
AC 2009-2378: TEACHING SOFTWARE DEVELOPMENT FOR MODERN
REAL-TIME DATA ACQUISITION AND CONTROL

Janusz Zalewski, Florida Gulf Coast University
Janusz Zalewski is a professor of Computer Science and Engineering in the School of
Engineering at Florida Gulf Coast University University. His research interests, in addition to
software engineering education, include real-time safety-critical systems.

Andrew Kornecki, Embry-Riddle Aeronautical University
Andrew Kornecki is a professor in the Department of Computer and Software Engineering at
Embry-Riddle Aeronautical University. His research interests, in addition to software engineering
education, include real-time safety-critical systems.

Jerzy Nogiec, Fermi National Accelerator Lab
Jerzy Nogiec is the Software Development and Support Group Leader at Fermi National
Accelerator Laboratory and an adjunct professor of Computer Science at the Illinois Institute of
Technology. His research interests, in addition to software engineering education, include
distributed systems and data acquisition systems.

© American Society for Engineering Education, 2009

P
age 14.1152.1

Teaching Software Development for Modern

Real-Time Data Acquisition and Control

Abstract

Modern data acquisition and control systems, in the most demanding real-time applications, such

as sensor networks, flight control systems, accelerator control, road vehicle control, and others,

are all distributed and for proper operation require very different programming techniques than

traditional systems. Typical software engineering curricula rarely include respective

methodologies of software development for such systems. If they do, their courses mostly

concentrate on the specification and design of software for distributed systems, but stop short of

including thorough treatment of implementation and testing issues.

The current work builds upon previous experiences of the authors and involves projects in

teaching software development for distributed real-time data acquisition and control systems,

with focus on implementation and testing. In particular, a process of organizing and using a

web-based HTTP server for educational purposes in remote testing and operation of software

based on VxWorks and Windows CE platforms is described. The concept has been adopted

from work done at the Fermi National Accelerator Lab.

Introduction

Typical software engineering curricula rarely include methodologies of software development

for the most demanding real-time applications, such as sensor networks, flight control systems,

accelerator control, road vehicle control, and others, which are all distributed and for proper

operation require very different programming techniques than traditional systems. If there are

curricula that do this, their respective courses mostly concentrate on the specification and design

of software for distributed embedded real-time systems, but stop short of including thorough

treatment of implementation and testing issues
1)

. The major reason for this seems to be primarily

the difficulties with acquiring, operating and maintaining appropriate hardware and system

software, which normally require knowledge of a device architecture combined with low-level

programming techniques and significant attention paid to technical support, which is rarely

available in typical programs at the college level.

In an effort to provide students with such knowledge, several universities are using

equipment donations to offer courses supporting the missing component. In many cases the only

college level education on embedded real-time systems can be obtained from electrical

engineering or hardware-focused computer engineering programs. The students and faculty have

good grasp of the designed system hardware but too often the software component of the system

is of marginal quality. The faculty and students do not have enough background and experience

to produce quality software. The truth is, however, that the software is responsible for most of

P
age 14.1152.2

the system functionality. Software became a major component of the modern systems and the

quality of software, more than that of the hardware, is the critical element of the system success.

Any software developer for industries dealing with real-time systems has to be familiar with

techniques and tools that would allow him to stay competitive. Thus, the job of the educators is

to enhance the curriculum by including in it those techniques and tools of real-time software

development that are currently used in industry. Based on their experiences with real-time data

acquisition and control projects in avionics and high-energy physics, the authors developed and

previously published a suite of experiments for teaching implementation and testing of

distributed software, including topics such as semaphores, message queues, scheduling, priority

inversion, device drivers and real-time kernels
2,3)

. The implementation platform involves typical

single board computers based on PowerPC architecture and VxWorks real-time kernel with its

integrated development environments: Tornado and Workbench.

The objective of current work is to build upon previous work and experience and enhance the

educational process by expanding experiments in teaching software development to projects in

distributed real-time data acquisition and control systems, with focus on implementation and

testing. In particular, a process of organizing and using a web-based HTTP server for

educational purposes in remote testing of software based on aforementioned platforms is

described. The concept has been adopted from work done at the Fermi National Accelerator

Lab
4)

.

