
 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

Session 1320 
 

Teaching Real-time Sonar With The C6711 DSK and MATLAB 
 

George W.P. York, Cameron H.G. Wright / Michael G. Morrow, Thad B. Welch 
U.S. Air Force Academy, CO      /   U.S. Naval Academy, MD  

 
 
 

Abstract 
 
A sonar system serves as an excellent platform for teaching DSP topics such as beamforming, 
sampling theory, demodulation, filtering, image processing, and Doppler velocity estimation.  
While MATLAB simulations are useful for teaching the basic theory, many of these concepts are 
more easily taught to undergraduates if appropriate real-time demonstrations and laboratory 
experiences are available.  The challenge of transitioning from MATLAB to real-time hardware is 
often the expense and a steep learning curve for the students. This paper describes a real-time DSP 
sonar educational platform based around the programming ease of MATLAB and the low-cost 
Texas Instruments C6711 digital signal processing starter kit. Classroom uses of this platform are 
discussed; the software is available at http://www.usna.edu/EE/links/ee_links.htm. 
 
1. Introduction 
 
The components of a DSP-based sonar system (phased-array transmitter/receiver; beamformer; 
time-gain compensation, multi-rate sampling, quadrature demodulation, filtering, image 
processing, Doppler velocity estimate, etc) are at the heart of numerous military and commercial 
systems.  In addition to sonar systems, these components can be found in radar, medical 
ultrasound, satellite communications, cellular/PCS, and software radios1-7. Historically, the 
theoretical aspects of sonar systems have been covered in a graduate level DSP course. However, 
given the diverse topical interest in concepts such as beamforming, we believe that an 
understanding of the theories and implementation techniques necessary to construct the various 
subsystems of sonar are becoming an essential part of an undergraduate EE education. 
 
2. Teaching Sonar:   Software or Hardware? 
 
How do we teach such concepts to undergraduates? Computer-based demonstrations can be highly 
effective with students for many DSP topics8.  We can take advantage of the fact that the software 
package MATLAB9 and its related toolboxes have become a mainstay in most EE programs. 
Given our students’ familiarity with MATLAB, computer exercises that implement sonar theory 
seem to be a natural approach. But where does the sensor array data come from to demonstrate 
beamforming? Shall our students generate MATLAB simulated array data?  Even if this data is 
realistic in nature, the time spent generating this data may detract from our primary pedagogical 

P
age 6.955.1



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

objective. Should the professor generate the data or perhaps provide real data? Another 
consideration is that our students are not impressed with a “canned demo.” Ideally then, we would 
have a real-time system to use as a teaching tool. 
 
In the past, proceeding beyond a MATLAB-only simulation to a real-time hardware 
implementation has been impeded by a very abrupt transition, in terms of both cost and the 
learning curve of unfamiliar systems and software. By developing a software and hardware bridge 
between MATLAB and real-time DSP hardware, we have made it possible to smoothly and 
incrementally transition from simulation to a full hardware implementation, all while retaining the 
impressive capabilities of the MATLAB display engine. Using this approach, students are able to 
develop and enhance their own sonar system, experimenting with the various processing stages 
like beamforming. 
 
3. Hardware Requirements 
 
Our students are already very familiar with MATLAB, but we also want them to learn more about 
hardware-based digital signal processing (DSP) and this seems to be a perfect opportunity. For the 
primary DSP hardware, our main criteria were low cost, sufficient processing power, and a 
versatile software development environment. We chose to construct our educational platform 
around the Texas Instruments C6711 DSK, which makes use of the VLIW/SIMD architecture of 
the TMS320C6711 microprocessor. We have had good results with teaching other DSP concepts 
using the C6x DSK, and felt that sonar would also benefit from this approach10. 
 
