 

Figure 7: RLC Circuit waveforms 

In the modules of waves and of optics, which are under way to be developed, because we deal with 

function containing both spatial and temporal components, we will take advantage of Maple to produce 

animations that allow visualization. The content of these modules span from simple motion and standing 

waves to advanced optics, such as a dispersion relations, which is important in quantum waves, 

animations illuminating both the spatial and temporal properties of waves. Physical optics involves the 

addition of waves: we approach this topic using Maple’s graphic ability to display the final amplitude of 

waves in various combinations. Electromagnetic waves module, also in process to be developed includes 

the first stage study of the dipole radiation and the synchrotron radiation problem. Other topics will be 

added soon.          

5. Conclusions and Future Work 

The paper has reported on the development of a set of teaching and learning modules using symbolic 

computation for university physics courses. The goal was to support students in gaining intuitive 

understanding of physical situations, solution methods, or the relations between them and to help them 

to get inside of less intuitive phenomena, such as electromagnetic field phenomena or quantum theory.   
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These experiments are expected to improve students understanding of physical situations and to 

strengthen the relations they see between the solution methods and the situation features.((Cam repeti 

acelasi lucru cu astead doua propozitii.)) Among the distinctive features of the CAS modules are the use 

of precise language for specifying problems, visualization support and symbolic and numerical support 

for solving problems. The future work will consists in the improvement and extension of the already 

developed modules, the design and implementation of new modules. Long term goal is the development 

and design an e-learning version of the CAS modules.    
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Table 2: Worksheet for the double pendulum 

> x1 := l1*sin(theta1(t)); 

> y1 := l1*cos(theta1(t)); 

> x2 := x1+l2*sin(theta2(t)); 

> y2 := y1+l2*cos(theta2(t)); 

> T := (1/2)*m1*((diff(x1, t))^2+(diff(y1, t))^2)+(1/2)*m2*((diff(x2, t))^2+(diff(y2, t))^2); 

> T := combine(T); 

> V := -m1*g*y1-m2*g*y2; 

> L := T-V; 

                          2                           2 

  1      2 / d           \    1      2 / d           \  
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  - m1 l1  |--- theta1(t)|  + - m2 l1  |--- theta1(t)|  

  2        \ dt          /    2        \ dt          /  

 

             / d           \    / d           \                            

     + m2 l1 |--- theta1(t)| l2 |--- theta2(t)| cos(theta1(t) - theta2(t)) 

             \ dt          /    \ dt          /                            

 

                               2                          

       1      2 / d           \                           

     + - m2 l2  |--- theta2(t)|  + m1 g l1 cos(theta1(t)) 

       2        \ dt          /                           

 

     + m2 g (l1 cos(theta1(t)) + l2 cos(theta2(t))) 

> L1 := subs({diff(theta1(t), t) = var2, diff(theta2(t), t) = var4, theta1(t) = var1, theta2(t) = var3}, L); 

> Epr11 := diff(L1, var2); 

> Epr12 := diff(L1, var1); 

> Epr13 := subs({var1 = theta1(t), var2 = diff(theta1(t), t), var3 = theta2(t), var4 = diff(theta2(t), t)}, 

Epr11); 

> Epr14 := subs({var1 = theta1(t), var2 = diff(theta1(t), t), var3 = theta2(t), var4 = diff(theta2(t), t)}, 

Epr12); Epr15 := diff(Epr13, t); 

                                      0 

> Eq16 := Epr15-Epr14 = 0; 

> Eq17 := collect(Eq16, diff); 

> Epr21 := diff(L1, var4); 

> Epr22 := diff(L1, var3); 

> Epr23 := subs({var1 = theta1(t), var2 = diff(theta1(t), t), var3 = theta2(t), var4 = diff(theta2(t), t)}, 

Epr21); 
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> Epr24 := subs({var1 = theta1(t), var2 = diff(theta1(t), t), var3 = theta2(t), var4 = diff(theta2(t), t)}, 

Epr22); 

> Epr25 := diff(Epr23, t); 

> Eq26 := Epr25-Epr24 = 0; 

> Eq27 := collect(Eq26, diff); 

> m1 := 0.5e-1; m2 := 0.5e-1; l1 := .5; l2 := .5; g := 9.8; 

                                    0.05 

                                    0.05 

                                     0.5 

                                     0.5 

> ini := theta1(0) = Pi/(2.0), (D(theta1))(0) = 0, theta2(0) = Pi/(4.0), (D(theta2))(0) = 0; 

> Eq75 := dsolve({ini, Eq17, Eq27}, {theta1(t), theta2(t)}, numeric, output = listprocedure); 

> with(plots); with(plottools); 

> odeplot(Eq75, [t, theta1(t)], 0 .. 10, numpoints = 200); 

 

 

> odeplot(Eq75, [theta1(t), diff(theta1(t), t)], 0 .. 10, numpoints = 800); 

 

P
age 14.1147.17



 

> noffm := 100; divs := 10; 

                                     100 

                                     10 

> for i from 0 to noffm do x1 := l1*sin(rhs(Eq75[2](i/divs))); y1 := -l1*cos(rhs(Eq75[2](i/divs))); x2 := 

x1+l2*sin(rhs(Eq75[4](i/divs))); y2 := y1-l2*cos(rhs(Eq75[4](i/divs))); rod[i] := curve([[0, 0], [x1, y1], 

[x2, y2]]); ms1[i] := disk([x1, y1], 0.2e-1, color = red); ms2[i] := disk([x2, y2], 0.2e-1, color = blue); 

anima[i] := display({ms1[i], ms2[i], rod[i]}) end do; 

> for i from 0 to 5 do display(anima[i], insequence = true, scaling = constrained, axes = none) end do; 
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Table3: Maple worksheet for solving RLC Circuits 

>  

>  

>  
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