

Teaching the Introductory Computer Architecture Course with a

Systematic View

Wei Zhang

Department of Electrical and Computer Engineering

Southern Illinois University Carbondale

Carbondale, IL 62902

USA

zhang@engr.siu.edu

Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education

2

Teaching the Introductory Computer Architecture Course with a

Systematic View

Wei Zhang

Department of Electrical and Computer Engineering

Southern Illinois University Carbondale

Carbondale, IL 62902

USA

zhang@engr.siu.edu

Abstract

The introductory courses in computer architecture typically introduce

undergraduate students a large number of hardware components and their

organizations, including the datapath, control unit, cache, memory, hard disk, bus,

other I/O devices, etc. Without a global picture of the computer as a system,

students often have difficulties in relating these topics to what they have learned in

lower level courses, and can be easily overwhelmed by a large variety of discrete

topics, which will impact their learning outcome. This paper presents a new

approach to teaching the introductory computer architecture courses with an

explicit emphasis on the systematic picture of the computer system. Introducing the

high-level framework of computer as a system can enhance students’ understanding

of various architectural components, and mitigate the difficult of performing

hardware design or assembly programming projects on specific architecture topics.

In addition, we also highlight the importance of software and its interaction with the

underlying hardware by introducing a set of MIPS assembly programming projects.

Based on our experience in two subsequent semesters, such an approach can

enhance the instruction of the introductory computer architecture course and help

students improve their learning outcome.

1. Introduction

Most computer science and computer engineering programs have two or more computer
architecture courses [4]. The introductory computer architecture course typically follows
a programming course and a logic design course, which is often offered to sophomore or
junior students. The goal of the first computer architecture course is generally to provide
a basic introduction to the organization and input/output interface of a simple general-
purpose microprocessor. More advanced architecture concepts and optimizations are
usually provided in the secondary computer architecture course.

Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education

3

This paper is based on the author’s experiences in teaching, updating and
enhancing the computer architecture courses in a public university in the Midwest of US.
The introductory computer architecture course is offered to the junior students in the
computer engineering program. The content of the first computer architecture course
typically includes the introduction of a number of hardware components of general-
purpose microprocessors, such as the datapath, control unit, cache, memory, hard disk,
bus, other I/O devices, etc. Typically, the theme of the introductory computer architecture
course is to maximize performance. Accordingly, traditional approach to teaching the
introductory computer architecture course often begins with an outline of topics, and then
introduces the instruction set architecture (e.g., MIPS), the arithmetic for computers, the
processor and pipeline, the memory hierarchy and I/O devices [1]. While it is necessary
and beneficial to explain the design and implementation of each hardware components
thoroughly, the lack of a global view of microprocessors can easily make students lost in
the details of discrete topics and may become frustrated by the complexity of the
microprocessor. Especially for undergraduate students who have just learned the logic
design and basic programming, it is not uncommon for them to ask what is the
relationship between computer architecture with what they have learned in other courses
such as digital design and basic software programming courses, especially when they are
exposed to the architecture of microprocessors for the first time. Moreover, based on
students’ feedback, without keeping a high-level framework of computer hardware and
software and their interactions in mind, students often have difficulties in starting doing
simulation or programming projects in the early stage of the course due to the complexity
of the computer system, which may delay the progress of the course and impact student
learning outcome.

To address the abovementioned problems, this paper argues that it is crucial to

explicitly lay emphasis on the systematic view in teaching the introductory computer
architecture courses, which emphasizes the high-level organization of the computer
systems and the interactions among different hardware components before teaching
students the details of each hardware component. A systematic view of computer
architecture can not only help students relate different topics that they have learned in
preliminary or other courses in the context of computer architecture, but also smoothen
their learning process of understanding a variety of individual computer architectural
components. Moreover, in our updated computer architecture course, we also stress the
importance of software and its interaction with the underlying hardware by introducing a
set of assembly programming projects. Our evaluation indicates that teaching
introductory computer architecture course with a systematic view can adequately improve
student learning outcome.

2. A Systematic View of Computer Systems

A computer system is an integrated system, including a number of computer hardware
components, their interconnections, the system and application software, and the
interactions between software and underlying hardware. Introducing such a complex
system to the students in one course can be a daunting task. The author has taught the
introductory computer architecture course in a public university in the Midwest of US for

Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education

4

several times. Based on the feedbacks from the students who have taken the introductory
computer architecture course in previous semesters, we find that many of these students
were concerned about the diverse topics covered in this course, and the relationship
between different topics within this course, as well as the correlation between this course
and other preliminary courses. Also, students often have difficulties in starting simulation
and assembly programming projects at early stages of the course since they are lack of
sufficient knowledge of the computer and the simulator framework as a system.

Figure 1. Abstraction levels of a computer system.

To help students overcome these difficulties and develop a better understanding

of the computer architecture, I propose to put emphasis on the systematic view in
teaching the introductory computer architecture courses, which has been implemented in
the updated computer architecture course in our university. In the updated course, the
instructor provides an overview picture of computer systems at the first class of the
introductory computer architecture course. In addition to explaining that computer
architecture (ISA, specifically) serves as the interface between the software and the
underlying hardware, the instructor also emphasizes that both the hardware and software
can be implemented in different levels of abstraction, as shown in Figure 1.

