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Abstract 

 

 Problem-solving methods taught in Statics, Dynamics, and Strength of Materials courses 

vary in complexity. Some methods require one or two computations, such as calculating the 

tensile stress in a rod of a given diameter subject to a known tensile load. Other methods require 

a series of steps, such as frame analysis (three steps), or calculating the moment of inertia about 

one or more centroidal axes of a compound shape (ten steps). The standard approach used in 

textbooks is to first explain the theory, then demonstrate a solution with an example problem. 

The mathematics are presented in sequential order, beneath a diagram. Linear dimensions, 

angles, and forces which are calculated in the solution are shown on the diagram for reference. In 

the classroom, an instructor may follow a similar approach: present the theory, then demonstrate 

a solution with an example problem. The instructor presents the mathematics in sequential order 

on a blackboard, adjacent to a diagram. Dimensions, forces, and so on are added to the diagram 

in the order of their calculation, so the student sees a changing diagram…a step-by-step “movie” 

of the problem-solving process on the chalkboard. The diagram goes into a student’s notes in the 

same manner, but the finished product is a single, finished diagram, not a movie. Later, when a 

student attempts to solve homework problems, the diagram becomes a point of confusion. 

 

 In order to help students learn to solve multistep problems, a series of handouts were 

developed for Statics and Strength of Materials classes. Each handout uses a storyboard approach 

to problem solving, where mathematical calculations are matched with an in-process diagram…a 

series of movie frames. Each diagram includes a shadow of the previous diagram, so the student 

can visualize the problem solving sequence. 

 

Introduction 

 

 In the first semester of teaching Strength of Materials to Mechanical Engineering Technology 

students, a trend developed in homework performance. Student success varied inversely with the 

number of computational steps. For example, five problems requiring a single computation were 

usually all solved correctly, but a single problem consisting of five computational steps was 

rarely solved correctly. Students who could manage arithmetic and algebra would get lost in a 

multistep problem. This trend recurred in subsequent Statics and Strength of Materials classes. 

 

 These classes were structured so that students attended a lecture on a topic, then the students 

completed a series of homework problems which were submitted at the following lecture to be 

graded. Students observed and took notes on problem-solving techniques in class, but most of the 

learning really took place outside the classroom, one or two days later, as students attempted to 

solve homework problems. 
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 Students working on homework the night 

before it was due had three resources for help 

in solving multistep problems: the textbook, 

student notes from the lecture, and class 

handouts. The textbook described a series of 

mathematical steps, usually accompanied by a 

single diagram containing many construction 

lines, dimensions, and other quantities 

developed in the mathematical solution. For 

example, standard textbooks typically use a 

single diagram to illustrate how to calculate 

the moment of inertia of a complex shape, as 

shown in Figure 1. 

 

 Student notes consisted of a series of 

equations accompanied by a single 

diagram…a mirror of the textbook format. The 

diagram in the notes was created in a several 

sequential steps, copied from the chalkboard 

during class, but only the finished diagram 

appears. The method for constructing the 

diagram is not evident from the finished 

product. When the student attempted to solve a 

similar homework problem, neither the 

textbook nor the student’s notes were much 

help. Therefore, there was a need for class 

handouts to help students solve multistep 

problems. 

 

Storyboard Handouts 

 

 A series of handouts were developed for 

Statics and Strength of Materials students, 

covering such topics as beam design, truss 

analysis by the method of joints, truss analysis 

by the method of sections, frame analysis, and 

the calculation of the moment of inertia for a 

compound shape. Each handout uses a 

storyboard format, where step-by-step 

mathematical calculations are matched with 

step-by-step diagrams. Text and equations 

appear on the left, with diagrams and tables on 

the right. Changes to the diagrams are 

emphasized at each step. 
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Figure 1: Recent textbooks by Wolf

1
, Beer et al.

