# AC 2008-1028: TEACHING SIX SIGMA CONCEPTS IN AN ENGINEERING COLLEGE

Hyerim Kim, Yonsei University Jiyong Kim, Yonsei University Yoon-Su Baek, Yonsei University Il Moon, Yonsei University

# **Teaching Six Sigma Concepts in an Engineering College**

#### Abstract

Six Sigma is a process improvement methodology currently being employed across various types of business and industry. DMAIC (Define, Measure, Analyze, Improve, Control) has been developed more recently with the goal to apply the Six Sigma principles for the improvement of existing products and processes. The Six Sigma approaches provide a disciplined way of solving problems, eliminating defects and improving business results. In order to increase students' creative ability, college should provide them with the Six Sigma. Learning about such a well-structured approach and developing related skills would enable today's students to become tomorrow's more effective employees.

In this program, fifty-three students in the class are divided into 13 groups. As project, each group finds college facilities and services to be improved and tries to solve these problems with DMAIC. The curriculum in this class furnishes instant feedback to the students by solving the problems directly associated with them. The students' creative thinking and power of expressing are also improved by learning various creative skills and teamwork. As the results of this class, 52 out of 53 students have acquired the honor of receiving *Green belt*.

#### Introduction

As the industries are growing up on large scale and high density, the demand for more creative engineers is increasing. Engineers need to have abilities to handle out multi tasks simultaneously. Therefore the engineer who not only is an expert in the industry field but also has creativity and cooperating skill is required and it is a new role of colleges to educate and discipline these novel skills. In this paper, the curriculum including the education for the theory of Six Sigma is developed as shown in Figure 1. The curriculum proposed in this paper consists of two contents; 1) Lectures for *Six Sigma* which include the definition, procedure and applications; 2) Group project which is performed by students, applying the theory of Six Sigma to real problems.

Six Sigma is one of creativity improvement methods, which is a data-driven, fact based, decision making management tool. It is used to improve the profitability of a business enterprise by reducing the waste and defects while improving the quality of products, processes and services, thus increasing the customer satisfaction. Six Sigma is widely used in industry to improve the efficiency of product design, development, manufacturing and marketing. The Greek letter Six Sigma(6) in the context of mathematical statistics represents standard deviation. However, in industry, 6 is used as a measure of performance variation. Industry's performance is measured by the sigma level of their business performance. Traditionally industry operates on three sigma (36), translated into 670,000 defects per million opportunities. Six Sigma (66) means 3.45 defects per million opportunities, which is near error-free business performance.<sup>1</sup> DMAIC refers to a data-driven quality strategy for improving processes, and it is an abbreviation for Define, Measure, Analyze, Improve, and Control.



Figure 1. Overview of the curriculum proposed in this paper

# 2. Curriculum

## 2.1 Objective

The recent trend for Six Sigma's application in manufacturing processes underscores the value of teaching students about this approach. Students need to know how to operate and improve the processes they own and to improve business results. In addition, a majority of students will be engineers in the manufacturing sector, where there has been an increasing emphasis on Six Sigma programs. Therefore, the major objectives of this curriculum are as follows:

- 1. Improvement of the creativity of students. As teaching a basic knowledge about Six Sigma methodology, student can find a solution more creatively and objectively.
- 2. Achievement of teamwork skill. This curriculum makes students organize several teams and perform some projects.

The scope of the curriculum is to provide the knowledge of Green Belt level and enable students to gain the title of Green Belt.

## 2.2 Features

To incorporate Six Sigma concepts in an engineer education curriculum, there are three kinds of alternatives approved by Stevemson.<sup>2</sup> They are to:

- 1. integrate throughout the core curriculum.
- 2. teach in a dedicated course.
- 3. teach as a component of a course such as operations management or strategy and policy.

The curriculum proposed in this paper has several benefits, such as:

- 1. tight control in terms of topical coverage.
- 2. needing only one or a few instructors trained Six Sigma.
- 3. Six Sigma topics covered in a logical sequence.

