
Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Session Number: 3532

Teaching Software Engineering Bottom Up

R. E. K. Stirewalt

Software Engineering and Network Systems Laboratory

Department of Computer Science and Engineering

Michigan State University

East Lansing, Michigan 48840

e-mail: stire@cse.msu.edu

Abstract

A typical CS curriculum contains a course on software engineering, which introduces

principles and heuristic methods for designing large software systems subject to desirable

properties, such as maintainability and extensibility. The nature of this body of

knowledge suggests that the best method for teaching it is to use the elaboration theory of

instruction. Applying this theory to software engineering requires a complete inversion

in the traditional coverage of topics. We developed a new course, CSE 370, which

incorporates this "bottom up" coverage. Using this method, we are able to instill a higher

level of cognitive ability in software-engineering methods than we were able to achieve

using the old method.

1 Introduction

A typical computer science curriculum contains a junior-level course on software

engineering, which develops principles and heuristic methods for designing large

software systems. At many universities, this course is organized around an idealized

model of the software lifecycle
1
, which comprises a linear sequence of discrete phases

(Figure 1). This paper argues that such an organization is pedagogically flawed if the

Analysis

System Design

Detailed Design

Implementation

Figure 1. Traditional (waterfall) model of software development.

P
age 9.1196.1

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

goal is to develop skill in software design. We propose a "bottom-up" approach, which

draws from the elaboration theory of instruction
2
, and have developed a new course

around this approach.

Problems with the traditional organization stem from the nature of knowledge in software

design, which is organized around a small set of fundamental principles of software

construction. An example is the principle of information hiding, which requires module

interfaces to hide implementation details that might change over the lifetime of a system,

thereby promoting extensibility and easing long-term maintenance.
3
 Such principles are

supported by best practices and heuristic methods, which provide more concrete guidance

in their application. For example, several design patterns
4
 depict how to combine class

inheritance and delegation to construct interfaces whose implementations can be varied

without affecting the module's clients. These principles and methods are not based on an

analytical science of design. Rather, they are statements of collective experience and are

thus metaphorical in nature.
*

Fundamentally, metaphorical knowledge only has meaning in the context of experience.
5

For example, a design pattern is an expression of experience, and a developer with

experience in object-oriented design will recognize it as such and be able to apply the

pattern in a new context. However, to an inexperienced designer, the pattern represents

nothing but words and pictures, which can be memorized and regurgitated, but which will

likely never spring to mind in a design context that could exploit it. To really learn this

material, students must first acquire the experience necessary to recognize these

metaphors as statements of experience. Only then will they be able to retain and apply

the knowledge.

We recently redesigned our software-engineering course to better develop in students the

ability to retain and apply software-engineering knowledge. The new course draws from

an established pedagogical theory called the elaboration theory of instruction, which uses

epitomizing, rather than summarizing, to select and organize the content of a course.
6

Briefly, summarizing entails teaching a large number of ideas, usually at a superficial,

abstract, memorization level. By contrast, epitomizing entails teaching a small number of

fundamental ideas and presenting them at a concrete level that is immediately meaningful

to the students. To apply this theory, we had to radically change the order in which we

covered the topics. In fact, we now cover topics in exactly the reverse order in which

they were covered before.

This new "bottom up" approach utilizes an intensive regimen of laboratory exercises,

which require students to add a new feature to an existing corpus of software. To add the

new feature, a student must first understand and then redesign (or refactor) the existing

code, which we designed for the purpose of illustrating the complexities that arise in

large software. Each of these lab exercises gives students a basis in experience for

understanding the lecture material, which presents a pattern or solution to address the

*
Contrast the subject of this metaphorical knowledge with other concepts in computer science—e.g.,

fundamental data structures and algorithms—which enjoy a formal (mathematical) meaning irrespective of

design context.

P
age 9.1196.2

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

complexity that was motivated in the lab. Thus, unlike in traditional courses, which

begin with a requirements specification followed by design and implementation, CSE 370

begins with directed implementation and maintenance tasks, which motivate design

strategies and techniques.

2 Background

We developed CSE 370 to address issues that were uncovered when we began preparing

for ABET accreditation. To be accredited, a curriculum must be subjected to a process of

continuous quality improvement (CQI), which we had to develop ex nihil. The effort

required us to identify and precisely specify fine-grain, measurable objectives for each

course and to assess student performance against these objectives. Because these

activities influenced the design of CSE 370, and because we use fine-grain objectives to

validate our work, we now briefly introduce these concepts.

2.1 History of the problem

CQI is a general framework for systematically improving the products that flow out of a

production process. To successfully apply CQI to a curriculum requires:

1. specifying learning outcomes at a granularity that is sufficient for improving

specific components of instruction,

2. developing assessment methods to measure these fine-grain learning outcomes,

and

3. improving the transparency of instruction, so that variations in outcomes can be

traced back to events within the course or its prerequisites.