2
, and 

Hibbeler
3
 each use a single diagram to illustrate how to 

calculate the moment of inertia of a complex shape. This 

approach is not new; Poorman
4
 used the same method in 

the 1940 edition of Applied Mechanics, originally 

published in 1917. 
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Example #1: Method of Sections 

 

 A storyboard handout for solving truss problems uses six diagrams to illustrate the Method of 

Sections. The first diagram shows the geometry, dimensions, and applied loads. Accompanying 

text explains the reason for using the Method of Sections. 

 

Method of Sections 

 

The Method of Joints is the best way to calculate the tensile or 

compressive forces in every member of a truss. However, if you 

only need the forces in a few members, the Method of Sections 

will save you time. 

Problem Find the forces in members ID and CD. 
 

4' typ. 

200 lb. 500 lb. 

A 

B C D E 

F 

G 
H I J 

K 

3' 

100 lb. 

80 lb. 

 
 

Figure 2: The first part of the Method of Sections storyboard introduces the problem in text and in a diagram. 

 

The second diagram illustrates how to find the reaction forces at the two supports. The entire 

truss is treated (and drawn) as a solid block, because reaction force calculations are independent 

of truss geometry. The dimensions shown in this diagram are the specific dimensions required in 

the calculations at the left. 

 
Step 1 Calculate reaction forces at the supports, using three 

equations: ΣM=0, ΣFx=0, and ΣFy=0. Treat the truss as a solid 

body, since reaction forces depend only on external forces and 

dimensions. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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Axx
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FyAyy

Fy

FyA

−=

+==Σ

=+++−=

−−−+==Σ

=
+++

=

+−−−−==Σ

 
Since RAx is negative, the arrow is drawn backwards. Leave the 

arrow in this direction in all subsequent diagrams, and use the 

value of –100lb. 

 

4' 

200 lb. 500 lb. 

3' 

100 lb. 

80 lb. 

RAy 

RFy 
RAx 

8' 
16' 

 

 

Figure 3: The second part of the Method of Sections storyboard shows how to calculate reaction forces. 

Equations are listed on the left, interleaved with explanatory text. 
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The third diagram shows the location of the imaginary cut required by this method of solution. 

The truss geometry appears again, but no dimensions or load values are shown, because the 

location of the cut is independent of these values. 

 
Step 2 Cut the truss. The cut must pass through a member you are 

solving for. The cut does not have to be vertical, or even straight, 

but it should pass through the fewest possible members. In this 

problem, a single cut passes through members ID and CD. In 

some problems, you may need to make more than one cut to 

calculate all the required forces. 
 

A 

B C D E 

F 

G 
H I J 

K 

Cut here 

 
 

Figure 4: The third part of the Method of Sections storyboard discusses the imaginary cut required by this 

solution method, and shows the location on a diagram. 

 

The fourth diagram shows a free-body diagram of the cut truss, with arrows representing the 

longitudinal forces in the cut members. The text discusses sign conventions and how to perform 

the calculations. The fifth diagram illustrates how to use the ratio of the hypotenuse to the leg of 

a triangle, instead of using trigonometric functions, to calculate horizontal and vertical 

components of force. 

 
Step 3 Draw one portion of the cut truss. Draw cut members as if 

they were external forces acting on the cut portion. 

 

Step 4 Use ΣM=0, ΣFx=0, and ΣFy=0 to calculate the forces in 

the cut members. 

( )

( ) ( ) ( )
.lb850

.ft3

.lb25.381.ft8.lb100.ft3.lb200.ft4
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=
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CD is positive, so the arrow is drawn correctly. CD = 850lb. 

tension. 

The vertical component of ID is ( ) ID133 . 

( )

.lb09.383
133

.lb500.lb200.lb25.381
ID

ID133.lb500.lb200R0F Ayy

−=
−−

=

−−−==Σ

 

ID is negative, so the arrow is drawn backwards. 

ID = 383.09 lb. compression. 
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Figure 5: The fourth part of the Method of Sections storyboard shows how to calculate forces in the cut members. 

 

The sixth diagram shows students how to reduce the complexity of a solution by selecting a 

different portion to analyze. 

