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Abstract 
 

A virtual displacement is an imaginary differential displacement that may not really take place. 
A virtual displacement may be either consistent with constraints at supports or inconsistent 
with constraints at supports. A virtual work is the work done by force or moment during a vir-
tual displacement of the system. The virtual work method can be applied to solve problems in-
volving either machines (structures with movable members) or frames (structures with no mov-
able members). By letting the free body of a system undergo a strategically chosen compatible 
virtual displacement in the virtual work method, we can solve for one specified unknown at a 
time in many complex as well as simple problems in mechanics without having to solve coupled 
simultaneous equations. The virtual work method may initially appear as a magic black box to 
students, but it generally kindles great curiosity and interest in students of statics. This paper pro-
poses an approach consisting of three major steps and one guiding strategy for implementing the 
virtual work method. It results in great learning of the virtual work method for students. 
 
I.  Introduction 
 
Work is energy in transition to a system due to force or moment acting on the system through a 
displacement of the system, while heat is energy in transition to a system due to temperature dif-
ference between the system and its surroundings. Work, as well as heat, is dependent on the path 
of a process. Like heat, work crosses the system boundary when the system undergoes a process. 
Unlike kinetic energy and potential energy, work is not a property possessed by a system. Many 
textbooks in statics show the use of virtual work method to solve problems involving mainly 
machines, where the virtual displacements are usually chosen to be consistent with constraints 
at supports. The virtual work method can equally be used to solve problems involving frames in 
statics. Readers may refer to textbooks by Beer and Johnston,1-2 Huang,3 Jong and Rogers,4 etc., 
where virtual displacements inconsistent with constraints at supports are strategically chosen to 
solve equilibrium problems of frames, which are fully constrained at supports. 
 
This paper is aimed at doing the following: (a) sharpen the concept of work for students, (b) 
compare head to head the virtual work method with the conventional method using an example, 
(c) use displacement center5 and just algebra and geometry as the prerequisite mathematics to 
compute virtual displacements, (d ) propose three major steps in the virtual work method, (e) 
propose a guiding strategy for choosing the virtual displacement that is the best for solving one 
specified unknown, and ( f ) demonstrate (in Appendix A) the evidence that the conventional 
method (without displacement center) requires using differential calculus in determining a cer-
tain virtual displacement. For benefits of a wider range of readers having varying familiarity with 
the subject, this paper contains illustrative examples with different levels of complexity. 
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II.  Fundamental Concepts 
 
Engineering students learn the definition of work when they take the course in physics usually in 
their freshman year. In mechanics, a body receives work from a force or a moment that acts on it 
if it undergoes a displacement in the direction of the force or moment, respectively, during the 
action. It is the force or moment, rather than the body, which does work. In teaching and learning 
the virtual work method, it is well to refresh the following fundamental concepts: 
 

  Work of a force 
 

The work  done by a force F on a body moving from position A1 2U → 1 along a path C to position 
A2 is defined by a line integral. It is given by 1-4, 6-7
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where · denotes a dot product, and dr is the differential displacement of the body moving along 
the path C during the action of F on the body. If the force F is constant and the displacement 
vector of the body during the action is q, then the work done on the body is given by 

 

 

                                                               1 2U → Fq= ⋅ =F q  (2) 

where F is the magnitude of F and  is the scalar component of q parallel to F. If we let the an-
gle between the positive directions of F and q be φ and assume that both F and q are not zero, 
then the values of both  and  are negative if and only if 90° < φ ≤ 180°. 

q

q 1 2U →

 
  Work of a moment 

 

The work  done by a moment M (or a couple of moment M) on a body during its finite ro-
tation, parallel to M, from angular position θ

1 2U →

1 to angular position θ2 is given by 1-4, 6-7
 

                                                                 2
1 2

1
U M d

θ

θ
θ→ = ∫  (3) 

 

If the moment M is constant and the angular displacement of the body in the direction of M dur-
ing the action is θ∆ , then the work done on the body is given by 

 
 

                                                                  θ→ ∆=1 2 (U M )  (4) 
 