Precisely, as can be seen in Figure 1, the hardware components (e.g., ALU) can

be implemented in logic level or transistor level, which helps students connect the
hardware blocks in a microprocessor with what they have learned in logic design courses
or VLSI design courses. Similarly, the software can be written by different levels of
representation (e.g., high-level language or assembly language), which is finally
translated into binary code before running on a computer. Such an explanation helps
students understand the relation between the software development and computer
architecture. It should be noted that the abovementioned structured computer
organization [11] has been a widely-used concept. However, this paper introduces our

Application

Assembly Code

ISA

Hardware Component

Logic Gates

Transistors

Compiler

Assembler

Computer organization

Logic design

Circuit design

Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education

5

approach and experience in leveraging the levels of computer abstraction to improve
students’ learning outcome in the introductory computer architecture course.

Furthermore, the instructor introduces how a computer works in a high-level view

before explaining any specific hardware component. More specifically, the instructor
teaches students that the processor typically runs the following tasks: to fetch instructions
from the memory (which is treated as a black box for now), to decode the instruction, to
execute the instruction, to get the data from registers or memory, and finally to write back
the results into registers or memory. We find that such an approach can help students
make a smooth transition from the logic design and programming language courses to the
study of computer architecture and organization. Also, such a systematic view about
computers makes it much easier for students to perform assembly language programming
and simulation project without worrying too much about the details of the “unknown”
components, no matter it is a hardware component or a software component.

In addition to the overview at the first class, the instructor can reinforce this

global picture before each hardware component is introduced in details. Specifically, the
instructor can put the current component that is being taught into the framework of the
whole computer system, and treat other components that have not been studied yet as
black boxes. Such a global picture makes it simpler for students to understand where the
current hardware block fits in the whole computer system, and how it interacts with other
components. Moreover, this global view motivates students to explore the “unknown”
hardware components so as to better understand how the whole system works.

2.1 Performance-centered systematic view of a computer

While power consumption and reliability have increasingly become critical design
considerations for microprocessors, performance is still one of the most important design
goals for most microprocessors, which is typically the main theme in the introductory
computer architecture courses. In the updated course, the instructor uses the performance
equations presented in the classical Patterson and Hennessy book [1] at different stages of
the class to highlight the performance issue while erasing students’ burden of possessing
the indepth knowledge of various hardware components at early stages of the course.

 More specifically, at the first overview class, we present the formula CPU time =

Instruction count * CPI * Clock cycle time [1] to measure the performance of
microprocessors. This formula clearly shows the impact of both hardware and software
on the performance of the computer system. However, at this stage, we only require the
students to understand that software and compiler can impact the instruction count and
hardware implementation can affect the CPI and clock cycle time, which give them an
overall picture on how to optimize both the software and hardware for achieving higher
performance. A deeper understanding on how to reduce the instruction count by compiler
optimizations can be learned in a compiler course or an advanced programming language
course later on. After we introduce the design of a single-cycle processor and a multi-
cycle processor, the students can understand how different hardware implementations can
impact the CPI and the clock cycle time. Also, once students have learned the instruction

Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education

6

pipelining, they can understand more techniques to improve performance by reducing the
CPI and the clock cycle time through pipelining. It should be noted that at this stage, the
students still treat the memory and I/O devices as black boxes. After we introduce the
cache memory, the students now understand that the CPI can be increased due to cache
misses, thus hurting performance. Similarly, after we introduce the I/O devices, students
begin to appreciate the fact that the performance can be limited by the I/O bandwidth as
well, thus a balanced design is a necessity to enhance the overall performance of the
computer system. To summarize, as the class progresses, we elaborate the performance
formula step by step, which helps students gradually establish a global picture of the
performance issues of microprocessors without overwhelming them with too much
details.

2.2 Importance of systematic view in computer architecture education

With the rapid development of semiconductor and new technologies, and the innovations
of hardware and software design, the content of computer architecture courses also needs
to be updated to incorporate new architectures and parallel structures [3], as well as new
technologies [5]. For instance, multithreaded and multi-core architectures have been
increasingly adopted by major microprocessor companies, thus the fundamentals of
multithreaded and multi-core architectures should be introduced to prepare students for
the coming era of multithreaded and multi-core computing. In addition, as embedded
processors are widely used in many systems, embedded processors are increasingly
incorporated in the computer architecture courses, which are fundamentally different
from the general-purpose microprocessors that have been taught in the traditional
computer architecture courses for many years. With the increasing complexity in the
computer architecture courses, we believe that the systematic view based approach can
become even more important for future computer architecture courses to deal with the
complexity.

