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I. Introduction 
 
This paper describes a course and laboratory in State Variable Feedback developed as a technical 
elective for students in the Electrical and Computer Engineering Technology (ECET) program at 
the University of Cincinnati.  Students pursuing the EET degree are required to take courses in 
Signals and Systems and Feedback Controller Design.  They learn to design lead, lag, and 
proportional-integral-derivative controllers (both analog and digital) for single-input single-
output systems.  The technical elective in State Variable Feedback allows students to explore the 
added benefits of a state variable controller when applied to multi-input multi-output systems 
and/or systems where constraints are imposed on the controller (i.e., tracking in minimum time 
or tracking with minimum control effort expended).  In the past, a course in State Variable 
Feedback would have been too mathematically rigorous to include in a technology program.  
However, with the use of MATLAB and SIMULINK1, students are able to design state variable 
feedback controllers and simulate the system responses without getting caught up in complicated 
matrix manipulations and integral calculations. 
 

II. Modeling Systems 
 
The course begins with modeling of several types of systems including electrical circuits, 
mechanical translational systems, motors, a robot gripper, an inverted pendulum on a cart, and 
pitch control for a helicopter using both differential equations and state variable models2,3. 
Students have been exposed to system modeling using differential equations and transfer 
functions in the pre-requisite courses, but state equations are an entirely new concept.  In course 
assignments and in lab, students build models of systems in SIMULINK using both transfer 
function blocks and state space blocks in order to better understand the similarities between these 
system models.  In MATLAB, the functions ss2tf and tf2ss are introduced as tools for switching 
between the two types of system models for single-input-single-output (SISO) systems.   
 
As an example, one of the systems explored in lab is the two-mass system shown in Figure 1. 
 
        y1(t)                       y 2(t)  
 
                  f(t)        Spring, K 
         Applied Force      
 
                                       Rolling Friction = B (constant)            Figure 1:  Two-mass System 
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The connection between the two carts is modeled using a spring with a spring constant, K.  The 
friction is assumed to be a constant, B.  M1 and M2 represent the mass of Cart 1 and Cart 2 
respectively.  Students are first asked to derive the differential equations that model this system: 
 

M1d2y1/dt2 = f(t) – K(y1 – y2) – Bdy1/dt 
M2d2y2/dt2 = K(y1 – y2) – Bdy2/dt 

 
The next step is to derive the state model by defining the states to be the position and velocity of 
each of the carts.  Defining the states as physical system variables as opposed to the states of the 
controllability model is extremely important in promoting technology students' understanding of 
the concept of a state.  By defining x1 = y1 (position of cart 1), x2=y2 (position of cart 2),  
x3= dy1/dt (velocity of cart 1), and x4 = dy2/dt (velocity of cart 2), students derive the following 
state variable model: 
 
 x1  0 0 1 0    x1  0 
 d/dt x2   = 0 0 0 1    x2        + 0      f(t) 
 x3           -K/M1   K/M1 -B/M1 0    x3           1/M1 
 x4  K/M2  -K/M2  0       -B/M1    x4  0 
 
 
The final step of this exercise is for students to build the system in SIMULINK and explore the 
system step response using several different values for the spring constant , K, and the coefficient 
of friction, B.  The following example illustrates the effect of the spring constant on relative cart 
displacement.  Figure 2(a) shows the block diagram constructed in SIMULINK and Figure 2 (b) 
shows the resulting cart displacements. 
 

Step1 = 1.5 N 

Step = 1.5 N 

x' = Ax+Bu 
 y = Cx+Du 

Spring Constant = 2 N/m 

x' = Ax+Bu 
 y = Cx+Du 

Spring Constant = 0.2 N/m 
Displacement 
of Carts 

Displacement 
of Carts 

 
 

Figure 2 (a):  Two-mass System in SIMULINK 
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Figure 2 (b):  Cart Displacements with Varying Spring Constants 
 
 
Three important teaching considerations emerge from this section on modeling: 
 
Ø Using a wide variety of system models generates student interest in the subject. 
Ø Defining the states as physical system variables as opposed to the states of the 

controllability model is extremely important in promoting technology students' 
understanding of the concept of a state. 