 
Alternate Solution Use the other portion of the cut truss. This 

solution looks simpler…instead of three applied loads and two 

reaction forces, there is only one applied load and one reaction 

force. Use ΣFy=0 to find ID, then use ΣMJ=0 to find CD. 

 
D 

J 
IJ 

80 lb. 

RFy 

ID 

CD 

 
 

Figure 6: The fifth part of the Method of Sections storyboard shows an alternate solution. 
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Example #2: Frame Analysis 

 

 Students in a summer Statics course struggled with frame analysis because they found it 

difficult to keep track of the directions of the forces. Although there are only three steps, the 

second step may need to be repeated many times. The first diagram shows all dimensions and 

external loads. In the second diagram, the frame is considered to be (and drawn as) a monolithic 

block, which helps students understand how to calculate reaction forces. The third diagram uses 

a free-body diagram of member D-E to illustrate how to solve for pin reactions. 

 
Frame Analysis 

 
The object of Frame Analysis is to calculate the shear force on 

each pin. The solution takes three steps, although you may have 

to repeat the second step several times. 

Only three equations are required: ΣM=0, ΣFx=0, and ΣFy=0. 

500 N 

45° 

D E 

C 

A B 

50 cm 30 cm 

40 cm 

40 cm 

 
Step 1 Calculate the external reactions on the frame if possible, 

using ΣM=0, ΣFx=0, and ΣFy=0. Treat the entire frame as a 

single unit. In some cases, there are too many unknowns, and it 

is not possible to calculate all of the reactions. 

In this frame, pin B is on a roller, so there is no horizontal 

reaction at B. 

ΣFx = 0 = RAx 

ΣMA = 0 = –500N×30cm + RBy×80cm 

RBy = (500N×30cm)/80cm = 187½N 

ΣFy = 0 = RAy + RBy – 500N 

RAy = –RBy + 500N = –187½N + 500N = 312½N 

500 N 

RAy 

RAx 

RBy 

 
Step 2 Analyze each frame member separately. Calculate the pin 

reactions using ΣM=0, ΣFx=0, and ΣFy=0. 

ΣFx = 0 = Dx – Ex 

Ex = Dx…two unknowns, one equation. Solve for these later, 

using a different frame member. 

ΣMD = 0 = –500N×30cm + Ey×80cm 

Ey = (500N×30cm)/80cm = 187½N 

ΣFy = 0 = Dy + Ey – 500N 

Dy = –Ey + 500N = –187½N + 500N = 312½N 
 

500 N 

Dy 

Dx Ex 

Ey 

 
 

Figure 7: The first half of the Frame Analysis storyboard handout introduces the problem statement, shows how to 

find the reaction forces, and introduces analysis of one frame member. 
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 The fourth diagram shows how to analyze pin forces on a second frame member. The text 

explains why the force vectors appear in the opposite direction to the previous figure. Finally, pin 

forces are calculated and listed in a table for comparison. The text explains the practical purpose 

for calculating loads on frame pins. 

 
Continue with Step 2 for the remaining frame members, until all 

pin reactions are found. 

Notice that the forces on pin D are drawn in the opposite 

direction to their orientation on the previous member. In static 

equilibrium, forces applied by one member of the frame onto a 

pin must be equal and opposite to the forces applied by another 

member of the frame onto that pin (otherwise the structure will 

start to move). 

ΣMC = 0 = Dy×40cm + Dx×40cm + RBy×40cm 

0 = Dy + Dx + RBy 

Dx = –Dy –RBy = –312½N – 187½N = –500N, therefore the 

arrowhead is drawn the wrong way. 

ΣFx = 0 = Cx + Dx 

Cx = –Dx = –(–500N) = 500N 

ΣFy = 0 = –Dy + Cy + RBy 

Cy = Dy – RBy = 312½N – 187½N = 125N 

Going back to the horizontal member,  

Ex = Dx = 500N 

 

Dy 

Dx 

RBy 

Cy 

Cx 

 

Pin Fx Fy R 

A 0N 312½N 312½N 

B 0N 187½N 187½N 

C 500N 125N 575N 

D 500N 312½N 590N 

E 500N 187½N 534N 

    

Step 3 Enter the pin forces into a table, and calculate the resultant 

force on each pin per yx FFR += . If you were building a 

frame, you would use these results to select pins. Instead of using 

the strongest pin at every joint, you can save money and size the 

pins according to the load they must carry. For example, the pin 

used at joint B can be one third as strong as the pin required for 

joint D. 
    

