
AC 2011-2503: TEACHING SOFTWARE ENGINEERING TO UNDERGRAD-
UATE SYSTEM ENGINEERING SUDENTS

Richard Fairley & Mary Jane Willshire, Software and Systems Engineering Associates

Richard E. (Dick) Fairley is founder and principal associate of Software and System Engineering Asso-
ciates (S2EA; a consulting and training company) and an adjunct professor at Colorado Technical Univer-
sity in Colorado Springs, Colorado. Dr. Fairley has bachelors and masters degree in electrical engineering.
His PhD in computer science is from UCLA. He can be contacted as d.fairley@computer.org.

Mary Jane Willshire is a principal associate of S2EA. Dr. Willshire has bachelors and masters degrees
in mathematics. Her PhD in computer science is from Georgia Tech. She can be contacted as mjwill-
shire@ieee.org.

c©American Society for Engineering Education, 2011

P
age 22.1401.1

	

Teaching Software Engineering Concepts to
Systems Engineering Students

Abstract

This paper describes the software engineering concepts that systems engineering
students need to understand in order to effectively work with software engineers who
may be members of their system engineering teams, both as students and as
practitioners. Ways to introduce this material into systems engineering curricula are
addressed. This paper is a companion to “Teaching Systems Engineering to Software
Engineers” which appears in the conference proceedings of the 2011 Conference on
Software Engineering Education and Training, published by ACM/IEEE.

Introduction

It is widely recognized that software is the element that binds together the diverse
components in most modern systems and provides much of the functionality in
those systems. The following quote from draft version 0.25 of the emerging body
of knowledge for systems engineering makes this point1:

“Virtually every interesting system today has significant software content.
In fact, most of the functionality of commercial and government systems is
now implemented in software and software plays a prominent, often
dominant, role in differentiating competing systems in the marketplace.

Software engineering (SwE) is not just an allied discipline to systems
engineering (SE). SwE and SE are intimately entangled. Software is
usually prominent in modern systems architectures and is often the glue for
integrating complex system components.”

Many systems engineering students are never exposed to software engineering other
than, perhaps, through an introductory programming class. The role of a systems
engineer is to orchestrate and coordinate the diverse disciplines that may be required
to develop a complex system. Thus, systems engineers do not need to know how to
write computer programs (i.e., the details of software construction) any more than
they need to know how to fabricate a special purpose computer chip or design a
power supply. They do need to understand the processes, procedures, parameters,
and constraints under which software engineers design and build software in order
to effectively communicate with them and work with them. To a systems engineer,
software engineers are one of several, and possibly many different kinds of system
specialists with whom they must work.

P
age 22.1401.2

	

This paper presents some of the most important topics that systems engineers need
to understand about software engineering including:

• Differences in use of shared terminology
• System engineering techniques used by software engineers
• Software engineering techniques used by systems engineers
• The intangible and malleable nature of software
• The four essential properties of software
• The three additional factors
• Risk management of software projects
• Software development processes

For purposes of exposition, we distinguish software engineering from software
construction. Software engineers are concerned with analysis and design, allocation
of requirements, component integration, verification and validation, re-engineering
of existing systems, and life cycle sustainment of software. Programmers, who
may also be capable software engineers, construct software (i.e. engage in detailed
design, implementation, and unit testing of software). Software engineers work
with software component specialists (e.g., user interface, database, computation,
communication specialists) to construct or otherwise obtain the needed software
components. In some cases, software engineers may be component specialists for
certain kinds of components; they engage with other kinds of software component
specialists as necessary.

Software engineers are often involved in managing the technical aspects of a project
or program in the same way that systems engineers may manage the technical aspect
of a systems project or systems program. Thus, software engineers need to
understand how project management techniques, such as those included in the
Project Management Institute’s Body of Knowledge (PMBOK®) must be adapted
for software projects2,3.

These commonalities would make it appear that software engineering is merely an
application of systems engineering; however, this is only a surface appearance.
Systems engineers need to understand how these similar-sounding work activities
are different in the software domain from those in other engineering disciplines.