  Compatible virtual displacement versus rigid-body virtual displacement 
 

In this paper, all bodies considered are rigid bodies or systems of pin-connected rigid bodies that 
can rotate frictionlessly at the pin joints. A displacement of a body is the change of position of 
the body. A rigid-body displacement of a body is the change of position of the body without 
inducing any strain in the body. A virtual displacement of a body, or a system of pin-connected 
rigid bodies, is an imaginary differential displacement, which is infinitesimal and is possible but 
may not really take place. First, we note that a rigid-body virtual displacement of a body is an 
imaginary differential rigid-body displacement of the body, which is infinitesimal and exact, as 
illustrated in Fig. 1 for a single member AB and in Fig. 2 for a hinged beam ABC. (Notice that 
the hinged beam ABC is a system of pin-connected rigid bodies.) 
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Fig. 1  Body AB  undergoing a rigid-body virtual displacement to position ′′AB  

 
 

 
Fig. 2  Hinged beam ABC  undergoing a rigid-body virtual displacement to position ′′ ′′AB C  

 
 

Now, a compatible virtual displacement of a body is an imaginary first-order differential dis-
placement, which conforms to the integrity (i.e., no breakage or rupture) of its free body within 
the framework of first-order differential change in geometry, where the body may be a particle, a 
rigid body, or a set of pin-connected rigid bodies. A compatible virtual displacement of a body is 
compatible with what is required in the virtual work method; it is generally different from a 
rigid-body virtual displacement of the body. As in calculus, a second-order differential change in 
geometry is a great deal smaller than the first-order differential change in geometry, since all 
differential changes are infinitesimal. It is well to note that a compatible virtual displacement 
of a body may have, at most, a second-order (but not first-order) infinitesimal differential change 
in its geometry as compared with a corresponding rigid-body virtual displacement of the same 
body. This is illustrated in Fig. 3 for a single member AB and in Fig. 4 for a hinged beam ABC. 

 

 
Fig. 3  Body AB  undergoing a compatible virtual displacement to position ′AB  

 

 

 
Fig. 4  Hinged beam  undergoing a compatible virtual displacement to position ABC ′AB C  

 
Using series expansion in terms of the first-order differential angular displacement δθ , which is 
infinitesimal, we find that the distance between ′′B and ′B in Fig. 1 is 
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                 2 4 65 611
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2δθ δθ δθ δθ′′ ′ ⎡ ⎤= − = + + + + ⋅⋅ ⋅ − ≈⎣ ⎦
LB B L L L L δθ  (5) 

Thus, the length ′′ ′B B  is of the second order of δθ  and is negligible in the virtual work method. 
The compatible virtual displacement of point B in Figs. 1, 3, and 4 is from B to . We find that ′B

 

                     3 5 7171 2
3 15 315tan ( ) ( ) ( )δ δθ δθ δθ δθ δθ δθ′ ⎡ ⎤= = = + + + + ⋅⋅ ⋅ ≈⎣ ⎦BBB L L L  (6) 

In Fig. 1, the lengths of the chord ′BB and the arc ′′BB  can be taken as equal in the limit since 
the angle δθ is infinitesimally small. Therefore, the magnitude of the compatible linear virtual 
displacement of point B, as given by Eq. (6), may indeed be computed using the radian measure 
formula in calculus; i.e., 
                                                      θ=s r  (7) 

 

where s is the arc subtending an angle θ in radian included by two radii of length r. In virtual 
work method, all virtual displacements are meant to be compatible virtual displacements, and 
these two terms are understood to be interchangeable in the remainder of this paper. 
 

  Displacement center 
 

Relations among the virtual displacements of certain points or members in a system can be found 
by using differential calculus, or the displacement center,5 or both. The displacement center of a 
body is the point about which the body is perceived to rotate when it undergoes a virtual dis-
placement. There are n displacement centers for a system composed of n pin-connected rigid 
bodies undergoing a set of virtual displacements; i.e., each member in such a system has its own 
displacement center. Generally, the displacement center of a body is located at the point of in-
tersection of two straight lines that are drawn from two different points of the body in the initial 
position and are perpendicular to the virtual displacements of these two points, respectively. 
Readers familiar with dynamics would be correct to infer that the displacement center corre-
sponded to the velocity center4 of the body if the virtual displacements were the velocities of 
those two points on the body. This is illustrated in Fig. 5, where the body AB is imagined to slide 
on its supports to undergo a virtual displacement to the position ,A B′ ′  and its displacement center 
C is the point of intersection of the straight lines AC and BC that are drawn from points A and B 
and are perpendicular to their virtual displacements ′AA  and ′BB , respectively. 