 

Figure 8: The second half of the Frame Analysis storyboard handout continues with a free-body diagram of a 

second member, and tabulation of the final results. 

 

Example #3: Moment of Inertia of a compound shape 

 

 Calculating the moment of inertia of this T-shaped 

section with respect to the x-x centroidal axis is a ten-

step process. The diagram in a textbook or in a 

student’s notes is similar to Figure 1 or Figure 9, with 

all calculated dimensions shown. A careful student 

will have a ten-step mathematical list to follow in 

solving the problem. However, the order of 

calculation is not immediately obvious from the 

diagram, so a less-careful student may struggle to 

solve the problem. 
 

#2 

y1 y2 
y 

x x 
d1 

d2 

Ref. Axis 

12" 

8" 

2" 

#1 
1" 

 
Figure 9: Diagram for calculating the moment 

of inertia of a T-shaped section with respect to 

the x-x centroidal axis, as it might appear in a 

student’s notes or in a textbook. 
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 The storyboard handout for Moment of Inertia uses six diagrams which evolve during the 

problem-solving process. Numerical results are shown in a series of tables which also build as 

the solution progresses. 

 
Calculating Moment of Inertia of a Complex Shape 

You can calculate the moment of inertia with respect to the y-y 

axis (Iy) of this complex shape by breaking it up into two 

rectangles…a horizontal one on top, and a vertical one below. 

Since the y-y centroidal axes of the complex shape and both of 

its components coincide, you can calculate the moment of inertia 

of each component with respect to the y-y axis, then add the 

results. 

 

Calculating Ix is a little more involved because the shape is not 

symmetrical about the x-x axis. However, since the complex 

shape is a combination of simple shapes, you can still calculate 

Ix, using the following ten steps. 
 

x x 

12" 

8" 

2" 

1" 

y 

y 
 

 

Step 1 Separate the complex shape into simple shapes, and label 

the component areas. This complex shape can be split into two 

rectangles, but this method also works for complex shapes made 

up of many simple shapes. 

 

#2 

#1 

 
Part a      

 (in²)      

1 12      

2 16      

Step 2 Calculate the area (a) of each component. Enter the areas 

and their sum into a table. Be sure to list the units, because in 

some problems, you may need to use conversion factors in the 

calculation. 
Sum 28      

 

Step 3 Pick a Reference Axis, and label it on the diagram. In 

theory, you can select any axis, but in practice, the math is 

usually easier if you pick an axis along the top or bottom of the 

complex shape (left or right for calculating Iy), or along the 

centroidal axis of one of the component areas. 

 

#2 

#1 

Ref. Axis 

 
 

Step 4 Draw the distance from the Reference Axis to the 

centroidal axis of each area. Label these distances y1, y2, etc. 
 

 

#2 

y1 y2 

Ref. Axis 

#1 

 
 

Figure 10: The Moment of Inertia storyboard starts by introducing the problem, and uses a series of diagrams to 

show the progression of the solution. Black lines show the current step; gray lines indicate previous steps. 

 

P
age 10.1226.7



   

 “Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

 Copyright © 2005, American Society for Engineering Education” 

 
Part a y     

 (in²) (in.)     

1 12 8.5     

2 16 4     

 

Enter these results into the table. 

Sum 28      

  

Part a y ay    

 (in²) (in.) (in.
3
)    

1 12 8.5 102    

2 16 4 64    

Step 5 Calculate the value of ay for each component area. Enter 

these values and their sum into the table. 

Sum 28  166    

Step 6 Draw the distance from the Reference Axis to the x-x 

centroidal axis of the complex shape. 