The C6711 DSK has the following advantages: 
 

• An excellent software development environment (Code Composer Studio) 
• Performs roughly 1.2 billion instructions per second and 600 MFLOPS 
• Plenty of memory (4 MB) 
• Relatively inexpensive ($195 academic price) 
• Offers both floating point (2 single precision per cycle) and SIMD fixed point (4 16-bit per cycle) 

 
The C6711 DSK's principle disadvantage is that it only has a telephone quality (maximum 8 kHz), 
single channel codec.  To minimize the cost we decided to design for audio frequencies. Most of 
the available audio frequency ADCs are either one, two, or four channel devices. A four-channel 
system was selected since a two-channel system did not provide beams that were well defined, and 
an eight-channel system was unnecessary for an educational platform. For ease of implementation, 
we desired simultaneous sampling of all four input channels.   
 
For a cost of $99, TI offers a 12-bit, four-channel, simultaneous sampling (fs = 150 kHz/channel) 
ADC daughtercard compatible with the C6711 DSK known as the THS1206 Evaluation Module 
(EVM).    This is over-designed for our audio range, but ideal for 50 kHz ultrasound transducers 
planned for a future upgrade.  A small battery-powered preamplifier was constructed to provide 

P
age 6.955.2



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

the correct signal level from the microphones to the ADC, and could easily be assembled by 
students. 
 
The ADC is triggered directly by a DSK Timer so that it places no burden on the DSK CPU 
resources. At the end of each conversion set, the CPU is interrupted and it reads the four samples 
from the converter. If additional CPU resources are required for processing, the DSK code could 
be modified to offload this task to the CPU’s direct memory access (DMA) controller. In this 
particular implementation that was unnecessary. 
 
The 4 input channels were designed for beamforming for a 4-element array receiver.  For the 
transmit beam, we are currently using the C6711 DSK single channel codec driving an omni-
directional speaker.  While transmitting and receiving both with a phased array would offer a 
higher quality (and more complicated) system, the omni-directional transmit followed by 
beamforming with a phased array is sufficient for our pedagogical purpose and reduces the cost 
and computational load. 
 
4. Educational Requirements 
 
While are students are not proficient at DSP programming, TI’s Code Composer Studio or C6711 
C or assembly coding, they do know how to use MATLAB. What we needed was a tool that 
allowed for algorithm development in MATLAB. Once the student was comfortable with what 
they had learned, it would facilitate the migration of the algorithm---in part or whole---onto the 
DSP hardware. The desired progression would be as follows. 
 

1. Study the traditional DSP theory, 
2. Use MATLAB with simulated data, 
3. Use MATLAB with real-world data, 
4. Implement the process (in part or whole) in real-time on the TI DSK hardware 
5. Repeat to improve the design or to develop new features. 

 
The third step of this process presents a practical problem. While MATLAB now has a very 
capable data acquisition (DAQ) toolbox that allows for direct data acquisition and data insertion 
into the MATLAB workspace which works with a number of different DAQ hardware boards, it 
does not support programmable DSP systems such as a DSK. Even if the DAQ Toolbox could 
somehow be used with a DSK, you could not avoid the fact that this method would be too slow to 
allow the transition to step four: a real-time implementation. Since we wish to minimize multiple 
software environments in the interest of time (for students and faculty), a single development 
environment solution is highly desirable. For this reason, we developed a direct MATLAB to DSK 
interface. 
 
5. MATLAB to DSK Interface Software 
 

P
age 6.955.3



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

The interface between MATLAB and the DSK is encapsulated into a generalized interface 
command set that supports multiple input and output channels, variable sample rates, various 
triggering configurations, and variable frame sizes.  The specific commands available are 
described in the Appendix. The interface was developed using MATLAB 's “mex” facility and 
Microsoft Visual C++, and is centered on an object that encapsulates the hardware interface 
between the host PC and the DSK. The TI application-programming interface (API) furnished 
with the DSK allows operation under Windows 9x/NT. Our interface software requires that the 
DSK tools be installed on the computer, and that the two files C6X_DAQ.DLL and 
DAQ_SIMUL.OUT be placed in a MATLAB-accessible directory. At the most basic level, this 
interface allows a novice user to operate the DSK as a data acquisition board with a simple 
command sequence, with no requirement to know how to use Code Composer or how to program 
in C.  
 