Ø Building the system in SIMULINK gives students a much clearer picture of the system 
model than using MATLAB commands to generate system responses. 

 
 

III. Transient Response 
 
An understanding of how pole and zero locations affect the transient response of a system is 
critical when designing a state feedback controller based on pole placement.  The equations for 
2nd order systems that relate percent overshoot and settling time for the step response to the 
damping coefficient and natural frequency of the closed-loop system poles are given by: 
 

Percent Overshoot = exp(-pz / sqrt(1-z2)   ) 
Settling Time = 4 / (zwn) 
 
Where:   
      wn = natural frequency = magnitude of poles 

        z = damping ratio = - Real[pole]/wn 
 
Students are familiar with these equations from a previous course in output feedback.  The effect 
of extra poles and zeros on the system response is then reviewed.  In lab, students complete some 
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simple yet useful examples which illustrate that zeros in the vicinity of the dominant complex 
poles will increase the percent overshoot while extra poles can slow the system response 
significantly.  One of the exercises showing the effect of zeros on system response is included 
here. 
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Figure 3:  Effect of Zeros on System Transient Response 
 
§ System A is a 2nd order system with complex poles at –3 + j5.   
§ System B has the same poles as System A with an additional zero at – 4.  The graph 

shows the increase in percent overshoot due to this additional zero, which is located fairly 
close to the complex poles.   

§ System C has the same poles as System A with an additional zero at +1 (non-minimum 
phase system).  This right half plane zero causes the system response to initially go the 
wrong way.   

§ System D has the same poles as System A with an additional zero at –15.  Since this zero 
is not close to the complex pole, it has virtually no effect on the step response.   

 
Three important teaching considerations emerge from this section on transient response: 
 
Ø It is critical for students to understand the relationship between pole locations and 

transient response (percent overshoot, rise time, and settling time) in order to be able to 
choose desirable pole locations for a state feedback controller.   

Ø It is also critical for students to understand how additional poles and/or zeros in the 
system can have undesirable effects on the transient response and to understand how to 
counteract these effects. 

Ø Examples using MATLAB and SIMULINK facilitate students making the necessary 
connections between pole and zero locations and system transient response. 
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IV. Advantages of State Feedback over Output Feedback 

 
Although output feedback is sufficient for many systems, state feedback is very useful for multi-
input multi-output systems and for control systems with optimal constraints such as those 
requiring minimal control effort or minimum time to final value. Several examples are discussed 
in lecture and lab that illustrate the advantages of state feedback.  Only one example, a position 
control system for an armature-controlled dc motor, is included in this paper. The differential 
equations modeling the motor are derived in class.  A state model is derived by defining two 
states: the position of the motor shaft and the velocity of the motor shaft.  The system is first 
modeled in Simulink where students compare the motor response when feeding back only the 
shaft position (output feedback) to the motor response when both shaft position and shaft 
velocity are fed back (state feedback). A portion of the Simulink results is included here. 
 
The first block diagram in Figure 4 is a position control system using output feedback and the 
second block diagram is a position control system using state feedback (both position and 
velocity).  Students experiment with several different gain values and observe the effect on the 
system response.   
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Figure 4:  Output Feedback and State Feedback for a DC Motor 
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The response for one particular set of gains is shown in the scope plot in Figure 5.  Including 
velocity feedback adds damping to the system (reduces overshoot) and speeds up the system 
response (reduces settling time). 
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Figure 5:  Shaft Position of Motor  

 
 
In lab, students experiment with output and state feedback using a Servo Trainer designed by 
Feedback Incorporated4.  Students are able to vary the feed-forward gain and the tachometer gain 
and observe the effects on the motor response.  This lab is valuable in providing a good visual 
illustration of the power of state feedback. 
 
As a final exercise, students derive the transfer functions of the state feedback and output 
feedback systems leaving the gains as variables.  They can then show state feedback gives them 
enough degrees of freedom to place the closed-loop poles in any desired position.  Output 
feedback on the other hand, limits their choice of closed-loop pole positions. 
 