Stice describes how to fulfill the first two requirements by specifying learning outcomes

in terms of concrete cognitive objectives,
7
 each of which must specify (1) what the

learner is to do after instruction, (2) under what conditions, and (3) the acceptable

performance.

Concrete cognitive objectives afford several benefits. First, because each objective

specifies an action on the part of the learner, one can use the Bloom Taxonomy
8
 (Figure

2) to infer the level of cognitive ability that is being exercised by a particular objective.

Second, because each objective indicates the acceptable performance, it can be measured.

1. Knowledge: List, recite

2. Comprehension: Explain, paraphrase

3. Application: Calculate, solve, determine, apply

4. Analysis: Compare, contrast, classify

5. Synthesis: Create, construct, predict, design

6. Evaluation: Judge, decide, critique, assess, argue

Figure 2: Bloom's taxonomy of cognitive objectives

P
age 9.1196.3

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Finally, by linking courses through prerequisites and outcomes, one can make

adjustments in the content/evaluation metrics of one course to accommodate the needs of

another.

Despite these benefits, concrete cognitive objectives are difficult to specify, and they

often require the instructor to make major changes to the contents and assessment

methods of his or her course. We experienced both of these difficulties when we began

to specify the objectives for our old software-engineering course, CSE 470. For example,

we discovered our assessment methods rarely exercised cognitive abilities beyond Bloom

level 2, which is significant because an upper-division engineering course should develop

abilities at levels 3 and higher. As we began to improve our methods to assess these

higher-level objectives, we discovered students were unable to perform at this level. This

told us that something was wrong with how we were teaching. To fully understand the

problem requires some background in the nature of software-engineering concepts, which

we now describe.

2.2 Software-engineering knowledge

Software engineering is concerned with principles and methods for specifying, designing,

implementing, and maintaining large software systems. Knowledge in this discipline is

organized around an idealized model of software development, which identifies distinct

phases that are performed sequentially (Figure 1). Briefly, analysis produces a system

specification; system design produces a system architecture that allocates responsibilities

to major hardware and software components; detailed design develops (or reuses)

interfaces for individual software modules; and implementation implements these

modules.

Each phase produces a tangible artifact; however the only executable artifact is the final

implementation, and in real projects, software development may proceed for several

years before a fully developed executable appears. Thus, much of the software-

engineering body of knowledge includes principles, notations, and heuristic methods that

support these early phases and (to some extent) the evaluation of the early artifacts.

An example notation is a UML class diagram, which graphically depicts the static

structure and inter-relationships of the classes in a system. Such diagrams are useful in

the early phases of development because they describe an important aspect of the final

system—namely the structural dependencies of the data—and yet they are much more

abstract than the final code. Practicing engineers leverage this abstraction to evaluate and

compare candidate designs prior to implementing them.

An example principle is information hiding, which requires module interfaces to hide

implementation details that might change over the lifetime of a system, thereby

promoting extensibility and easing long-term maintenance. Such principles are supported

by best practices and heuristic methods, which provide more concrete guidance in their

application. For example, several design patterns
9
 depict how to combine class

inheritance and delegation to construct interfaces whose implementations can be varied

without affecting the module's clients. Such principles and design patterns derive from

P
age 9.1196.4

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

years of collective experience of many software developers on many different kinds of

projects. As with UML class diagrams, their virtue lies in their abstraction, which

permits an experienced designer to apply them in many new contexts.

2.3 The problem

Unfortunately, the abstraction that permeates the software-engineering body of

knowledge, so useful to the experienced designer, appears to be a barrier to

understanding for the inexperienced student. We observed this phenomenon when we

began to specify and assess concrete cognitive objectives for our old course. To be

concrete, consider the following example objective:

Given source code for three or more classes whose instances collaborate

with one another to implement an invariant, refactor these classes using

the mediator pattern to encapsulate, within a single class, the logic for

maintaining the invariant.

This objective describes a cognitive ability at level 3 in the Bloom taxonomy.

Despite spending considerable lecture time describing design patterns and the notations

and conventions that go along with them, students were consistently unable to achieve

objectives at this level. On the other hand, these same students demonstrated level 2

abilities, such as being able to recall from memory all of the essential characteristics of

the mediator pattern. Reigeluth and Stein suggest that this phenomenon is inevitable

under the summarization model of instruction, in which lots of very abstract concepts are

introduced at a shallow level of detail. They suggest an alternative, called the

elaboration model, in which fewer concepts are covered more deeply via a process

known as epitomizing, whereby a concept is introduced using concrete motivating

examples and then abstracted over time.