Initially, all signal processing can be done in the MATLAB environment using “live” data 
acquired from the DSK. As the students progress, they can move processing functions from 
MATLAB down to the DSK by altering the DSK code (that was used to create the 
DAQ_SIMUL.OUT file), and still continue to use MATLAB as a graphical display engine.  
 
The interface’s ease of use is best illustrated by the sample MATLAB m-file listed below. The m-
file is the complete sequence of commands necessary to use MATLAB and the DSK to form a 
single-channel real-time oscilloscope. 
 

% codec_scope.m  
% 
% initialize the DSK parameters 
c6x_daq(’Init’, ’daq_codec.out’); 
c6x_daq(’FrameSize’, 500); 
Fs = c6x_daq(’SampleRate’, 8000) 
numChannels = c6x_daq(’NumChannels’, 1) 
c6x_daq(’TriggerMode’, ’Auto’); 
c6x_daq(’TriggerSlope’, ’+’); 
c6x_daq(’TriggerValue’, 0.2); 
c6x_daq(’TriggerChannel’, 1); 
c6x_daq(’LoopbackOn’); 
c6x_daq(’QueueSize’, 100); 
c6x_daq(’FlushQueues’); 
c6x_daq(’GetSettings’); 
 
% do double-buffered plotting for speed 
data = c6x_daq(’GetFrame’); 
P1=plot(data(:,1),’g’); 
axis([0 FrameSize -1.1 1.1]) 
set(gcf,’doublebuffer’,’on’) 
 
while 1 > 0 

data = c6x_daq(’GetFrame’); 
set(P1,’ydata’,data) 
drawnow 

end 
 

P
age 6.955.4



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

This interface allows complete control over the acquisition process with no knowledge of the 
actual DSK software or hardware operation. Sample m-files, and the source code to support the 
DSK’s single channel CODEC, are available from the authors. 

 
6. Phased-Array Sonar Stages / Algorithms 
 
Given this MATLAB-DSK platform, we teach these primary sonar processing stages/algorithms.  
 
6.1 Omni-Directional Transmitter  
 
With a single speaker available, we transmit an omni-directional pulse.  We start with a 2-cycle 
sinusoid (corresponding to a spatial resolution ~4 ft).  Having a fully programmable sonar system 
allows the students to easily explore concepts such as the trade-off of pulse length (detectability) 
versus spatial resolution, and more elaborate chirps (e.g., broadband chirp sweeping a frequency 
range) than a simple narrowband sinusoid. 
 
6.2 Phased-Array Receiver:  TGC and Beamforming  
 
With a four-channel system, a uniformly spaced linear sensor array consisting of four omni-
directional microphones is depicted in Figure 1.  After sampling a frame of 2000 samples at 100K 
samples/sec/channel, the data from each channel is first equalized with respect to each channel 
assuming the root-mean-square error should be the same.  Since the sound wave attenuates over 
distance, the time gain compensation (TGC) stage amplifies the channel data with respect to 
depth.  The students can do a quick experiment to determine if the attenuation is linear or 
logarithmic. 
 

�������
�

��������

��	
������
�	����

� � � �

�����θ

 
Figure 1.   A linear sensor array consisting of four omni-directional 

microphones, labeled 1-4.  2
λ=d  

We then start our students with the most basic beam-forming algorithm: delay-and-sum11.  
Assuming the sensor array is in the far field region of the signal source, then the arriving 
wavefronts may be assumed to be linear.  Then, for each sample integer delay n, the respective 
beam angle θ  (angle normal to the sensor array axis in Figure 1 can be computed from  

sf

f
n

d

a
2sin ==θ   

P
age 6.955.5



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

where f is the frequency of the signal and fs is the sample frequency11.  We selected f = 1 kHz and 
fs = 100kHz, which leads to an ability to form 101 different beams for °<<°− 9090 θ . 
 

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

 
Figure 2.  An example of the real-time DSP beamformer display for a signal 
located at beam 30, or where °≈ 8.24θ  left of broadside. Beam 92 shows a 
reflection. 