The differences arise from the intangible nature of software and the physical nature
of other engineering artifacts. This results in different approaches to curriculum
design and different approaches to problem solving, which in practice results in
different cultural attitudes, different uses of terminology, and different
communication styles.

Table 1, below, and some of the accompanying text also appears in the paper
“Teaching Systems Engineering to Software Engineers,” published in the
proceedings of the 2011 Conference on Software Engineering Education and
Training (CSEET 2011).

P
age 22.1401.3

	

It is somewhat ironic that there should be a disconnect between system engineering
education and software engineering education and the practice of the two disciplines
because many of the concepts of software engineering have been adapted from
system engineering, including stakeholder analysis, requirements engineering,
functional decomposition, design constraints, architectural design, design criteria
and design tradeoffs, interface specification, traceability, configuration
management, and systematic verification and validation. However, the lack of
physical properties and the resulting malleability of software has resulted in
differences in the ways the methods and techniques are applied at the system level
and at the software level.

It is also the case that some methods developed by software engineers, such as
model-driven development, UML-SYSML, use cases, object-oriented design, agile
methods, continuous integration, incremental V&V, and process modeling and
improvement can be, and are being used by system engineers. However, systems
engineering and software engineering students need to understand the similarities
and differences in the ways in which these concepts are applied in each discipline.

In addition, the nature of software and the methods used to develop software have
resulted in different uses of terminology and emphasis on different aspects of the
artifacts produced by system engineers and by software engineers.

Some examples: the term “performance” is often used by software engineers in the
narrow sense of throughput and response time, whereas systems engineers often
take performance to mean satisfaction of all the non-functional requirements for a
system. In software engineering, the term “baseline” is used to denote any work
product that has been determined to be acceptable and is placed under change
control. Software baselines are more fluid, and change more frequently than
baselines of physical entities because the software representation is in the same
medium as the software that controls the baseline and because software being
developed or modified is frequently updated; often on a daily basis.

Use of off-the-shelf manufactured components is routine in systems engineering of
physical systems. In software engineering, use of existing components is termed
“reuse.” Components to be reused may be obtained from an open source on the
Internet, from a software vendor, from a corporate library, or from a programmer’s
private library. The flexible nature of software may facilitate some comparatively
easy modifications to the component to be reused, as compared to modifying a
physical component; however, software reuse is not “free.” Candidate components
must be identified, evaluated, perhaps modified, and integrated into the software
system.

Safety and dependability are sometimes addressed in software engineering
curricula; however, students of both systems engineering and software engineering
need to understand how these issues can and cannot be addressed at the software

P
age 22.1401.4

	

level. In addition, systems engineering students need to understand how software
engineers view non-functional considerations such as cost/benefit tradeoffs, risk
management, reliability, and MTTF. These issues are summarized in Table 1.

Table 1.
Systems Engineering Methods adapted to Software Engineering (SE to SwE) and

Software Engineering Methods adapted to Systems Engineering (SwE to SE)

1a. SE to SwE
stakeholder analysis
requirements engineering
functional decomposition
design constraints
architectural design
design criteria
design tradeoffs
interface specification
traceability
configuration management
systematic verification and
validation

1b. SwE to SE
model-driven development
UML-SYSML
use cases
object-oriented design
iterative development
agile methods
continuous integration
incremental V&V
process modeling
process improvement

Disconnects between systems engineering and software engineering occur for two
primary reasons: 1) the contrasting nature of the intangible software medium and the
physical media of traditional engineering, and 2) because systems engineers and
software engineers receive pedagogically different educations.

Concerning primary reason 1: Software is an intangible artifact. Design documents
and source code are representations of software but they are not the software; the
actual software resides in the current flows and magnetizations of an enormous
number of computing-device elements. Software does not always behave in the
expected ways because the software developers may have misunderstood how the
source code, as written, is translated into executable object code and how the
hardware will decode and execute the object code (i.e., the translated source code).
In contrast, the systems produced by traditional engineers consist of physical
structures and machines that have tangible properties. Software has no tangible
properties: it cannot be directly seen, smelled, tasted, felt, or heard. Only the
resulting behavior of physical devices, as controlled by the internal object code, can
be observed.

