
Teaching Real-World DSP Using MATLAB and the TMS320C31 DSK

Cameron H. G. Wright
Department of Electrical Engineering

U.S. Air Force Academy, CO

Thad B. Welch, Michael G. Morrow
Department of Electrical Engineering

U.S. Naval Academy, MD

Walter J. Gomes III
 Naval Undersea Warfare Center

 Newport, RI

ABSTRACT

A graphically-oriented MATLAB program written by the authors facilitates teaching real-world digital signal
processing concepts such as quantization of digital filter coefficients that occur in fixed-point processors, for
example the widely used TMS320C5x. While many universities have or plan to buy the inexpensive floating-point
TMS320C31 DSKs for pedagogical reasons, this MATLAB program simulates certain fixed-point effects on these
floating-point devices and eliminates the need to purchase expensive specialized software programs or extra
hardware. The program described in this paper provides an interactive graphical user interface that communicates
directly with the DSK, and demonstrates in real-time how both coefficient quantization and filter implementation
affect filter performance, without the need for tedious programming of the TMS320C31.

1. INTRODUCTION

Modern software tools such as MATLAB greatly facilitate the professor's ability to demonstrate
the concepts of digital signal processing (DSP) in class, and to assign realistic projects to
reinforce these concepts.1-3 An increasing number of DSP textbooks are becoming available
which take advantage of this ability,4-8 and a growing trend is for DSP concepts to be introduced
earlier in the curriculum.9 These concepts can be further reinforced, and greater interest
generated by the students, if they can be easily implemented in real-time on modern DSP
hardware.10 Affordable hardware is now available to schools: Texas Instruments, for example,
markets DSP Starter Kits (DSKs) for $99.11 While fixed-point processors are more prevalent in
industry12 (albeit floating point is gaining in use), floating-point processors are becoming more
popular for schools due to pedagogical reasons. We will examine how MATLAB , already
accepted as a powerful learning tool for DSP, can be closely integrated with a DSK for teaching
purposes while avoiding the tedium of manually programming the DSP processor.

1.1 Teaching with MATLAB

MATLAB is an excellent learning tool for DSP education, enabling an easier transition for the
student from theory to practice. This greatly facilitates a student’s ability to apply signal
processing concepts to real-world DSP hardware such as the widely-used Texas Instruments
TMS320C series of fixed-point and floating-point DSP microprocessors. In particular, the
sptool program supplied with the latest release of the student edition of MATLAB (version 5) and
also available in the latest Signal Processing Toolbox (version 4.x, written for MATLAB 5.x
Professional) provides an excellent interactive graphical user interface (GUI) for designing both

Session 1320

P
age 4.488.1

FIR and IIR digital filters.13 The sptool program also allows interactive viewing and analysis of
signals and their spectra, but this paper concentrates on the filter design capabilities.

A discussion of how to effectively use sptool in DSP education can be found in a previous paper
by Wright and Welch.14 Various filter specifications can be easily selected by the student, with
an immediate customizable display of the resulting magnitude response. For a more complete
analysis of the filter design, the student can click the “View” button from the filter column of the
main sptool window, executing the Filter Viewer tool, which displays magnitude, phase, impulse
response, step response, poles and zeros on the z-plane, group delay, etc., all at the click of a
button. The student can switch back to the Filter Designer tool with a click of the mouse to
modify the design parameters and interactively see the results. By clicking the “Apply” button
from the filter column of the main sptool window, the student can also process any stored signal
with the desired filter and view the resulting output signal and its associated spectrum. The
sptool program encourages the student to pursue “what if?” explorations to satisfy their
intellectual curiosity and gain a more complete understanding of the underlying DSP concepts.

Note that sptool is simply an easy to use GUI that executes m-file programs for filter design that
existed in previous versions of both the Signal Processing Toolbox and the Student Edition of
MATLAB . The only really new aspect is the interactive GUI. Students tend to use the sptool GUI
much more than they ever used the collection of individual m-files from previous versions.14

1.2 Teaching with DSKs

Another powerful tool to energize and excite students is the ability to implement a particular
signal processing technique in real-time on a DSP microprocessor such as one of the Texas
Instruments (TI) TMS320C series. When a student speaks into a microphone and hears their
“personally designed” digital filter algorithm working in real-time, they are often “hooked” on
DSP from then on. The recent availability of affordable DSP Starter Kits (DSKs) has made this
feasible for most schools. The C31 DSK described in this paper costs only $99 and contains on a
single 55.3 ´ inch circuit board the following items.