The paper is organized as follows. First, we present an overview of traditional exercises used

in teaching the implementation of real-time systems. Then, we address a web-based server

approach for remote testing of data acquisition and control systems with the VxWorks real-time

operating system kernel, and finally apply some of these concepts to the development of

embedded systems with Windows CE.

Previous Work: Typical Programming Exercises with a Real-Time Kernel

In previous work
3)

, we have shown how concepts, such as timing, multitasking, synchronization

and scheduling, priority inversion and interrupt handling can be introduced via exercises and

experimentation, using a VxWorks real-time kernel and its associated environment. To achieve

respective goals, a dedicated real-time laboratory supporting the development of real-time

software has been created as the necessary component of the modern curriculum. Such

laboratory has to include a platform for development of embedded systems in a host-target

environment. The students shall have access to a development environment supporting all

lifecycle including requirements, design, implementation, and testing. As a critical element of the

lab the students must be able to develop code on a host and download, debug and test it on the

target. The target run-time system must have characteristics of a real-time operating system

supporting concurrency, synchronization and communication primitives, interrupt handling,

pre-emptive scheduling and deterministic behavior.

Both Embry Riddle Aeronautical University and the Florida Gulf Coast University created

appropriate labs allowing their undergraduate and graduate students to develop expertise in host-

target real-time software development. The selected development environments include Tornado

P
age 14.1152.3

and Workbench based stations running VxWorks real-time kernel, thanks to the software grants

from Wind River Systems Academic Program.

Once such environment is in place, the challenge is to create an infrastructure to allow

students easy access to software development and experimentation, and include the lab

experiments in the course structure to teach students basic real-time concepts.

To facilitate the learning process, a basic series of laboratory experiments to be performed by

the students has been created. The sequence addresses the issues of timing, multi-tasking, shared

resources and locking, communication, signals and interrupts, and scheduling. As the operating

system plays an important role in developing real-time software, the experiments focus on using

the kernel primitives by the application programs. The experiments were designed to be

completed by a student during a single semester, or during a course of independent study, while

learning the appropriate theory component in the classroom.

Each lab experiment contains the following sections: a) introduction, b) objectives, c)

description, d) example program, e) procedures, f) follow-on experiment, and f) additional

information.

The introduction section gives a brief description of the experiment and how it applies to a

real-world situation. The objective describes what should be learned from the experiment. The

description section touches the theory behind the real-time concept – the topic of the lab

experiment. It also explains the terms and operating system constructs used to implement the

example program. The example program is a fully functional program that the student can

compile and run. The program demonstrates the real-time concept - the objective of the

experiment. The follow-on is to be completed by the student. The student may either modify the

existing program or write a new one.

By experimenting with the demo and modifying the program, students gain experience in

dealing with a real-time environment. At the same time, the design and coding time is reduced

since most of the code is already written. Student can focus on experimenting and learning “how

does it work.”

A laboratory report must be submitted with each experiment. The report has a pre-defined

format. The report presents the results of running both the example program and the student's

modified/derived program. Finally, the report requires an analysis. In this way, the student not

only has to complete the experiments, but also analyze them critically.

In addition to the lab explorations, after learning the basic real-time concepts, the students

engage in a small team project to apply the acquired knowledge and skills. In the past we had a

few projects implemented on the VxWorks platforms. All projects resulted in prototypes

implemented on VME VxWorks target with user interface on a remote Unix workstation (using a

GUI builder or Java applet). Some examples of such projects included a real-time data

acquisition and control system, a real-time GUI implementation, and others.

P
age 14.1152.4

These software development projects went one step further than the lab experiment. The

main objective of such projects was to present the students, working normally in teams, with a

challenge to develop a prototype software system for a specific application. For example, for the

data acquisition system, the task was to use a VMI/VME-4514A analog I/O board and

VMI/VME-2532 digital I/O board with the processing on VME Motorola target board running

VxWorks, to use a PT-326 process trainer and accomplish a close-loop proportional control. The

data acquisition implemented via sample sequencing of operations used for software design

purposes is presented in Fig. 1, as a sequence diagram developed by a student team in a design

phase.