We began to restructure CSE 470 around the elaboration model and quickly discovered

topics that were almost impossible to epitomize. A good example is coverage of end-to-

end software development methodologies, which introduce notations and heuristics for

engineering a product from analysis through to implementation. When properly applied,

these heuristics will lead to implementations with certain desirable properties. For

example, methodologies such as OMT
10
 and the Rational Unified Process

11
 aim to

produce implementations that are amenable to extension and reuse. In fact, many of the

notations and methods that are used during analysis were created to forestall problems

during design and implementation. Thus, to motivate the methods used in the early

phases requires a deep appreciation of the issues that arise in the later phases. Herein lies

the lesson: To apply the elaboration theory to teaching software engineering, one must

cover the different phases of development from the bottom up rather than from the top

down.

3 Solution: CSE 370

To recap: The elaboration theory of instruction seems the most appropriate for

developing sufficiently high cognitive ability in the use of abstraction, which is so central

P
age 9.1196.5

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

to software-engineering knowledge. However, to apply the theory correctly requires

introducing the phases of the software-development cycle bottom up, i.e., from the most

concrete phase (implementation) to the most abstract (analysis). Unfortunately, the

popular software engineering texts are not organized in this manner, and we know of no

resources or teaching aids for running a course in this manner.

To address this deficiency, we developed CSE 370, which covers the SE body of

knowledge starting at implementation and working backward toward analysis and which

uses a carefully orchestrated regime of laboratory exercises followed by lectures to

epitomize the various topics. CSE 370 is a four semester-hour course, with three hours of

lecture and two hours of scheduled laboratory time per week. Currently, we offer three

lecture sections per year, and each lecture section comprises three lab sections, each of

which accommodates up to 16 students. Each lab section is administered by a graduate

teaching assistant According to our bottom-up approach, each lecture addresses a

problem, which is motivated in the lab, and culminates in a design pattern, strategy, or

method that allows the problem to be solved systematically prior to implementation.

3.1 Course content

We now briefly describe the contents of the first two (of our four) course modules, which

correspond to the phases of software development (Figure 1). For each module, we

provide a description of the motivational laboratory exercises and an example objective

to demonstrate the level of cognitive ability developed.

3.1.1 Implementation

The first module in the course is concerned with implementation. Because we are using

object-oriented methodologies, this module aims to develop a high level of skill in the

use of programming features that are fundamental to object-oriented programming,

namely class inheritance and polymorphism. The laboratory exercises provide

implementations of classes and then ask the students to modify those classes to introduce

inheritance relationships and polymorphic operations.†

Lectures that follow these labs open with implementation problems whose solutions

require the use of the mechanisms exercised in the lab. Students work in pairs to develop

paper solutions, which the instructor surveys and then presents to the class. Lectures in

this module are also concerned with developing and enforcing student use of precise

terminology, all in the context of these concrete problems.

The entire module requires approximately two weeks to cover. At the end, students are

able to apply themselves to objectives such as:

Given a hierarchy of classes (e.g., in C++), extend this hierarchy with a

polymorphic operation for which each class in the hierarchy provides a

different method.

†
 A.k.a. virtual functions in C++.

P
age 9.1196.6

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Having achieved a mastery of these implementation concepts, the students are then ready

for the first big abstraction step, in which they begin to use design notations and

modeling languages rather than code.

3.1.2 Detailed design

The second module, concerned with detailed design, is more the meat of the course. This

module aims to develop a familiarity with general principles of software design, such as

information hiding, design for reuse, and design for extension and contraction.

Laboratory exercises at the beginning of this module ask students to write programs that

use or otherwise extend source code that was not designed according to these principles.

The idea is that if students can see, first hand, the effects of poor design decisions, they

will be ready to receive the abstract principles and heuristics that will help them produce

good designs. Lectures that follow these labs pick up on the lab exercises and introduce

notations, such as UML class and sequence diagrams, for representing the code in the

labs in a way that allows students to visually perceive the design flaws.

As we progress through this module, we introduce design concepts and heuristics that

prescribe how to formulate a principled design with the aid of the modeling notations that

were introduced to demonstrate the flaws in the motivational problems. An example is

the use of role-based design
12
 to develop reusable classes for building interactive

systems. Laboratory exercises at this level ask students to take existing software and

modify it to make the classes reusable in some new (concrete) context.

In all, this module takes nearly five weeks to cover, but we have found at the end,

students have a deep understanding of these (very abstract) concepts. An example

objective is:
‡

Let C1 and C2 be familiar collaborations, where C1 comprises n roles,

implemented by classes c1,1 .. c1,n, and C2 comprises m roles, implemented

by classes c2,1 .. c2,m. Given a problem that calls for the synthesis of these

two collaborations, develop adaptor classes for the objects that play roles

in both collaborations, and write the appropriate configuration code.