§ TMS320C31 DSP microprocessor (capable of up to 50 MFLOPS) with 50 MHz clock
oscillator. The C31 contains 2 K words (a word is 32 bits) of on-chip RAM, and can also
be used with external memory on an add-on card.

§ TLC32040 analog interface chip (AIC), which combines a selectable cutoff frequency
antialiasing filter (which can also be bypassed), a selectable sampling frequency (up to 20
kHz but can be used at higher frequencies) 14-bit analog-to-digital converter (ADC), a
digital-to-analog converter (DAC), a reconstruction filter, and a small output power
amplifier which can drive loads ³ 300 W. The analog input and output are intended for
audio line-level (± 3 V peak) connections.

§ Regulated power supply which accepts either 7–12 Vdc or 6–9 Vac input.
§ Host logic for the PC parallel port communication (IEEE 1284).
§ Various connectors: RCA jacks for the analog in and out, DB25 parallel port, a 2.1 mm

power jack, and four 32-pin headers which can connect all C31 signals to custom add-on
cards.

The C31 DSK comes with an assembler, debugger, and assorted documentation. An optimizing
C compiler and a wide variety of other development tools are available at extra cost.

P
age 4.488.2

The C31 DSK is inexpensive, easy to set up, and can greatly enhance a DSP class. There are
obstacles to using DSKs, however. The learning curve for programming modern DSP
microprocessors is a significant hurdle for most students. They must contend with specialized
topics such as parallel instruction execution, block-repeat, bit-reversed addressing, and the often
unfamiliar Harvard architecture—and must usually program at the assembly language level. This
scares away many students. While fixed-point processors are more prevalent in industry due to
their cost and speed advantages, they add further problems: coefficient quantization, scaling, and
other fixed-point ALU and register effects. From a pedagogical point of view, fixed-point
processors (such as the widely-used TI TMS320C5x series) tend to be harder to teach in
introductory courses compared to floating-point processors such as the TMS320C3x and
TMS320C4x. For this reason, many schools are opting to buy floating-point DSP hardware
(such as the C31 DSK from TI described above) for teaching purposes. While the fixed-point
effects are important concepts for students to grasp, many schools would appreciate a way to
teach and demonstrate these topics without having to buy additional hardware. The program
described below integrates MATLAB closely with the C31 DSK, eliminates the need to create
individual assembly language or C programs to manipulate the hardware, and allows the primary
fixed-point effects to be simulated in real-time on the floating-point DSK. If the student desires
to load and run a digital filter design on the DSK without the added effects of fixed-point
processors, it is also easily accomplished.

2. COMBINING MATLAB WITH THE C31 DSK

The authors identified a pressing need for a GUI-based program which would run under
MATLAB , be able to directly utilize the benefits of sptool mentioned above, and also
communicate seamlessly with the C31 DSK. While the capabilities provided by sptool are
impressive and greatly facilitate students’ comprehension of various DSP topics, there is no
straightforward way to use it directly with a DSK. Also lacking in sptool is the ability to
simulate for teaching purposes certain fixed-point effects, suitable for presentation to our senior-
level EE majors, such as filter coefficient quantization. MATLAB performs double precision
calculations in sptool, thus a filter design could perform far differently than expected if
implemented on a fixed-point processor.14 While floating-point DSP hardware (such as Texas
Instruments TMS320C3x series) is much easier to present from a pedagogical standpoint, the fact
remains that fixed-point DSP hardware (such as the Texas Instruments TMS320C5x series) is
still more prevalent due to it’s cost and speed advantages. It therefore behooves the professor to
expose the students to the important differences between floating-point and fixed-point hardware.
Specialized software programs exist which address this design issue, but they are typically
expensive, require the student to learn another interface, and/or are not written for educational
purposes.