Important teaching considerations that emerge from this section on state feedback are: 
 
Ø Examples using MATLAB and SIMULINK that clearly illustrate the advantages of state 

feedback are critical in helping students understand the advantage of using the more 
complicated state-feedback controller. 

Ø A hands-on lab such as the DC motor lab described above is an invaluable tool for 
demonstrating the concept of state-feedback, particularly if the states are physical 
variables of the system. 

 
 
 

         Output Feedback 
           Response 
 
           State Feedback 
           Response 
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V. Pole Placement Using State Feedback 
 
The theory behind pole placement using state feedback is briefly discussed with the students.  
Proofs are not included in the lecture.  We begin with the state model which students at this point 
have become comfortable with: 
 
    dx(t)/dt = Ax(t) + Bu(t) 
         y(t) =   Cx(t) + Du(t) 
 
The controllability matrix is then defined as [B AB A2B … An-1B] where n is the system order 
or equivalently the number of states.  The theorem concerning pole placement is then introduced.   
 
Theorem:  The system is controllable (i.e., the closed-loop poles can be placed in any desired 
position) if the determinant of the controllability matrix [B AB A2B … An-1B] is non-zero. 
 
The controllability model for a system is then introduced. It is shown that for any given set of 
desired poles, a set of feedback gains can be derived to place the system closed-loop poles at the 
desired positions.  Students are reminded of the exercise with the dc motor (discussed in the 
previous section) where they derived a closed-loop transfer function and showed they had 
complete freedom in specifying the location of the poles by properly choosing the feedback 
gains.  Finally, Ackermann’s formula is introduced to compute the state-feedback gains to place 
the poles in the desirable positions: 
 
  K = [0   0 …  0  1] [B  AB  A2B  …  An-1B]-1 ac(A) 
                          (1 x n)                     (n x n)                   (n x n)           
 
  where ac(s) is the desired characteristic polynomial for the closed-loop system. 
 
One of the examples given in lecture is a state-feedback system to control the pitch angle of a 
helicopter.  The equations of motion taken from [3] are given by: 
 

d2q/dt2  =  -0.415 dq/dt – 0.0111 dx/dt + 6.27 d 
d2x/dt2  =  9.8 q - 1.43 dq/dt – 0.0198 dx/dt + 9.8 d 

 
where q is the pitch angle, x is the translation in the horizontal direction, and d is the rotor angle. 
 
Students are given a step-by-step procedure for designing a state-feedback controller.  The steps 
with application to the pitch control system for the helicopter are included here.  The 
performance specifications for this controller are a maximum 20% overshoot to a step change in 
the rotor angle and a maximum settling time of 10 seconds. 
 
Step 1:  Derive the state model and enter it into MATLAB. 
 
The states are defined as:  x1 = q  (pitch angle) 
     x2 = dq/dt  (pitch velocity) 
     x3 = dx/dt  (horizontal velocity) 
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The input is the rotor angle, d, and the output is the resulting pitch angle, q.  The MATLAB 
statements for entering the state model are: 
 

a=[0 1 0; 0 -0.415 -0.0111; 9.8 -1.43 -0.0198];  
b=[0; 6.27; 9.8]; c=[1 0 0]; d=0;   

 
Step 2:  Check for controllability of the system. 
 

det(ctrb(a,b))   
 
ans = -2.4161e+003         Þ   The system is controllable. 
 
Step 3:  Find the zeros of the system.   
 

[num,den]=ss2tf(a,b,c,d); format short e 
zeros=roots(num) 

 
zeros = -2.4507e-003 
 
Step 4:  Determine the desired pole locations based on the performance specifications. 
 