4. instructors being more enthusiastic about teaching this material than instructors teaching core courses.

#### 2.3 Contents

Two areas of teaching are necessary for students to perform Six Sigma analyses. One is basic knowledge of a Six Sigma method and the other is the ability to apply the knowledge in a purposeful manner. Therefore, the curriculum proposed in this paper includes two major contents ; a lecture for teaching Six Sigma concept and a group project for application of Six Sigma

## 2.3.1 Education Subject

The curriculum proposed in this paper provides an integrative approach. It pulls together many of the concepts and tools they have encountered into an organized framework that will enable them to apply their knowledge and analytical skills to perform Six Sigma analyses. The lecture shown in this paper includes the following five subjects which are in accordance with the step of Six Sigma. The title of subject 1 is *Define* which involves defining the scope of the problem, containing customer impact and potential benefits. Subject 2 deals with the understanding of the customer requirements and translating the key ones into some measurable characteristics. Subject 3 involves studying the preliminary data to document the current performance and identifying root causes. Also in subject 4, the concept improvement is introduced which deals with significantly reducing the defect levels and the ways to do it. Finally, subject 5 trains students to acquire the concept of *Control* which is putting a system in place to sustain the improvements that are achieved.

| Lecture#  | Subject | Details                                                  | Week | Homework                         |
|-----------|---------|----------------------------------------------------------|------|----------------------------------|
| Lecture 1 | Define  | Team Charters                                            | 1    | Submitthe<br>coverletter         |
|           |         | SIPOC (Suppliers, Inputs, Process, Output and Customers) | 1    |                                  |
|           |         | Process Mapping Techniques                               | 2    |                                  |
|           |         | Customer Focus                                           | 3    |                                  |
|           |         | Voice of the Customer                                    | 4    |                                  |
| Lecture 2 | Measure | Input, Process and Output Measurement                    | 5    |                                  |
|           |         | Measurement Plan                                         | 5    |                                  |
|           |         | Sampling                                                 | 5    |                                  |
|           |         | Statistics                                               | 6    |                                  |
|           |         | Calculating Six Sigma                                    | 6    |                                  |
|           |         | Control Charts                                           | 7    |                                  |
|           |         | Simple Data Presentation                                 | 7    |                                  |
| Lecture 3 | Analyze | Data Stratification                                      | 8    | Submitthe<br>draftgroup<br>paper |
|           |         | Pareto Analysis                                          | 8    |                                  |
|           |         | Determining Potential Root Causes                        | 8    |                                  |
|           |         | Brainstorming Techniques                                 | 9    |                                  |
|           |         | Historical Data                                          | 9    |                                  |
|           |         | Problem Solving Techniques                               | 9    |                                  |
| Lecture 4 | Improve | Change Management                                        | 10   | Submit the                       |
|           |         | Solution Selection Techniques                            | 11   | final group<br>paper             |
|           |         | Criteria Selection and Solution Ranking                  | 11   |                                  |
|           |         | Pilot Planning                                           | 12   |                                  |
|           |         | Pilot Implementation Schemes                             | 12   |                                  |
| Lecture 5 | Control | Implementing the Solutions                               | 13   | Submitthe                        |
|           |         | Plan – Do-Check-Act                                      | 13   | portfolio                        |
|           |         | Elements of the Plan                                     | 14   |                                  |
|           |         | Ramping up the Pilot Plan                                | 15   |                                  |
|           |         | Auditing for Compliance and performance                  | 16   |                                  |
|           |         | Change Management Issues                                 | 16   |                                  |

Table 1. The subject and schedule of the lecture

## 2.3.2 Group project

In this curriculum, 53 students are divided into 13 groups and each group finds the college facilities and services to improve. After this process, they try to solve these problems with DMAIC. Students carry out thirteen Six Sigma projects. Table 2 shows the summary of Six Sigma projects that comes from this curriculum.