2.1 A Fixed-Point Simulation Using MATLAB

In response to this need, the authors wrote a MATLAB program that takes up where sptool leaves
off, adjusting the filter coefficients to simulate fixed-point hardware, allowing interactive
analysis of the design effects, and seamlessly downloading the filter code to a C31 DSK when the
user is ready. This allows the floating-point DSK to simulate a fixed-point device as desired

P
age 4.488.3

(except for register and ALU effects, which are less of an issue at the introductory level), and
eliminating the need for buying fixed-point hardware just for this purpose. The program allows
the student to interactively compare the theoretical filter performance with the real-world
performance that would be encountered using any fixed-point DSP microprocessor, yet still make
full use of sptool. The actual performance of the student’s filter design can be observed in real-
time with the click of a mouse button, which loads and runs the filter on the C31 DSK. The
program eliminates the need for the student to learn another software interface, eliminates the
need for the students to manually program the DSK, and is perfectly suited to educational use.
While it runs outside of sptool, the program easily exchanges information in both directions by
using the same data structure format defined by sptool.

2.2 A Typical Example

In order to examine the effects of digital filter coefficient quantization, the student merely
designs a filter to the desired specifications using sptool in the normal manner. The student then
exports the filter from sptool to the MATLAB workspace and runs our program by typing qfilt at
the MATLAB command prompt. This brings up the custom GUI shown in Figure 1 which allows
the user to select with the mouse the simulation constraint method (rounding or truncating
quantization, and implemented either as a Direct Form Type II transpose or as second-order
cascaded sections), number of bits (8 to 32), plotting preference (magnitude vs. frequency, phase
vs. frequency, or poles and zeros on the complex z-plane). The GUI also allows control over the
DSK, and the user can select the port to which the DSK is connected (LPT1–LPT3), the
sampling frequency of the AIC (fifty choices from 4509 Hz to 20292 Hz), and control whether or
not the antialiasing filter is in the signal path. Note that the previous version of this program13

used a command line interface and had no ability to communicate with a DSK; we have found
the GUI version to be far more appealing to our students and the ability to run their filters in real
time on a DSK has been incredibly motivational. When the “Apply” button is clicked with the
mouse, the program automatically generates and displays any of the three selected plots which
each compare the floating-point vs. fixed-point filter implementations on the same plot.

To demonstrate the process a student would use, a digital filter was previously designed using
sptool with the following parameters: bandpass elliptic IIR, sample frequency Fs = 8117 Hz,
passband 900–1400 Hz with 3 dB ripple maximum, transition regions of £50 Hz, and stop band
attenuation of ³70 dB. The resulting design produced by sptool is an 8th order filter with actual
stopband edges at 872 Hz and 1439 Hz. When the filter coefficients have been quantized by qfilt
to 16 bits (as would be the case with the Texas Instruments TMS320C5x) and implemented as a
Direct Form Type II transpose, the result is shown in Figure 2 through Figure 4.

The student can imediately see that with quantization effects, the filter performance is altered
radically. There are significant changes to the originally calculated magnitude (Figure 2) and
phase (Figure 3) response of the filter, which were predicated on the assumption of floating-point
processing. But this isn't the whole story!

There is always a danger in relying too heavily on the results of computer simulations and blindly
accepting the results. The filter used for the example above clearly demonstrates this, as even the