Calculate this distance as .in93.5
.in28

.in166

a

ay
y

2

3

==
Σ

Σ
=  

 

#2 

y1 y2 
y 

x x 

Ref. Axis 

#1 

 
Step 7 Draw the Transfer Distance (d) for each area. This is the 

distance from the centroidal axis of the area to the centroidal axis 

of the complex shape. 

 

#2 

y1 y2 
y 

x x 
d1 

d2 

Ref. Axis 

#1 

 
Part a y ay d   

 (in.²) (in.) (in.
3
) (in.)   

1 12 8.5 102 2.57   

2 16 4 64 1.93   

Enter the results into the table. 

Sum 28  166    

  
Part a y ay d Io  

 (in.²) (in.) (in.
3
) (in.) (in.

4
)  

1 12 8.5 102 2.57 1  

2 16 4 64 1.93 85.3  

Sum 28  166  86.3  

Step 8 Calculate I for each component area about its centroidal 

axis. For rectangles, Io = (b h
3
)/12, where b is the width of the 

base, and h is the height. For other simple shapes, Io formulas are 

listed in the inside back cover of the textbook. Enter these values 

and their sum into the table. 
       

  
Part a y ay d Io ad² 

 (in.²) (in.) (in.
3
) (in.) (in.

4
) (in.

4
) 

1 12 8.5 102 2.57 1 79.3 

2 16 4 64 1.93 85.3 59.5 

Step 9 Calculate ad² for each component area. Enter these results 

and their sum into the table. 

Sum 28  166  86.3 139 

Step 10 Use the Transfer Formula to calculate I for the complex 

shape. 

Note: if a complex shape is not symmetrical about the y-y axis, 

you can use this 10-step method to find Iy using a vertical 

Reference Axis. 

 
I = Σ(Io + ad²) = ΣIo + Σ(ad²)  

   = 86.3 in
4
 + 138.9 in

4
 = 225.2 in

4
. 

 

Figure 11: The Moment of Inertia storyboard shows how the diagram and table changes as the solution develops. 
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 Each diagram in the Moment of Inertia storyboard shows a shadow of the previous diagram 

in gray, with new additions in black, so students can visualize the problem-solving sequence. 

Since this method includes a tabular solution, the table evolves with the diagram. An additional 

diagram explains how to calculate the moment of inertia of a section which has one or more 

holes. 

 
 

Some complex shapes have holes. To solve this type of problem, 

let part #1 be the entire rectangle (with no hole), and part #2 be 

the square hole. In all calculations, the area of the hole and the 

moment of inertia of the hole are negative numbers. Thus a1, 

a1y1, Io1, and a1d1
2
 are positive numbers, and a2, a2y2, Io2, and 

a2d2
2
 are negative numbers. Follow the same ten steps as in the 

previous problem. 

 

x 
x 

y 

y 

8" 
4" 

2" 

2.5" 
2" 

Ref. axis 

 
Part a y ay d Io ad² 

 (in.²) (in.) (in.
3
) (in.) (in.

4
) (in.

4
) 

1 32 2 64 0.07 42.7 0.16 

2 -4 2.5 -10 0.57 -1.3 -1.3 

Sum 28  54  41.3 -1.1 

.in93.1
.in28

.in54

a

ay
y

2

3

==
Σ

Σ
=  

Ix = 41.33 in
4
 – 1.14 in

4
 = 40.19 in

4
. 

Without the hole, Ix = 42.83 in
4
, so the hole reduced Ix by about 

6%.        

 

Figure 12: Moment of Inertia of a compound shape with a hole. The solution includes only one figure and a 

completed table, similar to a classic textbook presentation. 

 

 

Discussion 

 

 Storyboard handouts are designed so that students can visualize the intermediate steps in a 

multistep solution. In examples #1 and #2, intermediate steps consist of distinct diagrams. In 

example #3, these steps consist of a single diagram which becomes more complex as 

construction lines, dimensions, and values are added. Changes to diagrams are emphasized best 

with color, but gray tones and black are cheaper to print. In examples #1 and #2, shading 

obliterates parts of the diagrams which are irrelevant to the solution. Atherton
5
 remarks that 

“relevant graphics are useful” in class handouts. In storyboard handouts, relevant graphics are 

essential. Anecdotal evidence suggests that students view storyboard handouts as useful tools for 

solving homework assignments and open-book exam problems. Towards the middle of one 

semester, students asked for additional storyboard handouts on new topics. 