 

 
Fig. 5  Virtual displacement of body AB  to position ′ ′A B with displacement center at C 
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Students will find it helpful to perceive the overall situation in Fig. 5 as an event where the body 
AB and its displacement center C form a “rigid triangular plate” that undergoes a rotation about 
C through an angle δθ from the initial position ABC to the new position ′ ′A B C . In this event, all 
sides of this “rigid triangular plate” (i.e., the sides AB, BC, and CA), as well as any line that 
might be drawn on it, will and must rotate through the same angle δθ, as indicated. 
 
Sometimes, it is not necessary to use the procedure illustrated in Fig. 5 to locate the displacement 
center of a body. When a body undergoes a virtual displacement by simply rotating about a given 
point, then the displacement center of the body is simply located at the given point of rotation. 
This is illustrated in Figs. 6 and 7. 

 
 

 
Fig. 6  Virtual displacement of body AB  to position ′AB with displacement center at A 

 
 

 
Fig. 7  Virtual displacement and the two displacement centers for the hinged system ABC 

 
Additional examples may be found later in this paper. Nonetheless, we attribute to the concept of 
displacement center,5 which makes possible the use of just algebra and geometry (rather than 
differential calculus, as illustrated in Appendix A) as prerequisite mathematics for, and allowed 
the great expansion of, the use of the principle of virtual work in statics 4 and the principle of 
virtual work in kinetics as well as the principle of generalized virtual work in Dynamics.4
 

  Principle of virtual work 
 

Historical studies show that on February 26, 1715, the Swiss mathematician Johann Bernoulli 
(1667-1748) communicated to Pierre Varignon (1654-1722) the principle of virtual velocities in 
analytical form for the first time. That was the forerunner of the principle of virtual work today. 
The approach to mechanics based on the principle of virtual work was formally treated by Joseph 
Louis Lagrange (1736-1813) in his Mécanique Analytique published in 1788. 
 
Keep in mind that bodies considered here are rigid bodies. The term “force system” denotes a 
system of forces and moments, if any. The work done by a force system on a body during a vir-
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tual displacement of the body is the virtual work of the force system. By Newton’s third law, 
internal forces in a body, or a system of pin-connected rigid bodies, must occur in pairs; they are 
equal in magnitude and opposite in directions in each pair. Clearly, the total virtual work done by 
the internal forces during a virtual displacement of a body, or a system of pin-connected rigid 
bodies, must be zero. When a body, or a system of pin-connected rigid bodies, is in equilibrium, 
the resultant force and the resultant moment acting on its free body must both be zero. 
 
The total virtual work done by the force system acting on the free body of a body is, by the dis-
tributive property of dot product of vectors, equal to the total virtual work done by the resultant 
force and the resultant moment acting on the free body, which are both zero if the body is in 
equilibrium. Therefore, we have the principle of virtual work in statics, which may be stated as 
follows: If a body is in equilibrium, the total virtual work of the external force system acting on 
its free body during any compatible virtual displacement of its free body is equal to zero, and 
conversely. Note that the body in this principle may be a particle, a set of connected particles, a 
rigid body, or a system of pin-connected rigid bodies (e.g., a frame or a machine). Using δU to 
denote the total virtual work done, we write the equation for this principle as 

 
 

                                                                       0δ =U  (8) 
 

 
III.  Conventional Method versus Virtual Work Method: Example 
 
With the conventional method, equilibrium problems are solved by applying two basic equilib-
rium equations: (a) force equilibrium equation, and (b) moment equilibrium equation; i.e., 

 
 

                                                                       Σ =F 0  (9) 
 

                                                                      PΣ =M 0  (10) 
 

With the virtual work method, equilibrium problems are solved by applying the virtual work 
equation, which sets to zero the total virtual work δU done by the force system on the free body 
during a chosen compatible virtual displacement of the free body; i.e., 

 
 

                                                                       0δ =U                        (Repeated) (8) 
 
 
 

Example 1.  Determine the reactions at supports A and B of the simple beam loaded as shown in 
Fig. 8 by using (a) the conventional method, and (b) the virtual work method. [Note that color 
codes are employed to enhance head-to-head comparison of method (a) with method (b).] 