Concerning primary reason 2: Most systems engineers are educated firstly as
engineers and secondly as systems engineers. This means that most systems
engineering curricula include a traditional undergraduate core of engineering
fundamentals, which is based on continuous mathematics and engineering problem
solving. Many practicing systems engineers were educated in a traditional
engineering discipline, rather than systems engineering, and became systems

P
age 22.1401.5

	

engineers through job experiences in developing systems where the primary focus
was on physical components. Both approaches (education and experience) result in
systems engineers who are firmly grounded in traditional engineering.

In contrast, software engineering curricula are based on computer science, which
emphasizes discrete mathematics and algorithmic problem solving. Many
practicing software engineers (like many practicing systems engineers) may have
received little education in software engineering (or systems engineering) and have
obtained their skills through practical experience.

The remainder of this paper expands on the similarities and differences between
software engineering and traditional engineering. Software engineering issues that
should be understood by systems engineers are then presented and different
approaches to incorporating software engineering concepts into systems engineering
curricula are discussed.

What’s Different About Software?

Software, in contrast to other products of engineering, does not have any physical
properties, other than the printouts and screen images of design documents and
source code. In Chapter 16 of his seminal text, The Mythical Man-Month, Fred
Brooks identified four essential properties of software that differentiate it from other
kinds of engineering artifacts4:

1) complexity,
2) conformity,
3) changeability, and
4) invisibility of software.

An exposition of these properties is provided in Chapter 1 of Managing and
Leading Software Projects3. The following is a brief paraphrasing from that text.

Software complexity

According to Fred Brooks, software is more complex, for the amount of effort and
the resources required to construct it, than most artifacts produced by similar
amounts of effort and resources. Clearly, products and systems that contain
software are more complex than the software within them but those products and
systems, including the software, require additional effort and resources to develop
the other elements.

The complexity of software arises from the large number of unique, interacting
components in a software system. The components are unique because, for the most
part, they are encapsulated as functions, subroutines, or objects and invoked as
needed rather than being replicated. Software components have several different
kinds of interactions, including serial and concurrent invocations, state transitions,

P
age 22.1401.6

	

data couplings, and interfaces to databases and external systems. In addition, the
algorithms and data structures contained within the components may be complex.

Complexity internal to the components and in the connections among components,
plus the ripple effect of changes to a component may result in a large amount of
rework that can result from a “small” change in requirements. For this reason, many
experienced software personnel say there are no small changes to software
requirements. Complexity can also hide defects that may not be discovered
immediately and may thus require additional, unplanned rework later. The move to
object-oriented development of software is motivated, in part, by the desire to
encapsulate algorithms and data structures behind well-defined interfaces, thus
mirroring the “black box” approach to systems design used by traditional engineers.

Software conformity

Conformity is the second essential property of software cited by Brooks. Software
must conform to exacting specifications in the representation of each part, in the
interfaces to other internal parts, and in the connections to the environment in which
the software operates. A compiler that translates source code to object code can
detect a missing semicolon or other syntactic errors but a defect in the program
logic, or a timing error during program execution may not be detected during
software development or modification, and the source of the resulting undesired
behavior may be difficult to detect when encountered during system operation.

Software conformity in the interfaces between software components is also an issue;
subtle defects in interfaces are one of the leading causes of software failure.
Tolerances among the interfaces of physical entities is the foundation of
manufacturing and construction; no two physical parts that are joined together have,
or are required to have, exact matches. Eli Whitney (of cotton gin fame) realized in
1798 that if musket parts were manufactured to specified tolerances,
interchangeability of similar (but not identical) parts could be achieved.
There are no corresponding tolerances in the interfaces among software entities or
between software entities and their environments. Interfaces among software parts
must agree exactly in the numbers and types of parameters and in the kinds of
couplings. There are no interface specifications for software stating that a
parameter can be “an integer plus or minus 2%.”