Prior to the changes incorporated into CSE 370, we could not have expected students to

master objectives at this level. Now, we routinely assess this objective on timed

examinations, and students perform well.

3.2 Discussion

Since its inception, we have run CSE 370 three times, and we track student performance

in detail. These data suggest that the expected numbers of students are demonstrating

Bloom-level 3 (and higher) proficiency in software-engineering methods. In addition to

the bottom up treatment and the careful orchestration of labs and lectures to epitomize the

abstract concepts, we have also found other teaching innovations to be helpful.

‡
 For the interested reader, definitions of the technical terms used in this objective can be found in the

Reenskaug reference, Working with Objects: The OORam Software Engineering Method.

P
age 9.1196.7

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Our approach benefits greatly from collaborative learning during lectures, especially

think–pair–share.
13
 Many of the lectures introduce design methods that address problems

motivated by lab exercises. Applying these methods takes practice and requires critical

instructor feedback. This need for personalized feedback will quickly exhaust precious

instructor time if it cannot be handled during class, but it is clearly not possible to give

personalized feedback to 50 students in an hour and a half. Collaborative learning

techniques allow us to provide personalized feedback in a way that reaches all of the

students at once.

Following the introduction of each new pattern, strategy, or method, we assign an in-class

exercise, which students must work on, first by themselves and then in pairs, to formulate

a solution. Working in pairs has two benefits: First, each student is forced to actually

apply the technique rather than just copying it down. Second, and more importantly, a

student's partner can often provide sufficient feedback on simple misconceptions, e.g.,

issues of programming-language syntax or misunderstanding what the exercise asks for.

Consequently, many common misunderstandings are clarified by the students themselves,

leaving the instructor to deal with the fundamental misunderstandings, of which there

tend to be a very small number. I have found that the use of this technique dramatically

increases the bandwidth of discussion and the overall retention of these concepts.

Finally, to teach these concepts bottom up required us to develop new resources,

specifically laboratory exercises and sample programs. A key insight was to draw our

examples from the realm of graphical user-interface software. Poorly designed user-

interface code can motivate a wealth of design problems, and well-designed user-

interface code exploits many of the design patterns that we want the students to learn.

Our software uses and extends the fast light toolkit (fltk)
14
, which is a free XWindows-

based user-interface toolkit written in the C++ language. Our software runs under Sun

Solaris and the cygwin simulator under Windows. For more details, or to get a copy of

the software and the lab exercises, please e-mail the author.

4 Acknowledgements

This work was supported in part by National Science Foundation grant CCR-9984726.

Materials used in the laboratory exercises were based on research funded by National

Science Foundation grant EIA-0000433 and by Office of Naval Research grant N00014-

01-1-0744. We also wish to thank Laura K. Dillon for her comments on early drafts of

this paper.

1
 C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering, Prentice Hall

Publishing, 1991

2
 C. M. Reigeluth and F. S. Stein, “The elaboration theory of instruction,” appears in Instructional-design

theories and models: An overview of their current status, C. M. Reigeluth, editor, Lawrence Erlbaum

Associates, 1983

P
age 9.1196.8

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

3
 D. L. Parnas, “On the design and development of program families,” appears in IEEE Transactions on

Software Engineering SE-2(1), March, 1976

4
 E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, Addison–Wesley

Publishing, 1995

5
 D. Sayers, The Mind of the Maker, Harper Collins, 1941

6
 C. M. Reigeluth and F. S. Stein, “The elaboration theory of instruction,” appears in Instructional-design

theories and models: An overview of their current status, C. M. Reigeluth, editor, Lawrence Erlbaum

Associates, 1983

7
 J. E. Stice, “A First Step Toward Improved Teaching,” appears in Engineering Education 66(5), February,

1976

8
 B. Bloom, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain, David MacKay

Company, 1956

9
 E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, Addison–Wesley

Publishing, 1995

10
 J. Rumbaugh et al., Object-Oriented Modeling and Design, Prentice Hall Publishing, 1991

11
 P. Krutchen, The Rational Unified Process: An Introduction, Addison–Wesley, 2000

12
 T. Reenskaug, Working with Objects: The OORam Software Engineering Method, Manning, 1995

13
 W. C. Campbell and K. A. Smith, New Paradigms for College Teaching, Interaction Book Company,

1997

14
 The Fast Light Toolkit homepage: http://www.fltk.org

KURT STIREWALT received his Ph.D. in Computer Science from the Georgia Institute

of Technology and is now an assistant professor at Michigan State University. His

research is concerned with the practical use of formal and semi-formal graphical models

in the design, verification, and maintenance of large software systems.

P
age 9.1196.9