P
age 4.488.4

filter magnitude and phase response after quantization can be misleading. It is evident in Figure
4 that due to the quantization process, some poles have moved outside the unit circle on the
complex z-plane. Assuming this is a causal filter design, this implies that the region of
convergence for the z-transform does not contain the unit circle, meaning the filter design is
unstable. We can verify this by importing the quantized filter back into sptool and examining
the impulse response. As expected, the filter “blows up” and would be unstable. Yet the
quantized filter magnitude response in Figure 2, while no longer meeting the design
specifications, doesn't look unstable. How do we explain this discrepancy? We routinely tell our
students that no matter how fast the computer simulation may be, the students are smarter than
the computer, and to always perform a “sanity check” on any results. In this case, Figure 4
would indicate a stability problem. MATLAB evaluates the magnitude and phase response of a
discrete transfer function by substituting wjez = (mathematically equivalent to evaluating the
discrete-time Fourier transform (DTFT) of the filter). The student should know, however, that if
the unit circle is not contained in the region of convergence of the z-transform, then the DTFT
does not exist, and the magnitude and phase response as calculated by MATLAB is meaningless.
Since MATLAB doesn't check for this condition, we added a routine in qfilt which detects it and
warns the user by showing the plot with a red background and a special plot title. If no poles
move outside the unit circle as a result of quantization, or we are dealing with FIR filters (which
have no non-trivial poles), then the calculated magnitude and phase response will be valid and
the plot background would be white.

The student might then explore if the same filter would behave any differently if it was
implemented as a cascaded second order section (referred to in some DSP texts as “biquads”).
The student simply selects this with the mouse and clicks the “Apply” button once again for the
various plots. As can be readily seen in Figure 5 and Figure 6, the filter is now stable (note the
plot titles and background color) and comes so close to matching the floating point performance
that the difference is virtually indistinguishable. Without qfilt, the student would likely assume
that the filter design from sptool would meet the desired specifications no matter how it was
implemented. By using our program, however, the student gains a better understanding of the
design ramifications of a fixed-point digital filter realization, including the significant differences
of the direct form versus second-order section implementations.

When the filter design is satisfactory, the user can simply click the “Load/Run DSK” button on
the GUI to download the software to the C31 DSK and run the filter algorithm for a real-time
demonstration. No programming is necessary, making this especially attractive for introducing
students to DSP hardware. The “Load/Run DSK” button activates a 32-bit dynamic link library
(DLL) written with Microsoft Visual C++ 5.0 and the MATLAB MEX file process to run under
Windows 9x or Windows NT; different programs execute depending upon whether the user has
selected Direct Form Type II transpose or cascaded second order sections. To stay within the on-
chip memory limits of the DSK, the maximum order supported is a 254 order IIR Direct Form
Type II transpose and a 256 order IIR cascaded second order sections. By specifying a high bit
number (such as 32), quantization effects are miniscule and the C31 DSK can be used as a
normal floating-point unit or, as described above, the same floating-point DSK can be use to
simulate fixed-point unit. P

age 4.488.5

3. CONCLUSIONS

The program qfilt written by the authors provides the educator with an easy to use, inexpensive,
and interactive method to teach the concepts of filter coefficient quantization. The program is
completely compatible with sptool, provided with version 5 of the Student Edition of MATLAB

and also with version 4.x of the Signal Processing Toolbox. It easily communicates with the C31
DSK used by many universities, eliminates the need for tedious programming of the DSK, and is
freely available from the Web site: http://wseweb.ew.usna.edu/ee/LINKS/EE_Links.htm
(should the URL be changed, then from the Naval Academy home page select Academics,
Academic Divisions and Departments, Electrical Engineering, Links).

A companion program for teaching DSP using MATLAB and the C31 DSK, which allows students
to perform interactive adjustment and “what if?” analysis of pole-zero plots, is described in an
accompanying paper15 by Welch, Wright, and Morrow.

4. REFERENCES

[1] Kubichek, R. F., “Using MATLAB in a Speech and Signal Processing Class,” Proceedings of the 1994 ASEE
Annual Conference, pp. 1207–1210, June 1994.

[2] Burrus, C. S., “Teaching Filter Design Using MATLAB,” Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 1, pp. 20–30, April 1993.

[3] Jacquot, R. G., Hamann, J. C., Pierre, J. W., and Kubichek, R. F., “Teaching Digital Filter Design Using
Symbolic and Numeric Features of MATLAB,” ASEE Computers in Education Journal, vol. VII, no. 1, pp.
8–11, January-March 1997.

[4] Porat, B., A Course in Digital Signal Processing, John Wiley & Sons, Inc., 1997.

[5] Ingle, V. K., and Proakis, J. G., Digital Signal Processing Using MATLAB V.4, PWS Publishing, 1997.