The damping coefficient corresponding to a percent overshoot of 20% is z = 0.45.  The natural 
frequency, wn, needed to satisfy the settling time specification and the resulting closed-loop 
poles are calculated using the MATLAB statements: 
 

zeta=0.45; ts=10; 
wn=4/(zeta*ts) 
realpart=-zeta*wn 
imagpart=wn*sqrt(1-zeta^2)   

 
wn = 8.8889e-001 
realpart = -4.0000e-001 
imagpart = 7.9380e-001   
 
The desired dominant complex poles are at -0.4 +  j 0.8.  What about the other pole?    
Place the other pole at -0.0025 to cancel the effects of the zero.  It is a very interesting exercise 
to show students what happens if this zero is neglected and the third pole is chosen far to the left 
of the complex poles, say at -2.0.  
 
Step 5:  Find the feedback gains to place the poles at the desired positions.  
 

(a) Find the desired denominator for the closed-loop transfer function: 
 

desired = conv([1 0.4 + 0.8j],[1 0.4-0.8j]); 
desired = conv(desired, [1 0.0025]);   

 
(b) Calculate the feedback gains using Ackermann's formula 
 

k=[0 0 1]*inv(ctrb(a,b))*polyvalm(desired,a)   
 
k =  1.2760e-001  6.1410e-002 -1.7697e-003   
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(c) Check to make sure the closed-loop poles are in the desired locations: 
 

anew=a-b*k; [clnum,clden]=ss2tf(anew,b,c,d); poles=roots(clden)    
 

poles = 
 -4.0000e-001 +8.0000e-001i 
 -4.0000e-001 -8.0000e-001i 
 -2.5000e-003                 
 
 
Step 6:  Simulate the system response to check specifications: 
 
The system response can be generated using the MATLAB commands step or lsim but students 
get a better understanding of the feedback system by building it in SIMULINK using the State 
Variable block.  The block diagram for the pitch angle control system and the system response to 
a step change in the rotor angle are shown in Figure 6.  
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Figure 6 (b):  Pitch Angle of Helicopter 
 

 

Figure 6 (a):  State Feedback Controller for Pitch Angle of Helicopter 
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Teaching Considerations that emerge from this section on pole placement include: 
 
Ø Although the state-feedback design and simulation can be done completely in MATLAB, 

building the system using SIMULINK gives students a better understanding of what the 
physical control system would look like. 

Ø Having students check the closed-loop poles reinforces the validity of Ackermann’s 
formula and the pole-placement technique.  This is a useful “replacement” of the proofs 
included in a more rigorous course in state-feedback control. 

 
 

VI. Designing Observers for State Estimation 
 
In many systems, some of the states of the system may not be measurable and available for state 
feedback.  In this case, the actual state is replaced by an estimate of that state derived from a 
state estimator or a state observer. As in the case of state feedback, the theory behind state 
estimation is discussed in lecture without any formal proofs of theorems. Reduced order state 
estimators are discussed and designed in lecture and lab but will not be included in this paper.  
  
Students are given a step-by-step procedure for designing a state estimator.  The steps are similar 
to those outlined in the previous section and therefore are not included here.  An example of state 
estimation to control pitch angle of the helicopter discussed in the previous section is included.  
The performance specifications for the controller are the same as those outlined in the previous 
section: a maximum 20% overshoot to a step change in the rotor angle and a maximum settling 
time of 10 seconds.  Therefore, the feedback controller gains are identical to those computed in 
the previous section.  A desired pitch angle of 0.2 radians is assumed.  Also, the initial conditions 
of the system are assumed to be q = 0; dq/dt=0;  and dx/dt=15.  The initial conditions for the 
estimator are all assumed to be zero.  The state-feedback controller and state estimator are built 
using SIMULINK.  The system block diagram and the system response are shown in Figure 7.  
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Figure 7 (a):  Actual and Estimated Pitch Angles 
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VII. Conclusion 

 
A course and lab in state-variable feedback was developed as a technical elective for students in 
Electrical Engineering Technology at University of Cincinnati.  The lectures, exercises, and labs 
were designed using MATLAB and SIMULINK to illustrate the advantages of state-feedback 
control without using rigorous mathematics. 
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           Figure 7 (b):  Pitch Control for Helicopter using State Estimation 
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