Figure 1. Sequence Diagram for Data Acquisition and Control Experiment

The experiments outlined above, as well as simple team projects, although meeting their

individual objectives, are not sufficient for comprehensive education of software engineers who

would like to be competitive on the job market in developing real-time embedded data

acquisition and control applications. There are two reasons for this situation. First, the

complexity of embedded devices grew dramatically over the last decade and new tools became

available to deal with it. Secondly, availability of the web dramatically changed the architectures

and accessibility of embedded systems, so that remote access to distributed devices and

experiments has to be provided on a standard basis
5)

. Thus, the schools and educators who

provide graduates to respective industries have to consider changing and expanding their

curricula towards including the latest technologies and teaching corresponding competencies and

skills. In the next two sections we are trying to address some of these issues.

P
age 14.1152.5

P
age 14.1152.6

• The software shall allow the user to select a system, then a computer to test, and finally a

device or monitoring program.

• The tested computer shall be selectable either by its name or its function.

• The web server shall execute a proper test handler and send a reply page back to the

requestor.

• The application shall receive updated information from DAQ devices after a request.

• The software shall verify that all data received from DAQ devices are valid.

• The software shall verify if inputs from the user are valid.

• The software shall output the requested DAQ devices data.

• The software shall replace the existing DAQ devices data with new data as received.

• The system shall provide an error message if invalid data are requested.

• The system shall provide an error message if it is unable to find a DAQ device.

The basic software design is very simple and shown in Figure 3. It is composed of modules

to request and receive data from the clients and publish the data to the web server when

prompted by the user. The host computer is only used to update/maintain the system.

Figure 3. Hierarchical Decomposition Diagram

The basic implementation of the server program is a portable web server intended to be used

for local application. The web server supports CGI with both POST and GET methods and is

intended to be a deployment platform. Only files located in this directory and its subdirectories

can be served to the user.

The web server program running under VxWorks can be used to enable querying RTDB

(Real-Time Data Base) from web browsers. The web browser can be used also as a front end for

various CGI programs allowing for development of various diagnostic systems, calibration

applications, hardware tests, and resources monitoring applications.

P
age 14.1152.7

The set of environment variables defined by the webserver program is limited to only a few

values. The VxWorks server executes all CGI programs as functions called in the server context,

which may cause the server to malfunction in cases when CGI programs are misbehaving.

Therefore, all CGI programs should be entirely tested before deploying them to the VxWorks

platform.

The server is currently implemented as a single-threaded program. Therefore, one should

avoid CGI programs that have undetermined or long execution times. Such programs could block

the server for a longer than allowed time. A sample user interface for a typical data acquisition

device connected via a GPIB bus is shown in Figure 4. An example of a sample code for a

simple CGI program for the VxWorks server is shown in Appendix 1.

Figure 4. Sample Data Acquisition Device Accessible via the Server.

In summary, this project plays three different and complementary roles in the course. First, it

verifies the student’s knowledge of typical real-time programming constructs used on a

development platform for a real-time embedded target device. Second, a student learns the

remote development, with an embedded target located on a network as a remote device. Finally,

the student gets familiarity with the operation of data acquisition and control devices in a

distributed environment, typical to many modern industrial and research applications.

P
age 14.1152.8

P
age 14.1152.9

The server application’s main use is to stream live video capture from a USB camera

connected to eBox 2300, send temperature readings read by a sensor, and send rotation

commands to a servo attached to the USB camera to change the viewing angle. It runs under the

Windows CE 6.0. The entire configuration is shown in Fig. 6.

The client application main use is to receive the streaming video from eBox 2300 and display

it locally. It also displays the temperature readings taken by the temperature sensor located at the

remote location. In addition, the client application sends rotation commands to rotate the servo

motor axis attached to the USB camera. Thus, the eBox 2300 makes use of a video surveillance

web camera, the temperature sensor, and a servo motor to track and control environmental

changes on a remote site.