 
We first demonstrate the real-time DSP beamformer by receiving a continuous 1 kHz wave, and 
plotting in MATLAB the received energy for each beam angle (summing over many samples in 
time) as shown in Figure 2.  The y-axis is non-normalized beam energy. On the x-axis, 1 <= x <= 
50 are the beams left of broadside and 52 <= x <= 101 are the beams right of broadside, and beam 
51 is broadside (or n = 0).  The signal in Figure 2 is located at beam 30 (21 delays left of center), 
which equates to ( )50

21arcsin=θ  or °= 8.24θ  left of broadside. Beam 92 shows a reflection from 
a wall. The display can be modified to show angle directly, but this format is instructive for the 
students.  Our students discover the usefulness of 101 beams using a four-element array, along 
with other beamforming considerations such as the effect of the number of sensors, the sensor 
element spacing, and the sensor element weighting on the resulting beam characteristics.   
 
We then demonstrate the basics of real-time sonar by transmitting the 2-cycle pulse, receiving 
2000 samples (corresponding to a spatial depth of about 20 ft) per channel, and plotting an image 
of the 101 beams (x-axis) versus depth (y-axis) before demodulation as shown in Figure 3. 
  

P
age 6.955.6



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

 
Figure 3.  Echo image of reflected 2-cycle pulse before  Figure 4.   Echo Image of 2-cycle pulse 

demodulation (x-axis is 101 beams; y-axis is distance) after demodulation and 40:1 decimation.   

  
 

6.3 Demodulation  
 
Demodulation is then used to remove the 1 kHz carrier frequency to recover the echo signal.  In 
quadrature demodulation the received signal is multiplied by ( ) )2sin(2cos ftjft ππ +  resulting in a 
complex signal I(t) + jQ(t), retaining both magnitude and phase of the signal7. A low pass filter is 
then performed to remove the duplicate signal at 2f, leaving the echo signal as the DC component. 
 At this stage, the student is able to practice basic DSP concepts such as designing a digital FIR 
filter for the correct cut-off, seeing trade-offs of simple uniform rectangular filters, Bartlett, 
Hamming, Hanning, and Blackman filters1 and practical limitations such as window size and 
computation time.  This stage can also be used to teach multi-rate filtering and decimation, as our 
signal is highly over sampled (i.e., 1 kHz versus 100 kHz). 
 
The echo image can then be computed by taking the magnitude of the signal, )()()( 22 tQtItB += , 

as shown in Figure 4, after decimating 40 to 1.  Note the poor resolution using a 2 cycles of 1 kHz. 
We then demonstrate to the students the improved resolution using a higher frequency pulse. 
When more complex signals, such as chirps, are transmitted, we demonstrate recovering the signal 
using a matched filter (correlation) with a known chirp signal. 
 
6.4 Other Filters 
 
A sonic image is often noisy, so we use this opportunity to teach some speckle reduction 
techniques, such as temporal compounding (persistence)7.  Temporal compounding enhances 
stationary signals while reducing the time-varying noise by averaging the current unfiltered image, 
Bin, with the previous output image, Bout: 
 

P
age 6.955.7



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

)()1()1()( kBakBakB inoutout −+−⋅=  

 
where k is the frame number and a is the weight (or persistence).   Having a real-time DSK sonar 
system (versus MATLAB simulation only) is very beneficial for the student to see the impact of a 
persistence filter at the actual frame rate.  Persistence strengthens stationary signals, but too much 
persistence caused blurring of fast moving objects.   
 
6.5 Polar Conversion 
 
Another practical consideration is illustrating the trouble involved in implementing the simple 
geometric transformation of the data (stored in memory in rectangular coordinates, Figure 4) into 
the proper polar coordinates for displaying the echo image (Figure 6).  Each Cartesian output pixel 
value P(x,y) must be interpolated from its respective surrounding polar vector data B( r,θ )  by (1) 
calculating the address in memory (or array indexes) of the input data B( r,θ )  (i.e., a polar 

conversion, requiring θ = arctan(y/x) and 22 yxr += for each output pixel P(x,y); (2) 

calculating the appropriate interpolation coefficient weights by the spatial fractional offset between 
each P(x,y) and its neighboring polar B( r,θ ) ; and (3) computing the interpolation12: 
 

[ ] [ ])1,1()1,()1(),1(),()1()1(),( ++++−+++−−= rBrBrBrByxP θαθαβθαθαβ  
 
where α is the fractional offset in the angle θ  direction and β  is the fractional offset in the range 
r  direction, illustrated in Figure 5. 

