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Teaching the IID Assumption in Engineering Statistics I 
 

 

Many procedures taught in introductory statistics courses require that the data meet, at least 

approximately, the normality assumption.  However, all require, in some form, the IID 

assumption, namely, that the observations comprising the sample are independently and 

identically distributed.  Because of this, and the fact that statistical procedures are less robust to 

IID violations than normality violations and IID violations are much more difficult to handle, the 

IID assumption is the more crucial of the two. 

 

In spite of this fact, we believe introductory statistics courses for engineers, and the 

corresponding texts, neither adequately stress the importance of the IID assumption nor provide 

adequate tools for assessing it.  Our belief is based on observing students in upper level statistics 

courses unthinkingly apply IID analysis methods to data which is blatantly non-IID. We became 

aware of the extent of this problem when students in an advanced statistics course, after spending 

a week on time series analysis, blithely computed a confidence interval for the mean of the 

following nonstationary data using the IID formula.  

 

Although there is a trend in introductory statistics texts toward greater emphasis and assessment 

of the IID assumption, additional improvements are needed.  One reason for this is that most of 

the effort at improving statistics pedagogy is directed toward the problem of teaching statistics at 

the precalculus level to non-engineering students.  Such students are well-served by the emphasis 

on data acquired via simple random sampling whereas engineering students also need to know 

how to handle process data - data which is more likely to violate the IID assumption. 
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Following the example of one recent text, Applied Statistics for Engineers and Scientists by 

Petruccelli, Nandram, and Chen, our approach is to introduce students to the IID assumption as 

soon as possible. However, this is complicated by the fact that we begin the course with 

descriptive statistics instead of probability.  Because of this we cannot define the IID assumption 

rigorously until later.  Therefore we initially present the notion of IID data in an intuitive fashion.  

On the first day of class we have students measure their reaction times doing a simulation 

multiple times and then discuss how we should determine which students have the shortest 

reaction time.  Students propose the usual candidates for summarizing an individual's reaction 

times such as the mean, median, trimmed mean, etc.  The next class period we provide time 

series plots of the reaction times for randomly selected students and then resume the discussion.  

Since most individuals' reaction times decrease across the multiple trials, the students realize that 

their original proposals are not appropriate since there are trends in the data.  Thus we set the 

stage for introducing methods for summarizing data and assessing the IID assumption. 

 

Following the approach of David Moore and others of defining the distribution in the beginning 

of the course/text, we begin by defining the distribution of a data set to consist of the unique 

values which occur in the data and how often each value occurs.  Since the distribution is 

typically much smaller than the data set, the question naturally arises as to what information is 

lost when the data is summarized by its distribution.  The answer, of course, is that all 

information contained in the order of the data is lost.  The ordering of the data will contain 

important information only if the observations are related (they are not independent) and/or the 

observations exhibit systematic trends (they are not identically distributed), that is, if the data 

violate the IID assumption.  Since students intuitively understand what it means for the 

observations to be related and to possess trends, we initially define the IID assumption in terms 

of the absence of these characteristics.  Further, by linking violation of the IID assumption with 

the idea of information in the ordering of the data, we arrive at a new visual method of assessing 

the IID assumption, namely, the random order time series plot.  If the order of the data contains 

no relevant information, i.e., the data meet the IID assumption, then the visual character of the 

data set should be essentially unchanged if it is plotted in random order. Thus the IID assumption 

can be assessed by comparing the appearance of the data plotted in order, the times series plot, 

with the data plotted in random order, the random order plot.  If the visual character of the two 

plots is similar, then the IID assumption is probably met.  Of course, one can check the IID 

assumption using only the time series plot but comparison of this plot with random order plots 

facilitates interpretation by providing examples of IID data with the same distribution.  These 

examples make it easier to determine if 

 

1. apparent trends are systematic or simply random oscillations, and 

2. if adjacent observations are related or autocorrelated since the random order plots will 

appear to be rougher or smoother than the original data if negative or positive 

autocorrelation is present. 

 

An example of this is provided below.  Although there aren't any trends in the time series plot, 

we note that it appears rougher than the random order plot.  This is due to negative correlation - 

when the data is plotted in order, adjacent values have opposite sign. 
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Advantages of the times series/random order plot comparison approach are 

 

1. Conceptually simple: Students intuitively understand randomizing the order of the data. 

2. Data unaltered:  Unlike other approaches for detecting trends which use smoothing and 

other data summarization techniques, the data values are not altered in any way. 

3. Many IID examples:  Since each random order plot provides an example of a time series 

plot of IID data, after assessing the IID-ness of a few data sets, students will have seen 

several examples of time series plots of IID data. 

 

An additional benefit of the times series/random order plot comparison approach is that it 

convinces students students of the need for objective statistical methods very early in the course. 