Software requirements are divided into input, output, processing, and non-functional

requirements. A sample input requirement on the client commands looks as follows:

• Operations or commands input from the personal computer shall include:

- Command for connecting to server application

- Command for closing connection to server application

- An input field to enter the thin client’s remote IP

- An input field to enter remote application’s port number

- Command for moving the server motor to the left, and to the right

- Command for retrieving remote temperature readings.

Listen to Client

Request

Send temperature

data

Receive

Commands Data

Send Frame Data

Start Thread

Server Module

Figure 7. Server Module Structure Chart

A sample design of the server module is illustrated in Figure 7. The server application is

composed of five submodules; start thread, listen, send frame data, send temperature data, and

receive commands data. The video server application in this project has borrowed the design

implementations from the Servo CAM project developed at Georgia Institute of Technology
6)

 for

the camera driver SDK (wrapper).

P
age 14.1152.10

A sample implementation of a GUI is shown in Figure 8. It displays the real-time video

surveillance of remote site location. The video is displayed over a picture box, that is activated

when the user presses the connect button, and the remote host IP and port have been entered in

the respective textbox. The GUI also displays temperature reading over a textbox every time the

user presses the read temperature button. In addition, it allows the user to close the application at

any time.

Figure 8. Sample Implementation of a Graphic User Interface

The client was developed in C# as a Windows application. The application uses

asynchronous sockets to connect to remote video server running on the eBox 2300. The source

code of the client is shown in the Appendix 2.

A limited example of dynamic testing of the client GUI application software involved the

following procedure:

Inputs

• Remote eBox 2300 IP address in GUI’s textbox entry.

• Remote application port number in GUI’s textbox entry.

• Button event: pressing the Connect button on the GUI video server remote panel.

Expected Outputs

Connection to the video server application. The video being captured by the USB camera

should be displayed over GUI’s picture box, and it should be an image display of 15 fps.

Actual Results

• The client application communicated with the video server, after the IP, and port number

were entered on its respective textboxes.

• After pressing the Connect button, the client GUI’s picture box displayed the video being

capture by the USB camera connected to the eBox.

P
age 14.1152.11

Conclusion

With the growing complexity of real-time, embedded data acquisition and control applications,

software engineers and educators are facing new challenges in being productive in the

development of such systems. The problem is further exacerbated by the widespread use of

Internet in connecting embedded devices, which generates additional issues.

The authors of this paper are concerned that the teaching methods, which were relatively

advanced a decade ago, are no longer sufficient to educate graduates who would be competitive

enough on the job market after graduation. Therefore a new significant step in education of real-

time software engineers is proposed in this paper: introducing in the classroom environment

such projects that would reflect current situation in professional software development.

Two platforms used in real-time embedded data acquisition and control systems have been

introduced in senior design project courses: VxWorks and Windows CE for respective single

board computers. Both projects were developed with a typical waterfall process model in mind,

with four phases of development, including requirements specification, design, implementation

and testing. The emphasis on implementation and testing, without neglecting the first two phases

of the process, allowed students to apply knowledge of traditional real-time programming in

applications of significantly higher complexity, involving networked development and operation.

Acknowledgements

This project has been funded in part by the National Science Foundation under a grant on Web-

based Real-Time Software Engineering Lab, Award Number 0632729. Thanks go to FGCU

Computer Science students, Joanne Sirois and Carlos Daboin, for their contributions to the

VxWorks and Windows CE software development. Wind River Systems donation of software

development platforms and VxWorks real-time kernel is gratefully acknowledged.

References

1. Zalewski J., “Cohesive Use of Commercial Tools in a Classroom,” Proc. 7th SEI Conf. on Software

Engineering Education, San Antonio, TX, January 5-7, 1994, J.L. Diaz-Herrera (Ed.), Springer-Verlag, Berlin,

1994, pp. 65-75

2. Kornecki, A., Zalewski J., “Real-Time Laboratory in a Computer Science/Engineering Program,” Proc. IEEE

Workshop on Real-Time Systems Education, IEEE Computer Society Press, Los Alamitos, CA, pp. 73-79, 1996.