 
 

 
 

Fig. 8  A simple beam carrying an inclined concentrated load 
 
 
 

 Conventional method to solve for xA : We first draw the free-body diagram shown in Fig. 9, 
 where we have replaced the 300-lb force at C with its rectangular components. 
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Fig. 9  Free-body diagram for the beam 
 
 

 In this method, we refer to Fig. 9 and apply Eq. (9) to write 
 

  Σ F+→ x = 0: – Ax + 180 = 0 ∴   Ax = 180 180 lb = ←xA  
 
 

 Virtual work method to solve for xA : We give the beam a virtual displacement shown in 
Fig. 10, which will strategically involve Ax, but no other unknowns, in the virtual work done. 

 

 
 

Fig. 10  Virtual-displacement diagram to involve Ax in the virtual work done (displ. ctr. at ∞) 
 
 

 In this method, we refer to Figs. 9 and 10 and apply Eqs. (2) and (8) to write 
 

 δU = 0: Ax (–δ x ) + 180 (δ x ) = 0 ∴   Ax = 180 180 lb x = ←A  
 

 Conventional method to solve for : For ease of reference, we repeat Fig. 9 as follows: yA

 
 

Fig. 9  Free-body diagram for the beam          (repeated) 
 
 

 In this method, we refer to Fig. 9 and apply Eq. (10) to write 
 

 +4 Σ MB = 0: −12Ay + 5(240) = 0 ∴   Ay = 100 100 lb y = ↑A  
 
 

 Virtual work method to solve for : We give the beam a virtual displacement shown in 
Fig. 11, which will strategically involve A

yA
y, but no other unknowns, in the virtual work done. 

 

 
 

Fig. 11  Virtual-displacement diagram to involve Ay in the virtual work done (displ. ctr. at B) 
 
 

 In this method, we refer to Figs. 9 and 11 and apply Eqs. (2) and (8) to write 
 

 δU = 0: Ay (12δθ ) + 240 (− 5δθ ) = 0 ∴   Ay = 100 100 lb y = ↑A  
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 Conventional method to solve for : For ease of reference, we repeat Fig. 9 as follows: yB
 

 
Fig. 9  Free-body diagram for the beam          (repeated) 

 
 

 In this method, we refer to Fig. 9 and apply Eq. (10) to write 
 

 +4 Σ MA = 0: −7(240) + 12By = 0 ∴   By = 140 140 lb y = ↑B  
 

 Virtual work method to solve for : We give the beam a virtual displacement shown in 
Fig. 12, which will strategically involve B

yB
y, but no other unknowns, in the virtual work done. 

 

 
 

Fig. 12  Virtual-displacement diagram to involve By in the virtual work done (displ. ctr. at A) 
 
 

 In this method, we refer to Figs. 9 and 12 and apply Eqs. (2) and (8) to write 
 

 δU = 0: 240 (− 7 δθ ) + By (12δθ ) = 0 ∴   By = 140 140 lb y = ↑B  
 
Remark.  Once we have determined that Ay = 100 lb, we may make use of this solution to de-
termine the value of the unknown reaction By in alternative ways as follows: 
 

 Conventional method to solve for : For ease of reference, we repeat Fig. 9 as follows: yB

 
 

Fig. 9  Free-body diagram for the beam          (repeated) 
 
 

 In this method, we refer to Fig. 9 and apply Eq. (9) to write 
 

 +↑ Σ Fy = 0: Ay – 240 + By = 0 ∴   By = 240 – Ay = 140 140 lb y = ↑B  
 

 Virtual work method to solve for : We give the beam a virtual displacement shown in 
Fig. 13, which will involve B

yB
y and Ay in the virtual work done. 

 

 
 

Fig. 13  Virtual-displacement diagram to involve By & Ay in the virtual work done (displ. ctr. at ∞) 
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 In this method, we refer to Figs. 9 and 13 and apply Eqs. (2) and (8) to write 
 

 δU = 0: Ay (δy ) + 240(−δy )  + By (δy ) = 0 ∴   By = 240 – Ay = 140 140 lb y = ↑B  
 

 
IV.  Three Major Steps and One Guiding Strategy in Virtual Work Method: Examples 
 
There are three major steps in using the virtual work method. Step 1: Draw the free-body dia-
gram. Step 2: Draw the virtual-displacement diagram with a guiding strategy. Step 3: Set to 
zero the total virtual work done. The guiding strategy in step 2 is to give the free body a com-
patible virtual displacement in such a way that the one specified unknown, but no other un-
knowns, will be involved in the virtual work done. That is it: three major steps and one guiding 
strategy in the virtual work method! This is demonstrated in the following examples. 
 