Determining if data are IID can be tricky using time series plots and random order plots.  In 

particular, it's difficult to determine if the data are dependent by comparing the smoothness of 

the two plots.  After analyzing several data sets, some students begin to express frustration at the 

inherent subjectivity of using the time series/random order plot comparison approach to detect 

dependence in the data.  Fortunately, by this time we have begun discussing descriptive statistics 

for bivariate data, in particular, the scatter plot and the sample correlation coefficient r. Thus, at 

this point, students easily grasp the fact that if the data lacks independence because adjacent 

observations are related, then a scatter plot of observation x(t-1) vs. observation x(t) (often called 

a lag plot) will exhibit a nonuniform distribution of points in the Cartesian plane.  In particular, 

for the most common form of dependence, autocorrelation, the points will approximate a line.  In 

this case, the correlation coefficient r provides an appropriate, objective measure of the strength 

of the relationship between adjacent observations. Below is the lag plot for the data of the 

preceding example.  The corresponding correlation coefficient is -0.682. 
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Advantages of using the lag plot to assess lack of independence are 

 

1. Scatter plot application:  By showing that the scatter plot provides a useful solution to an 

existing problem (assessing independence) and providing a source of problems, the lag 

plot facilitates students’ understanding of the scatter plot while simultaneously 

reinforcing their understanding of the IID assumption. 

2. Correlation application:  By showing that the correlation coefficient provides an objective 

measure of dependence (if the data is autocorrelated) and providing a source of problems, 

the lag plot facilitates students’ understanding of the correlation coefficient including 

determining when it is and is not an appropriate measure of the strength of the 

relationship between two variables.  Again, it does this while reinforcing the IID concept 

in students’ minds. 

 

An additional benefit of using the correlation coefficient of the lag plot to assess dependence is 

that it motivates the need for formal hypothesis testing procedures and provides a means of 

revisiting the IID assumption as soon as the p-value approach to hypothesis testing is presented. 

Although the sample correlation coefficient r provides an objective measure of dependence when 

the data is autocorrelated, there is still the issue of how large r must be for us to decide that its 

value is not an artifact of the data set but is due to autocorrelation in the data generating process.  

Thus we need a formal procedure for making this decision, i.e., the hypothesis test.  Since most 

statistical packages provide p-values for testing that the "true" correlation coefficient is zero, this 

provides an example of hypothesis testing in a familiar scenario (IID assessment). 

 

Of course, before discussing hypothesis testing, we cover probability theory. Here we return to 

the IID assumption and define it formally in the context of discussing the fact that a simple 

random sample is (at least approximately) a collection of IID random variables.  At this point we 

reinforce the IID concept by showing how it enables us to easily derive the sampling distribution 

of the sample mean using the rules for describing the distributions of linear combinations of 

independent random variables.  (We believe that, time permitting, introductory engineering 

statistics courses should, at the very least, teach the rules for linear combinations.  Some 

courses/texts go further by teaching additional methods under the rubric of uncertainty analysis 

or error propagation.) 

 

Finally, throughout the remainder of the course, we revisit the IID assumption since it appears in 

some form for the usual statistics procedures taught in an introductory engineering statistics 

course, i.e., one and two sample analysis, ANOVA, and regression.  For example, if the random 

error assumptions of the regression model are met, then the residuals are normal and obey 

(approximately) the IID assumption.  Due to their experience assessing the IID assumption via 

our methods, the students are well-prepared to interpret residual plots and determine if the 

residuals are autocorrelated. 

 

Whenever someone advocates that a new method/approach be added to an introductory statistics 

course, some invariably reply that there's no room! In fact some advocate teaching fewer topics 

in introductory courses so that students better absorb the remaining material.  We are 

sympathetic to these concerns. 
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We argue that the benefits of  using the above methods and approach will outweigh the costs as 

follows: 

 

1. The problem is real as demonstrated by motivated statistics students failing to grasp the 

IID concept in upper level courses. 

2. We believe our approach helps solve the problem by 

i. Repeatedly revisiting the IID assumption throughout the course, and 

ii. providing graphical and formal procedures for testing the IID assumption 

analogous to the graphical and formal procedures (normal QQ plot and 

normality test) currently taught for assessing the normality assumption. 

3. An additional benefit of our approach is that it informally introduces students to the 

concept of a sufficient statistic:  If the data set is IID then the distribution captures all 

relevant information, i.e., the distribution is a sufficient statistic. 

4. The overhead of our approach is very low since 

i. Students should actually collect data at some point in an introductory course.  

Using reaction time experiments, it is easy to get non-IID data. 

ii. The two methods we use, the random order plot and the lag plot, are simple 

versions of methods which should be in this course, the time series plot and 

the scatter plot, respectively.  Further, we provide these methods as macros 

(Minitab) avoiding the overhead of teaching students the software details of 

constructing the plots. 

iii. Our approach simplifies residual analysis.  The regression model model 

assumptions are met if the residuals are normally distributed and (essentially) 

IID with respect to the predictor variables.  Our methods can be used to check 

that the residuals possess this latter property. 

iv. Because of i, ii, and iii, perhaps the only real overhead of our approach is the 

time it takes to discuss the IID assumption throughout the course.  This should 

be a small addition to what instructors should be doing anyway, namely, 

conceptually connecting the various topics so that statistics is perceived as a 

unified whole organized around a few core concepts as opposed to a grab bag 

of loosely related techniques. 

 

Since we only fully integrated the above methods and approach into our Engineering Statistics I 

course this academic year, we have yet to verify the benefit of these changes in advanced 

courses.  However, given the fact that student performance on final exam questions involving the 

IID assumption has greatly improved, we believe students have already benefited from the 

changes.  We are optimistic about their future performance. 
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