3. Kornecki A., J. Zalewski, D. Eyassu, “Learning Real-Time Programming Concepts through VxWorks Lab

Experiments,” Proc. 13th Conf. on Software Engineering Education, Austin, Texas, March 6-8, 2000

4. Desavouret E., J. Nogiec. Web Tools To Monitor And Debug DAQ Hardware. Report FERMILAB-Conf-

03/131, Fermi National Accelerator Lab, Batavia, Ill., June 2003

5. Shah R., “Device Server Technologies for Remote Monitoring of Devices,” ECE Magazine, pp. 33-36, April

2007, http://www.embedded-control-europe.com/ece_magazine

6. Jarvis K, D. Kimn, J. Belisle. ECE 4180 Final Project: ServoCAM. Fall 2007,

http://users.ece.gatech.edu/~hamblen/489X/F07PROJ/ServoCAM/

P
age 14.1152.12

Appendix 1. Example Code of a Simple CGI Program for the VxWorks Server

/* Simple CGI program that returns the parameters sent to it.*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#ifdef vxworks

int simplecgi(void)

#else

extern char **environ;

int main(int argc, char **argv)

#endif {

 int content_length = 0;

 char *p_request_method = NULL;

 char *p_user_input = NULL;

 char *p_content_length = NULL;

 printf("<html>\n"

 "<head>\n"

 "<title>CGI</title>\n"

 "</head>\n"

 "<body>\n"

 "<pre>\n");

 if((p_request_method=getenv("REQUEST_METHOD")) != NULL) {

 printf("REQUEST_METHOD = %s\n", p_request_method);

 printf("DOCUMENT_ROOT = '%s'\n", getenv("DOCUMENT_ROOT"));

 if(strncmp(p_request_method, "GET", 3) == 0) {

 printf("CONTENT_LENGTH = %s\n", getenv("CONTENT_LENGTH"));

 printf("USER_INPUT = '%s'\n", getenv("QUERY_STRING"));

 }

 else if(strncmp(p_request_method, "POST", 4) == 0) {

 if((p_content_length=getenv("CONTENT_LENGTH")) != NULL) {

 if(sscanf(p_content_length, "%d", &content_length) == 1){

 printf("CONTENT_LENGTH = %d\n", content_length);

 if((p_user_input=malloc(content_length+1)) != NULL){

 if(fread(p_user_input, 1, content_length, stdin) > 0) {

 p_user_input[content_length] = '\0';

 printf("USER_INPUT = '%s'\n", p_user_input);

 }

 free(p_user_input);

 }

 }

 }

 }

 }

 printf("</pre>\n</body>\n<html>\n");

 return 0;

}

P
age 14.1152.13

Appendix 2. C# Windows Remote Video Viewer Client Application Source Code

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Net.Sockets;

using System.IO;

using System.Threading;

namespace VideoClientWin

{

 public partial class Form1 : Form

 {

 TcpClient client;

 delegate void PicHandler(Bitmap b);

 public Form1()

 {

 InitializeComponent();

 client = new TcpClient();

 client.ReceiveBufferSize = 2000000;

 }

 private void Go(IAsyncResult ia)

 {

 TcpClient tc = ia.AsyncState as TcpClient;

 while (!tc.Connected)

 {

 continue;

 }

 NetworkStream ns = tc.GetStream();

 BinaryReader br = new BinaryReader(ns);

 try

 {

 while (true)

 {

 if (client.Available > 0)

 {

 int len = br.ReadInt32();

 if (len > 100)

 {

 byte[] bt = br.ReadBytes(len);

 MemoryStream ms = new MemoryStream(bt);

 Bitmap b = new Bitmap(ms);

 ms.Close();

 this.Invoke(new PicHandler(UpdateImage), new

object[] { b });

 }

P
age 14.1152.14

 }

 Thread.Sleep(0);

 }

 }

 catch (Exception) { }

 }

 private void UpdateImage(Bitmap b)

 {

 this.pictureBox1.Image = b;

 }

 private void button3_Click(object sender, EventArgs e)

 {

 string ip = textBox1.Text;

 int port = 0;

 bool works = int.TryParse(textBox2.Text, out port);

 if (works && !client.Connected)

 {

 AsyncCallback ac = new AsyncCallback(Go);

 client.BeginConnect(ip, port, ac, client);

 }

 }

 }

}

P
age 14.1152.15