Also, lack of conformity can cause problems when an existing software component
cannot be reused in a different system because it does not conform to the needs of
the system under development. Lack of conformity might not be discovered until
late in a project, thus necessitating development and integration of an acceptable
component to replace the one that cannot be reused. In addition, complexity of the
candidate component or complexity in the design of the system being developed
may have made it difficult to determine that the component to be reused lacked the
necessary conformity until the components it would interact with were
implemented.

P
age 22.1401.7

	

Software changeability

Changeability is Brooks’ third property that makes software development difficult.
Software coordinates the operation of physical components and provides much of the
functionality in software-intensive systems. Software is the most frequently changed
element in a system that contains software because it is easily changed (i.e., the most
malleable) as compared to modifying physical components. This is especially the case in
the latter stages of developing or enhancing a system. Changes may occur because
customers change their minds; competing products change; mission objectives change;
laws, regulations, and business practices change; underlying hardware and software
technology changes; the operating environment of the system changes. As mentioned
above, software may be the most readily changed component but that does not mean
changes to software are easily done.

When a system is installed in the operating environment it will change that environment
and result in new requirements that will require changes to the system; i.e., now that the
new system enables me to do A and B, I would like for it to also allow me to do C, or to
do B in a different way, or to do C instead of B. Often, changing the software is the most
cost-effective way to make changes to a software-intensive system; but as stated above
there are no small changes to complex software.

 Software invisibility

The fourth of Brooks’ essential properties of software is invisibility. Software is
said to be invisible because it has no physical properties. Because software has no
physical presence, other than the design and source code representations, software
engineers use these representations, at different levels of abstraction, in an attempt
to visualize the inherently invisible entity.

The inherent invisibility of software makes it difficult to observe subtle defects. A
single misstated symbol in a million-line software program can create a catastrophic
system failure that may only occur under specific conditions that arise after
thousands of heretofore-successful program operations.

Another unfortunate result is that software under development is often reported to
be “almost complete” for long periods of time with no objective evidence to support
or refute the claim; this is the well-known “90% complete syndrome” of software
projects. Many software projects have been cancelled after large investments of
effort, time, and money because no one could objectively determine the status of the
software or provide a credible estimate of a completion date or the cost to complete
the software.

There are well-known techniques that can be used to ameliorate the 90% complete
syndrome of software development3 but, unfortunately, some software organizations
do not apply these techniques in a systematic manner.

P
age 22.1401.8

	

Three additional factors

In addition to the four essential properties of software identified by Fred Brooks,
there are three additional aspects of software engineering that should be understood
by systems engineers; each results from the intangible nature of software:

1) Software engineering, to a greater degree than other engineering disciplines,
involves intellect-intensive work;

2) that work is performed by closely coordinated teams; and

3) software engineering metrics and models are different in kind from the

metrics and models of traditional engineering.

Certainly, every kind of engineer engages in intellect-intensive work but the lack of
physical properties in software blurs the boundary between the analysis-and-design
phases and the construction phase of system development. The work products of
software engineers flow from their thought processes directly into the source code
representation of the software that they construct at their keyboards. But, as
Michael Jackson has observed, the entire description of a software system or
product is usually too complex for the entire description to be written directly in a
programming language, so we must prepare different descriptions at different levels
of abstraction, and for different purposes5.

Thus, systematic development processes and intermediate work products are
required in software engineering, as in other engineering disciplines; however, the
reasons are different. In software engineering, it is possible (although not
recommended) that an acceptable software product could be developed without
systematic analysis and design; the purpose of systematic development of software
is to control complexity. In other engineering disciplines the purpose of systematic
analysis and design is perhaps to control complexity but primarily to produce
blueprints, schematics, and other plans for construction of a physical artifact.