Example 2.  Determine the reaction moment MA at the fixed support A of the combined beam 
(called a Gerber beam) loaded as shown in Fig. 14. 
 

 
 

Fig. 14  A combined beam with hinge connections at C, F, and I 
 
Solution.  We first draw the free-body diagram and a set of compatible virtual displacements 
for the beam as shown in Fig. 15. Note that we draw this virtual-displacement diagram with a 
strategy such that no unknowns except MA will be involved in the virtual work done. 
 
 

 
 

 

Fig. 15  Free-body diagram and virtual-displacement diagram to involve MA  in δU = 0 
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Referring to Fig. 15 and applying Eq. (8), we directly write 
 

 δU = 0: ( ) 300( 3 ) 200(6 ) 600( 6 ) 300(4 ) 0AM δθ δθ δθ δθ δθ+ − + + − + =  
                                                                    2100AM =  2100 lb ft  A = ⋅M 4  

 

Remarks.  With the conventional method, we have to refer to the free-body diagram and write 
 

 At hinge I, MI = 0: 6 300 0yK − =  (1) 
 At hinge F, MF = 0: 12 300 600 2 0yK yG− − + =  (2) 
 At hinge C, MC = 0: 18 300 600 8 4(200) 2 0y yK G yD− − + − + =  (3) 

 For the entire beam, +4 Σ MA = 0: 
 

                               (4) 3(300) 8 10(200) 14 600 300 24 0y yAM D G− + − + − − + yK =

These four simultaneous equations yield: Ky = 50, Gy = 150, Dy = −200, and MA = 2100. Thus, 
the conventional method eventually yields the same solution: 2100 lb ft  A = ⋅M 4  
 
Example 3.  Determine the vertical reaction force Ay at the fixed support A of the combined 
beam shown in Fig. 14. 
 
Solution.  We first draw the free-body diagram and a set of compatible virtual displacements 
for the beam as shown in Fig. 16. Note that we draw this virtual-displacement diagram with a 
strategy such that no unknowns except Ay will be involved in the virtual work done. 
 

 
Fig. 16  Free-body diagram and virtual-displacement diagram to involve Ay  in δU = 0

 
 

Referring to Fig. 16 and applying Eq. (8), we directly write 
 

 δU = 0: ( )4
3(2 ) 300( 2 ) 200(2 ) 600( 2 ) 300 0yA δθ δθ δθ δθ δθ+ − + + − + =  

                                                                       500yA =  500 lb y = ↑A  
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Remarks.  With the conventional method, we have to refer to the free-body diagram and write 
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 At hinge I, MI = 0: 6 300yK − =  (1) 
 At hinge F, MF = 0: 12 300 600 2 0yK yG− − + =  (2) 
 At hinge C, MC = 0: 18 300 600 8 4(200) 2 0y yK G yD− − + − + =  (3) 
 For the entire beam, +↑ Σ Fy = 0: 300 200 0y y y yA D G K+ + + − − =  (4) 

These four simultaneous equations yield: Ky = 50, Gy = 150, Dy = −200, and Ay = 500. Thus, the 
conventional method eventually yields the same solution: 500 lb y = ↑A  
 
Example 4.  Determine the horizontal reaction force Dx at the fixed support D of the frame 
loaded as shown in Fig. 17. 

 
Fig. 17  A frame with hinge support at A and fixed support at D 

 
 
 

Solution.  We first draw in Fig. 18 the free-body diagram of the frame in Fig. 17. 
 

 
Fig. 18  Free-body diagram for the frame 
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Next, we draw in Fig. 19 a set of compatible virtual displacements for the frame. Note that we 
draw this virtual-displacement diagram with a strategy such that no unknowns except Dx will 
be involved in the virtual work done. In Fig. 19, pay special attention to the following: 

 The compatible virtual displacement BB′ of point B is such that BB AB′ ⊥  and 10BB δθ′ = . 
 The displacement center of member AB is at A.  
 The displacement center of member BC is at E.  
 The displacement center of member CD is at ∞. 
 Each of the three sides (i.e., BC, CE, and EB) of the “rigid triangular plate” BCE rotate coun-
terclockwise through the same angle of 2δθ. 
 Without benefit of using the displacement center E of member BC, the virtual displacement of 
point C will need to be determined using differential calculus as shown in Appendix A.  