 
   Figure 5.  Interpolation for Polar Conversion                   Figure 6.  Echo Image of Figure 4 after polar           
                                                                                                                    transformation. 

This polar conversion is a useful teaching aid for illustrating interpolation and aliasing problems, 
as well as real-time computing considerations.  To aid real-time computation, we use a simple bi-

 ),( yxP

),( rB θ

)1,( +rB θ

),1( rB +θ

)1,1( ++ rB θ

x

y

α
β

P
age 6.955.8



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

linear interpolation and precompute the computationally intense operations in steps 1 and 2 in a 
lookup table.  
 
6.6 Doppler Imaging 
 
If there is time in the course we also like to introduce methods for Doppler imaging and computing 
the velocity of moving objects.  Since our system is fully programmable, we can demonstrate both 
continuous wave (using a remote speaker target) or pulsed Doppler techniques (using omni-
directional transmitter). Spectral Doppler (or Spectrogram) can be demonstrated by continuously 
sampling the same range bin for several ensembles, the calculating and plotting the FFT of the 
ensembles versus time7.  The frequency is proportional to the velocity toward or away from the 
sensor array.   
 
To create a spatial velocity image (corresponding to the echo image of Figure 6), the FFT is too 
computationally intense to compute for each pixel in real-time.  Thus, an autocorrelation technique 
can be presented, by estimating the velocity at each range bin by computing the change in phase, 
∆φ, at each range bin t: 
 

( ) 












−

−
=∆

∑
∑

−

= ++

−

= ++

))()()()((

))()()()((
arctan

2

0 11

2

0 11

E

e eeee

E

e eeee

tQtQtItI

tQtItItQ
tφ  

 
where the denominator and numerator are respectively the real and imaginary part of the first lag 
of autocorrelation, and E is the ensemble size (or number of frames), typically varying from 4 to 
167. 
 
7. Classroom Uses of the System 
 
After learning the sonar theory and implementing the appropriate algorithms in MATLAB, 
students can benefit greatly from seeing their work in action. Echo energies can be calculated to 
identify the location of a given reflector either off-line or in real-time, but the real-time operation 
seems to have a far greater (and more enduring) learning effect on students. They have 
considerable fun moving the reflectors around while the sonar display shows the movement.  
 
The real-time implementation on the DSK, is noticeably faster than the MATLAB implementation 
as shown for the delay-and-sum algorithm in Table 1.  If there is time in the course, we also 
introduce students to real-time programming issues, such as floating point versus fixed point, C 
versus assembly, SIMD operations, software pipelining, cache versus DMA data transfers, and 
double buffering12. 
 
 

Table 1.  Performance excecuting delay-and-sum algorithm.  Host PC: 350 MHz 

P
age 6.955.9



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

Pentium II, with 64 MB Ram, windows 98;  6711 DSK: 150 MHz 

 
Calculation Method 

Screen 
Updates 

(frames/sec) 
Brute force MATLAB 0.8 

Vectorized MATLAB 3.3 
DSK Hardware 15.0 

 
Now that the system has been built, it will be used in a number of courses during the next year at 
both the Naval and Air Force Academies.  Once the students become familiar this sonar 
development system in a course such as Advanced DSP, it will make an excellent springboard for 
students to develop more advanced projects for their Senior Design projects (with hopefully a 
greater success rate).  We believe this approach to teaching DSP applications will develop better 
student skills in MATLAB, C, C++, algorithm development, system interfacing, and integration. 
Finally, this system provides the ability to expose our EE students to DSP system development not 
only in traditional DSP courses, but also in communications and computer engineering courses. 
Multidisciplinary exposure to the power of hardware-based DSP will help to develop needed skills 
in the next generation of DSP engineers. 
 