 

 The field of Mechanics instruction is evolving, with distance learning,
6
 experiential learning,

7
 

and simulation software
8,9

 supplementing and supplanting traditional teaching approaches. 

Storyboard handouts are supplements, not substitutes, for textbooks and classroom lecture 

presentations. It is not practical to use storyboards in textbooks because of space considerations. 

However, a large number of storyboard problem-solving guides could be stored on websites 

maintained by professors, textbook authors, or textbook publishers. 
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Conclusions 

 

 Storyboard handouts can serve as a useful teaching supplement in problem-solving courses 

such as Statics, Dynamics, and Strength of Materials. They can help a student make sense of 

problem-solving methods in the textbook and lecture notes, when the student is solving 

homework problems away from campus. 

 

 Storyboard handouts need not be limited to classical mechanics courses. Within engineering, 

they can be applied to a range of multistep engineering problem-solving methods, from applying 

Kirchoff’s Law to an electrical circuit, to applying Bernoulli’s Equation in a fluid power circuit. 

Beyond engineering, they can be applied to any multistep process involving visual components, 

such as the procedure for adding error bars to an x-y graph in spreadsheet computer program. 

The greatest benefit of these handouts may arise after graduation, when the engineer attempts to 

solve a similar problem at work, several years after completing the relevant course. 

 

 In the future, students will be invited to critique these problem-solving handouts, and 

recommend improvements. The experience of editing other people’s work may help the students 

in their future careers in engineering and management. 

 

 

 

 

References 

 
1. Lawrence Wolf, Statics and Strength of Materials: A Parallel Approach to Understanding Structures. Merrill, 

1988, p. 316. 

 

2. Ferdinand Beer, Russell Johnston, & Elliot Eisenberg, Vector Mechanics for Engineers, 7
th

 ed. McGraw-Hill, 

2004, p. 488. 

 

3. R.C. Hibbeler, Statics and Mechanics of Materials, 2
nd

 ed. Pearson Prentice Hall, 2004, p. 300. 

 

4. Alfred P. Poorman, Applied Mechanics, 4
th

 ed.. McGraw-Hill, 1940, p. 174. 

 

5. J.S. Atherton, Learning and Teaching: Handouts [on-line] www.dmu.ac.uk/~jamesa/teaching/handouts.htm. 

Accessed 1 March, 2005. 

 

6. Ganesh Thiagarajan & Carolyn Jacobs, “Teaching Undergraduate Mechanics via Distance Learning: A New 

Experience”. Journal of Engineering Education, Jan. 2001, p. 151-156. 

 

7. Anna Dollár & Paul Steif, “Reinventing the Teaching of Statics”. Proceedings of the 2004 American Society for 

Engineering Education Annual Conference & Exposition, Session 1368. 

 

8. Shahin Vassigh, “Teaching Statics and Strength of Materials Using Digital Technology”. Presented at the 

ARCC Spring Research Conference at Virginia Polytechnic Institute and State University, April 2001, p. 92-96. 

 

9. West Point Bridge Designer 2005, available from The U.S. Military Academy at West Point. 

 

 

 

P
age 10.1226.10



   

 “Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

 Copyright © 2005, American Society for Engineering Education” 

BARRY DUPEN 

Dr. Dupen earned his B.S. in Mechanical Engineering, and his M.S. and Ph.D. in Metallurgy, all at the University of 

Connecticut. After working for nine years in the automotive industry as a metallurgist, materials engineer, and 

materials laboratory manager, he joined Indiana University Purdue University Fort Wayne (IPFW) as an Assistant 

Professor of Mechanical Engineering Technology. His primary interests lie in materials engineering, mechanics, and 

engineering technology education. 

P
age 10.1226.11