Students begin the project with the proper metrics. They collect the data and set up definitions such as the supplier, input, process, output, customers, FDM (Functional Deployment Mapping). They have learned that sub process, step path, decision making and the man who are responsible for process, using the FDM concept. Students then measure the Critical-To Quality (CTQ) characteristics in defect of real problem such as a college facilities and services. Finally they develop methodologies to identify and implement the solutions to improve their processes. To solve problems efficiently, they perform not only Six Sigma but also other problem solving methods such as Brainstorming, Brain Writing, Checklist, and Morphological Analysis.

| Team #  | Title                                                        | Objective         |
|---------|--------------------------------------------------------------|-------------------|
| Team 1  | Improvement in reliability of a vending machine              | CTQ 2.32σ         |
| Team 2  | Improvement of recommendation process                        | CTQ 2.00σ         |
| Team 3  | Improvement in control process of a banner                   | CTQ 6.00σ         |
| Team 4  | Improvement of the lending service in a library              | CTQ 1.00σ         |
| Team 5  | Reassignment of a concession stand                           | CTQ 1.00σ         |
| Team 6  | Improvement of a common process                              | CTQ 0.50σ         |
| Team 7  | Improvement of the lending service in an engineering college | <b>CTQ 1.00</b> σ |
| Team 8  | Improvement of the arrangement system in library             | CTQ 1.65σ         |
| Team 9  | Reassignment of a copy room                                  | CTQ 2.00σ         |
| Team 10 | Improvement in process of the notice service                 | CTQ 2.58σ         |
| Team 11 | Reassignment of a lost property office                       | CTQ 0.20σ         |
| Team 12 | Improvement in process of assign rockers                     | CTQ 2.40σ         |
| Team 13 | Reassignment of a library                                    | CTQ 1.82σ         |

Table 2. Summary of Six Sigma projects

## 2.4 Grading

For evaluation of student performance in this class objectively, a combination of presentation, homework, exam and group project is utilized. Roughly, the total grade of this class consists of group project(60%) and exam(40%). Especially the grade for group project includes the evaluation of presentation skills. Final students who mark over 80 score are certificated with Green Belt.



Figure 2. Diagram of grading

# 2.5 Examples of the Group Project

As the result of this class, 52 out of 53 students have acquired Green Belt. Each Six Sigma project is successful and creative. The mean value of the CTQ is  $-0.60\sigma$  to  $1.89\sigma$  as shown in Table 3. Table 3 shows the title of 13 projects and the changes of CTQs. 6 teams (Team 2,4,5,6,7 and 9) improve their CTQ greatly than what they have targeted.

| Team #  | Title                                                        | Result                                  |
|---------|--------------------------------------------------------------|-----------------------------------------|
| Team 1  | Improvement in reliability of a vending machine              | CTQ 1.99σ→2.26σ                         |
| Team 2  | Improvement of recommendation process                        | CTQ 0.35σ→2.16σ                         |
| Team 3  | Improvement in control process of a banner                   | CTQ -0.24σ → 1.32σ                      |
| Team 4  | Improvement of the lending service in a library              | CTQ $0.40\sigma \rightarrow 1.05\sigma$ |
| Team 5  | Reassignment of a concession stand                           | CTQ -1.00σ → 3.48σ                      |
| Team 6  | Improvement of a common process                              | CTQ -1.81σ → 1.05σ                      |
| Team 7  | Improvement of the lending service in an engineering college | CTQ -5.32σ → 1.74σ                      |
| Team 8  | Improvement of the arrangement system in library             | CTQ -0.53σ → 1.17σ                      |
| Team 9  | Reassignment of a copy room                                  | CTQ $0.08\sigma \rightarrow 2.22\sigma$ |
| Team 10 | Improvement in process of the notice service                 | CTQ $0.25\sigma \rightarrow 2.58\sigma$ |
| Team 11 | Reassignment of a lost property office                       | CTQ -0.92σ → 0.15σ                      |
| Team 12 | Improvement in process of assign rockers                     | CTQ -0.45σ → 2.40σ                      |
| Team 13 | Reassignment of a library                                    | CTQ -0.57σ → 0.91σ                      |