The second additional factor to be considered is the closely coordinated teamwork
required to produce software. Because software engineering is intellect-intensive,
effort is the fundamental unit of estimation and control for software projects. A
software project estimated to require 100 staff-months of effort might be
constructed by 10 people working for 10 months but not 100 people working for one
month and probably not 1 person working for 100 months; teams of individual
contributors are thus required (This fact is the basis for the title of The Mythical
Man-Month by Fred Brooks; people and time cannot be arbitrarily interchanged on a
software project). The problems encountered by teams engaged in teamwork to
construct software are similar to those that would be encountered in writing of a
book by a team of individual contributors/collaborators, especially if those team
members are geographically dispersed.

P
age 22.1401.9

	

A third additional factor that distinguishes software engineering, in addition to Fred
Brooks four essential properties, is the metrics and models used in software
engineering. During the 20th century, great advances were made in the traditional
engineering disciplines based on development of analytical models and quantitative
measures. It is often the case that a physical artifact can be characterized by a few
parameters such as, for example, voltage level, current flow, and heat dissipation; or
mass, volume, and strength of materials. Metrics of interest can often be determined
from mathematical models of the artifact in question. These metrics then guide
design and fabrication of physical components and systems.

Because software has no physical properties, these kinds of models are not possible.
There are no mathematical models that can accurately predict the safety, security, or
reliability of software with the degree of precision that is possible for physical
artifacts. This is not to imply that there are no models in software engineering (such
as queuing models for software throughput) but the models and metrics in software
engineering are fewer and different in nature than the models and metrics of
traditional engineering.

Software development processes

The intangible nature of software may leave the impression that software is
infinitely malleable and can be formed into any desired configuration without
systematic development processes. However, software like other artifacts of
engineering is (or should be) developed by application of systematic processes of
analysis, design, construction, integration, verification, and validation. As stated
above, control of complexity is the primary reason for systematic development of
software. Efficient and effective development of software are also important
reasons to use systematic development processes; like all engineers, software
engineers should seek solutions that are timely and economical.

The intangible nature of software allows iteration among and interleaving of the
phases of the development process to a much greater degree than is possible for
physical artifacts. Iterative processes for software development include the
incremental, evolutionary, agile, and spiral approaches3.

While it is true that incremental and iterative processes can be, and are, used to
develop systems composed of physical artifacts, it is also true that the nature of
systems engineering (i.e., specifying diverse components and allocating
requirements to them, accomplishing system design, and developing plans and
enacting integration, verification, and validation) involves functional decomposition
and linear development processes to a greater degree than in modern software
engineering practice.

Smooth integration of the development processes used in systems engineering and
software engineering is a continuing and ongoing challenge.

P
age 22.1401.10

	

Risk Management

Risk management is, or should be, the concern of all engineers; both during initial
analysis and design and on a continuing basis during initial system development and
subsequent modifications. All engineering disciplines must deal with process-based
risk factors, such as schedule, budget, cost, and personnel; however the technical
risk factors for software engineering, because of the nature of software, are different
in kind from the technical risk factors for traditional engineering disciplines.

Technical risk factors in software engineering typically involve issues such as
adequacy of the computing resources (memory and processing speed of the
hardware processors, distributed processing, bandwidth, etc); adequacy of the
development environment (operating systems, programming languages, database
tools); familiarity of the developers with the development tools and the application
domain; interfaces to the hardware, software, and human operational environments,
and achievement of non-functional requirements (e.g., safety, security, reliability,
adaptability).

Systems engineers and other traditional engineers are also concerned with the risk
factors that may be encountered in achieving the non-functional requirements for
their systems. Other risk factors that may be encountered in traditional engineering
projects include performance shortfalls of manufactured components (e.g.,
excessive power consumption, overheating, inadequate strength of materials),
delays in fabrication of components, mismatches in the physical interface
connections between physical components, and backlogged orders for needed
components.