8. Conclusions 
 
We have developed an educational framework that will allow our students to smoothly transition 
from multi-channel high-speed data acquisition to a real-time DSP system implementation such as 
beamforming and sonar. This process allows real-world data to be gathered and used in the 
algorithm development and design process while maintaining a link to MATLAB. 
 
The authors freely distribute the software portion of this system for educational, non-profit use, 
and invite user comments and suggestions for improvement. This package also includes 
DAQ_CODEC.OUT, a file to support data acquisition using the DSK’s native codec. The software 
may be downloaded from http://www.usna.edu/EE/links/ee_links.htm and interested parties are 
invited to contact the authors via e-mail. 
 
 
 
 
Bibliography 
1. Oppenheim, A.V., Applications of Digital Signal Processing. Prentice Hall, 1978. 
2. Skolnik, M.L., Introduction to Radar Systems. McGraw-Hill, 1980. 
3. Burdic, W.S., Underwater Acoustic System Analysis. Prentice Hall, 1984. 
4. Johnson, D.H. & Dudgeon D.E., Array Signal Processing: Concepts and Techniques. Prentice Hall, 1993. 
5. Lee W.C.Y., Mobile CellularTelecommunications: Analog and Digital Systems. McGraw-Hill, 1995. 
6. Manolakis, D.G., Ingle V.K., & Kogon S.M., Statistical and Adaptive Signal Processing: Spectral Estimation, 

Signal Modeling, Adaptive Filtering, and Array Processing.  McGraw-Hill, 1995.  

P
age 6.955.10



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

7. York G. & Kim Y., “Ultrasound Processing and Computing:  Review and Future Directions,” Chapter in Annual 
Review of Biomedical Engineering, Vol. 1, 1999, pp 559-588. 

8. Yoder, M.A., McClellan, J.H., & Schafer, R.W., “Experiences in teaching DSP first in the ECE curriculum,” in 
Proceedings of the 1997 ASEE Annual Conference, June 1997.  Paper 1220-06. 

9. The MathWorks, Inc., Natick, MA, MATLAB: The Language of Technical Computing, 1999. 
10. Morrow, M.G., Welch, T.B., & Wright, C.H.G., “An inexpensive software tool for teaching real-time DSP,” in 

Proceedings of the 1st IEEE DSP in Education Workshop, (Hunt TX), IEEE Signal Processing Society, Oct 2000.  
11. Morrow, M.G., Welch, T.B., Wright, C.H.G., & York G.W.P., “Demonstration Platform for Real-Time 

Beamforming,” 26th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake 
City, UT, May 2001. 

12. York G., Basoglu C., and Kim Y., “Real-Time Ultrasound Scan Conversion on Programmable Mediaprocessors”, 
SPIE Medical Imaging, Vol. 3335, 1998, pp. 252-262. 

 
 
 
 
GEORGE W.P. YORK, PhD, is currently assigned to Ft Meade, MD, and will be returning to teach at U.S. Air Force 
Academy in 2002.  From 1994–1997 he was an Assistant Professor in the Department of Electrical Engineering at 
USAFA. His research interests include signal and image processing, embedded computer design, and ultrasound 
imaging.  He is a member of ASEE and IEEE. Email: george.york@ieee.org 
 
CAMERON H. G. WRIGHT, PhD, PE, is an Associate Professor in the Department of Electrical Engineering at the 
U.S. Air Force Academy. His research interests include signal and image processing, biomedical instrumentation, 
communications systems, and laser/electro-optics applications. He is a member of ASEE, IEEE, SPIE, NSPE, Tau 
Beta Pi, and Eta Kappa Nu. Email: c.h.g.wright@ieee.org 
 
MICHAEL G. MORROW, PE, is a Faculty Associate in the Department of Electrical and Computer Engineering at 
the University of Wisconsin.  Previously he was a Master Instructor in the Department of Electrical Engineering at the 
U.S. Naval Academy. His research interests include real-time digital systems, embedded systems, and software 
engineering. He is a member of ASEE and IEEE. Email: morrow@ieee.org 
 