Table 3. Results of the group projects

| Control System of the Project |                          |        |            |  |  |
|-------------------------------|--------------------------|--------|------------|--|--|
| Make a Copy                   | Make a copy in 5 minutes |        | Cycle Time |  |  |
| Process Map                   | Check                    |        |            |  |  |
| Flow                          | Measure                  | Record | Frequency  |  |  |
| Order                         |                          |        |            |  |  |
| Wait                          | Waiting Time             | 100%   | Every Time |  |  |
| Fill in the Form              | Rate of the Record       | 100%   | Every Time |  |  |
| Dispatch                      | The time required        |        |            |  |  |

Figure 3. A result of the group project (Team 9)

For example, team 9's project—'Reassignment of the copy room'— is one out of the projects that reaches the goal. Students measured how long it takes to make a copy. The objective is to reduce that time. The solution is replacing the copy room. As the result of this project, they save the process time up to about 45%.

| Control System of the Project |                              |         |              |  |  |  |
|-------------------------------|------------------------------|---------|--------------|--|--|--|
| Arrangement System            | 95% Arrangements in 16 Hours |         | Cycle Time   |  |  |  |
| Process Map                   | Check List                   |         |              |  |  |  |
| Flow                          | Measure                      | Time    | Frequency    |  |  |  |
| Collection                    | Waiting Time                 | 3.9 Hrs |              |  |  |  |
| Classification                | Classification Time          | 3 Hrs   | Once a week  |  |  |  |
| Cart                          | Waiting Time                 | 3 Hrs   | Once a week  |  |  |  |
| Arrangement                   | Rearrangement Time           | 10 Hrs  | Once a month |  |  |  |

Figure 4. A result of the group project (Team 8)

On the other hand, team 8's project —'Improvement of the arrangement system in library'— is one of the groups that failed to achieve their targets. The objective of this project is setting up a well-organized arrangement system in a library. They defined CTQ as the rearrangement time and the solution is the reorganization of a work responsibility schedule. Although it is effective enough a solution to improve CTQ, the result is unsuccessful because of the absence of library manager supporting.

#### **3.** Conclusions

In this paper we introduced the curriculum and covered the Six Sigma principles in the Engineering College. Having the students exposed to this integrative philosophy will not only make them be able to bring together the things that they learned in other courses, but also prepare themselves for the real challenges, where many organizations —both manufacturing and service— are increasingly employing Six Sigma thinking in decision making. The education through this curriculum also has the best chance of giving students the integration and application skills they need. As a result of this class, 52 out of 53 students have acquired Green Belt and carried out 13 Six Sigma projects successfully.

Although a lot of curriculums about the improvement of creativity have been introduced in college education, it is difficult to verify the effectiveness of those educational programs. With learning knowledge and skills associated with creativity such as DMAIC and applying them into the real problem, this curriculum can rapidly ascertain the performance of educational programs.

#### Acknowledgment

This work was supported by the Establishment of Engineering Education Research Center grant funded by the Korea government Ministry of Knowledge Economy (No.2007-ga-07)

#### Bibliography

- 1. Roland Cauluttt, (2001). Why is Six Sigma so successful?, Journal of Applied Statistics, 28:3, 301 306
- 2. William J. Stevenson a, A. Erhan Mergen, (2006). Teaching Six Sigma concepts in a business school curriculum, Total Quality Management &Business Excellence, 17:6, 751 756
- 3. Breyfogle, F.W., "Implementing Six Sigma", John Wiley & Sons, 1999.
- 4. Hahn, G.J. and Doganaksoy, N., (2000). The Evolution of Six Sigma, Quality Engineering, Volume 12, No.3, pp. 317- 326.