 
 

Fig. 19  Virtual-displacement diagram to involve Dx in the virtual work done 
 
 

Referring to Figs. 18 and 19 and applying Eq. (8), we directly write 
 

 δU = 0: 36( ) 15(6 ) 20(8 ) 25(2 ) 10( 12 ) ( 12 ) 0xDδθ δθ δθ δθ δθ δθ+ + + + − + − =  
 

                                                                       18xD =  18 kN x = ←D  
 
 

Remarks.  With the conventional method, we have to refer to the free-body diagram of the 
frame in Fig. 18 and write 

 

 At hinge C, MC = 0: 3 0D xM D− =  (1) 
 At hinge B, MB = 0: 6 4 3(10) 25yD xM D D 0− + − + =  (2) 

 For the entire frame, +4 Σ MA = 0: 
 

                                        (3) 12 3(10) 25 6(15) 8(20) 36 0yDM D+ + + − − − =
 

These three simultaneous equations yield: MD = 54, Dx = 18, and Dy = 14.75. Thus, the conven-
tional method eventually yields the same solution: 18 kN x = ←D  
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V.  Concluding Remarks 
 
Solutions for simple equilibrium problems by the virtual work method may come across as “un-
conventional” when compared with those by the conventional method, as illustrated in Example 
1 in Section III. Well, Example 1 was provided merely as a teaching and learning example to 
bring out head-to-head contrasts between the conventional method and the virtual work method. 
After all, the virtual work method has been shown as a fabulous method in solving decently chal-
lenging problems as illustrated in Examples 2, 3, and 4 in Section IV. 
 
The implementation of the proposed three major steps and one guiding strategy in the virtual 
work method, as described and illustrated in Section IV, has greatly helped students understand 
and implement the virtual work method in one and half weeks at University of Arkansas in the 
past several years. The enthusiasm of an instructor about the beauty and powerfulness of the vir-
tual work method can readily be contagious to the students. The application of the concept of 
displacement center for each member in a system is what makes possible the use of just algebra 
and geometry (rather than differential calculus, which is evidenced in Appendix A) as prerequi-
site mathematics for the teaching and learning of the principle of virtual work in statics. 
 
Clearly, the advantages of the virtual work method lie in its conciseness in the principle, its vis-
ual elegance in the formulation of the solution via virtual-displacement diagrams, and its saving 
in algebraic effort by doing away with the need to solve simultaneous equations in complex 
problems. The virtual work method may initially appear as a magic black box to students, but the 
advantages and elegance witnessed by students are sparks that kindle their interest in learning the 
virtual work method in particular and the subject of statics in general. 
 
It is true that the drawing of compatible virtual displacements for frames and machines involves 
basic geometry and requires good graphics skills. These aspects do present some degree of chal-
lenges to a number of beginning students. Nevertheless, the learning of the virtual work method 
is an excellent training ground for engineering and technology students to develop their visual 
skills in reading technical drawings and presenting technical conceptions. 
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Appendix A:  Determination of Cxδ Using Differential Calculus 
 

Without the benefit of displacement center,5 the determination of the virtual displacement δxC 
of the joint C in Fig 19 would not be a matter of just algebra and geometry. We would have to 
employ differential calculus to find it. Recall that the guiding strategy calls for no unknowns 
except Dx to be involved in the virtual work done. Thus, the center lines of the frame are chosen 
to undergo a set of virtual displacements (inconsistent with constraints) as shown in Fig. 20. 

 
 

Fig. 20  Virtual displacement of the frame to involve Dx in the virtual work done 
 

We first let the angles made by members AB and BC with the vertical be θ and φ, respectively, as 
indicated in Fig. 20. The constraint on the height of the joint C is  

 

cos cosAB BCθ φ− = CD  
 

Employing differential calculus, we write 

(sin ) (sin ) 0AB BCθ δθ φ δφ− + =                  ∴   10(4/5)sin 2
5(4/5)sin

AB
BC

θδφ δθ δθ
φ

= = δθ=  

The abscissa of the joint C is 
 

sin sin 10sin 5sinCx AB BCθ φ θ= + = + φ  
 

Employing differential calculus, we write 
 
 

            10(cos ) 5(cos ) 10(3/5) 5(3/5) (2 ) 12Cxδ θ δθ φ δφ δθ δθ δθ= + = + =  12Cxδ δθ=  
 

Therefore, differential calculus yields the same value for Cxδ as that indicated in Fig. 19. 
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