THAD B. WELCH, PhD, PE, is an Assistant Professor in the Department of Electrical Engineering at the U.S. Naval 
Academy. From 1994–1997 he was an Assistant Professor in the Department of Electrical Engineering at the U.S. Air 
Force Academy. His research interests include multicarrier communication system design and analysis, RF channel 
measurements, and real-time signal processing. He is a member of ASEE and Eta Kappa Nu and a senior member of 
the IEEE. Email: t.b.welch@ieee.org

P
age 6.955.11



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

Appendix:  API Function for C6x DSK to MATLAB Interface 
 
Command argument types are denoted as follows: 

< >  optional argument 
#  numeric argument 
‘arg’  text argument 
X  Matlab variable 

 

 

Command  Syntax Description

Init C6X_DAQ(‘Init’, ‘Filename’, <#>) 

Initializes the C6X DSK and the Matlab interface. The filename of the desired 
COFF file must be supplied. The optional # argument is used to specify which 
parallel port to use (1 or 2). The default is 1.

Version C6X_DAQ(‘Version’) Displays the version numbers of the C6X_DAQ.dll and DAQ.out files in use.
GetSettings C6X_DAQ(‘GetSettings’) Displays the current settings in use.

LoopbackOn C6X_DAQ(‘LoopbackOn’) Echoes DSK input data directly to the DSK output. Useful for monitoring.
LoopbackOff C6X_DAQ(‘LoopbackOff’) Turns off loopback.

QueueSize X = C6X_DAQ(‘QueueSize’, #) 
Sets the queue size to the value of the second argument, or the maximum 
queue size, whichever is less. Returns the actual queue size.

FlushQueues C6X_DAQ(‘FlushQueues’) Flushes the transmit and receive queues on the DSK.

FrameSize X = C6X_DAQ(‘FrameSize’, #) 
Sets the frame size to the value of the second argument, or the maximum 
frame size, whichever is less. Returns the actual frame size.

NumChannels X = C6X_DAQ(‘NumChannels’ #) 

Sets the number of active channels to the value of the second argument, or 
the maximum supported channels, whichever is less. Returns the actual 
number of active channels.

SampleRate X = C6X_DAQ(‘SampleRate’, #) 

Sets the sample rate to the value of the second argument, or the 
maximum/minimum sample rate, whichever is less. Return the actual sample 
rate.

TriggerMode C6X_DAQ(‘TriggerMode’, ‘arg’) 
Sets the trigger mode to one of three mode values – ‘Auto’, ‘Immediate’, or 
‘Normal’.

TriggerSlope C6X_DAQ(‘TriggerSlope’, ‘arg’) Sets the trigger slope to positive (‘+’) or negative (‘-‘).

TriggerValue C6X_DAQ(‘TriggerValue’, #) 
Sets the trigger value to the passed value. This should be a number such that 
–1.0 < x < +1.0.

TriggerChannel C6X_DAQ(‘TriggerChannel’, #) Sets the trigger channel to the passed value.

GetFrame X = C6X_DAQ(‘GetFrame’) 
Gets a frame of data from the DSK, and returns it in the matrix X. The data is 
organized on a column per channel basis.

SendFrame C6X_DAQ(‘SendFrame’, X) 
Sends the frame of data in X to the DSK. X must be the correct size for the 
current frame size and number of channels.

SwapFrame C6X_DAQ(‘SwapFrame’, X) 

Sends the frame of data in X to the DSK, then retrieves a frame of data from 
the DSK. X must be the correct size for the current frame size and number of 
channels.

UserRead C6X_DAQ(‘UserRead’, #1, #2, X) 

Performs a user-defined read of DSK data by passing first the command (#1 ) 
to the DSK, then reading #2 elements of 32 bit data from a buffer on the DSK 
into the MATLAB variable X.

UserWrite C6X_DAQ(‘UserWrite’, #1, #2, X) 

Performs a user-defined write to the DSK by passing first the command (#1 ) 
to the DSK, then writing #2 elements of 32 bit data from MATLAB variable X 
to a buffer on the DSK.

Close C6X_DAQ(‘Close’) Closes the DLL connection with the DSK.

P
age 6.955.12