[6] Mitra, S. K., Digital Signal Processing: A Computer-Based Approach, McGraw-Hill, 1998.

[7] Ambardar, A., and Borghesani, C., Mastering DSP Concepts Using MATLAB, Prentice-Hall, 1998.

[8] McClellan, J. H., Burrus, C. S., Oppenheim, A. V., Parks, T. W., Schafer, R. W., and Schuessler, H. W.,
Computer-Based Exercises for Signal Processing Using MATLAB 5, Prentice-Hall, 1998.

[9] Yoder, M. A., McClellan, J. H., and Schafer, R. W., “Experiences in Teaching DSP First in the ECE
Curriculum,” Proceedings of the 1997 ASEE Annual Conference, paper 1220-06, June 1997.

[10] Chassaing, R., Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK, John
Wiley & Sons, 1999.

[11] Texas Instruments, Inc., TMS320C3x DSP Starter Kit User’s Guide, 1996.

[12] Inacio, C. and Ombres, D., “The DSP Decision: Fixed Point or Floating?,” IEEE Spectrum, pp. 72–74, Sept.
1996.

[13] MATLAB: The Language of Technical Computing, The MathWorks, Inc., Natick, MA, 1996.

[14] Wright, C. H. G. and Welch, T. B., “Teaching Real-World DSP using MATLAB ,” in Procedings of the 1998
ASEE Annual Conference, (Seattle, WA), June 1998. Paper 1220-03.

[15] Welch, T. B., Wright, C. H. G. and Morrow, M. G., “Poles, Zeros, and MATLAB , Oh My!” in Procedings of
the 1999 ASEE Annual Conference, (Charlotte, NC), June 1999. Paper 1320-02.

P
age 4.488.6

Major CAMERON H. G. WRIGHT, PhD, PE, is an Associate Professor in the Department of Electrical Engineering
at the U.S. Air Force Academy. His research interests include signal and image processing, biomedical
instrumentation, communications systems, and laser/electro-optics applications. He is a member of ASEE, IEEE,
SPIE, NSPE, Tau Beta Pi, and Eta Kappa Nu. Email: c.h.g.wright@ieee.org

Commander THAD B. WELCH, PhD, is an Assistant Professor in the Department of Electrical Engineering at the
U.S. Naval Academy (from 1994–1997 he was an Assistant Professor in the Department of Electrical Engineering at
the U.S. Air Force Academy). His research interests include multicarrier communication systems analysis and signal
processing. He is a member of ASEE, IEEE, and Eta Kappa Nu. Email: t.b.welch@ieee.org

Lieutenant Commander MICHAEL G. MORROW, PE, is an Instructor in the Department of Electrical Engineering
at the U.S. Naval Academy. His research interests include real-time digital systems, power system automation, and
software engineering. Email: morrow@nadn.navy.mil

WALTER J. GOMES III, is a Computer Engineer at the Naval Undersea Warfare Center, Newport, RI designing
embedded subsystems for Autonomous Underwater Vehicles. He is currently completing a DSP research
requirement for his MSEE at the University of Massachusetts Dartmouth. He is a member of IEEE and Eta Kappa
Nu. Email: jgomes@ieee.org

P
age 4.488.7

Figure 1. Initial screen of qfilt GUI.

P
age 4.488.8

Figure 2. Magnitude plot of 8th order IIR Elliptic digital filter, quantized to 16 bits and
implemented as a Direct Form II transpose.

P
age 4.488.9

Figure 3. Phase plot of 8th order IIR Elliptic digital filter, quantized to 16 bits and
implemented as a Direct Form II transpose.

P
age 4.488.10

Figure 4. Pole-zero plot of 8th order IIR Elliptic digital filter, quantized to 16 bits and
implemented as a Direct Form II transpose.

P
age 4.488.11

Figure 5. Magnitude plot of 8th order IIR Elliptic digital filter, quantized to 16 bits and
implemented as cascaded second order sections.

P
age 4.488.12

Figure 6. Pole-zero plot of 8th order IIR Elliptic digital filter, quantized to 16 bits and
implemented as cascaded second order sections.

P
age 4.488.13