Pedagogical issues

The major topics to be covered in teaching software engineering concepts to
systems engineers include:

• Differences in use of shared terminology
• System engineering techniques used by software engineers
• Software engineering techniques used by systems engineers
• The intangible and malleable nature of software
• The four essential properties of software
• The three additional factors
• Software development processes
• Risk management of software projects

The important concepts of software engineering can be conveyed to systems
engineering students though the use of analogies, case studies, and examples. For
instance, the malleability and resulting ease of changing software can be illustrated
using a flowchart or pseudo-code to show, for example, changing a bubble sort

P
age 22.1401.11

	

routine to sort in descending order rather than ascending order. The ease of making
a mistake that sorts data in the wrong order can also be illustrated.

The difficulty of changing software can be illustrated by an example that creates
undesired side effects of making a change. Design techniques such as encapsulation
and information hiding to control ripple effects can be illustrated. The complexity
of software can be illustrated using a pseudo-code example of a recursive factorial
algorithm or a quicksort algorithm. A simple, inductive proof of the recursive
factorial algorithm can be shown as well as the equivalent iterative version of the
factorial algorithm and the use of loop invariants. The strength and limitations of
formal methods in software engineering could be presented.

The conformity required of software can be illustrated by examples such as the
Mars Orbiter crash caused by a mismatch of parameters in a software interface6 or a
similar cause of the crash of the Ariane 5 rocket7. Invisibility and safety issues for
software can be illustrated by using the race condition that, in part, caused the
Therac-25 machine to overdose radiation patients8. These case studies also illustrate
failures in systems engineering.

Other classic examples abound that illustrate the nature of software, software
engineering practices, and the interactions of software engineering and systems
engineering.

There are several ways in which the concepts of software engineering can be taught
to systems engineering students, including:

• Software engineering concepts introduced in a freshman introduction-to-
engineering course with reinforcement of the concepts in later courses

• A software engineering course tailored to the needs of systems engineering
students; i.e., not a programming course

• A capstone course that focuses on software systems engineering

Many engineering schools have a first course in engineering that, in part, surveys
the various fields of engineering. Software engineering could be included among
the engineering fields surveyed. Later courses could include case studies in which
software contributed to the success or failure of a complex system with exploration
of the underlying software engineering issues (both positive and negative).

Ideally, a software engineering course (not a programming course) could be
included in a systems engineering curriculum. Admittedly, this may not be feasible
because it would require finding room for the course in already crowded curricula,
and it might not be cost-effective to offer a specialized course in software
engineering for systems engineers. However, the course might be offered to

P
age 22.1401.12

	

students in other engineering disciplines to amortize the course overhead among
more students.

Also, capstone courses could be tailored to focus on software systems engineering,
either as special offerings or as a requirement for all students.

Finally, it should be observed that many graduate students in systems engineering
and practicing systems engineers could benefit from learning the material presented
in this paper.

Bibliography

1. Section 1.5 of The System Engineering Body of Knowledge, v0.25 (note: v0.25 of SEBoK is not

publicly available. This reference will be changed prior to submission of the final version of the
paper when v0.5 of SEBoK will be publically accessible.)

2. A Guide to the Project Management Body of Knowledge (SPBOK), Fourth Edition, Project

Management Institute, 2008.

3. Managing and Leading Software Projects by Richard E. (Dick) Fairley; published by Wiley,

2009.

4. The Mythical Man-Month by Fred Brooks; published by Addison-Wesley, 1995.

5. “Descriptions in Software Development,” by Michael Jackson in Lecture Notes in Computer

Science, Springer Verlag GmbH, Volume 2460, 2002.

6. Mars Climate Orbiter Mishap, Investigation Board Phase I Report, NASA, November, 1999.

http://sunnyday.mit.edu/accidents/MCO_report.pdf

7. Ariane 5 Flight 501 Failure, Report by the Inquiry Board,

http://www.di.unito.it/~damiani/ariane5rep.html

8. Therac-25, http://en.wikipedia.org/wiki/Therac-25

P
age 22.1401.13