3. System-oriented projects and assignments

In accordance with our philosophy of emphasizing the systematic view of computer
systems, we design course projects, assignments to assist student in keeping the global
picture in mind and understanding the relations between each hardware component and
the computer system. While traditional projects and assignments mainly focus on each
specific hardware component, we design system-oriented projects and homework by
integrating different hardware components that have been covered in the course to
reinforce the systematic view. We list some example projects and assignments as the
following:

1. After we introduce the MIPS assembly language, pipelining and memory hierarchy,
we ask the students to write an assembly program to implement the matrix multiplication
with different data layouts (i.e., row major or column major) and evaluate the
performance by using the SPIM simulator [2]. The difference in performance between
different layouts of matrix clearly indicates the great impact of cache memory on the
instruction pipelining and the overall execution cycles [6]. Thus, students are motivated

Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education

7

to optimize the data layout or transform the program to improve the cache performance,
leading to higher system performance.

2. After we introduce the cache and virtual memory, we design an assignment by
integrating both the virtual memory and cache. More specifically, we ask the students to
calculate the average memory access time by taking the address translation time into
account. Such an assignment can help students understand quantitatively how the TLB
(Translation Look-aside Buffer) can speed up the translation of virtual addresses to
physical addresses and its impact on the overall memory performance.

Moreover, in addition to two midterms, we use a comprehensive final exam to
strengthen students’ understanding of the computer as a system by integrating their
knowledge of specific components. It should be noted that while at the beginning of this
course, students have a high-level systematic view of the computer system by treating
each component as a black box; by the end of this course, students are expected to have
both a better understanding of the systematic view of the computer system and the
indepth knowledge of the design of each individual component, which can be tested in
the comprehensive final exam.

4. Emphasis of both hardware and software

The introductory computer architecture course at our institution traditionally focuses on
hardware design and implementation. All the projects were based on the Xilinx ISE to
create schematics and run logic simulations. The author has significantly updated this
course by introducing the software design and its interaction with the underlying
hardware since 2004. More specifically, the instructor added the assembly programming
as an essential component to this course, which is centered on the MIPS processor, as
described in the textbook [1]. We believe students’ capability of developing assembly
programs for the target processor (i.e. MIPS) will not only deepen their understanding of
the ISA and performance, but also better prepare them for the increasing industry
demands of capable engineers that possess proficient knowledge in both hardware and
software domains. In this regard, we designed a set of assembly programming projects (in
addition to the traditional Xilinx design projects), which are listed as the following:

1. Use MIPS assembly code to implement the following problem: given a number N
(N is a positive integer), compute the sum 1 to N.

2. Use MIPS assembly code to implement a loop for calculating the factorial of N.

For instance, given input 6, it should return the output 720 (i.e., 6!). Use a
procedure call to calculate the factorial of N. Therefore, you only need to pass the
parameter N to the procedure, and then to print out the value returned by this
procedure, which should be N!.

3. Use pointers in MIPS assembly language to manage dynamic memory structures

(i.e. heap). We can use syscall 9 ($a0=amount, and the pointer address will be
returned in $v0) to acquire memory space from the heap at runtime. A dynamic

Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education

8

string is dynamically allocated varying length string. Such strings end with a null
character (0). Such strings are accessed via a pointer to the first character of the
string. In this lab, you are required to develop a MIPS assembly program to
support the following functions:
a. Inputs two strings from the keyboard, call them strA and strB respectively.
b. Appends strB to strA
c. Print strA

4. Use MIPS assembly language to implement the memory-mapped I/O by using

polling. Specifically, your program should allow users to press the keyboard to
input any letters (a-z) and your program should display those letters on the
monitor. You are not allowed to use syscall in your program, which will make the
lab trivial.

While the first two assembly programming projects familiarize students with the

basic instructions, control flow and procedure calling convention of MIPS assembly
language, the third project and the fourth project will provide students the experience to
use assembly language to control the memory and I/O devices explicitly, which can help
students to “see” and understand the interactions between software and hardware.

5. Performance of students

The author has taught the introductory computer architecture course in a research
university for several semesters, with a very similar class size. In this paper, we compare
students’ performance of semester I (without the systematic view) and semester II (with
the systematic view), which are shown in Table 1. In both semesters, while the questions
in each test are different, the instructor has made efforts to ensure that they have same or
very similar scope and level of difficulty. By emphasizing the systematic view of the
computer system in semester II, the author found that the students became more confident
and interested in the course projects and assignments, and more active in the class in
general. Compared with the previous semester without employing such an approach,
students’ performance in semester II, in terms of the average score in the midterm and
final exams, has been adequately improved, indicating the effectiveness of the systematic
teaching approach in this course.

Table 1. Averaged score of two introductory computer architecture classes with and

without the systematic view based approach.

 Average Score of the Class (full score:100)

Exams Semester I (w/o systematic view) Semester II (with systematic view)

Midterm I 76.3 82.5

Midterm II 75.8 81.6

Final 65.6 85.5

6. Comparison to other pedagogical approaches

Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education

9

There have been several related proposes [7, 8, 9, 10] to teach computer architecture
courses in the literature. Patt and Patel [7] proposed to teach low-level hardware
component with C programming. Bryant and O’Hallaron [8] advocated an approach to
teaching architectural concepts from the software programmers’ perspective. These two
approaches [7, 8] are complementary to the systematic approach presented in this paper,
which can be used to enhance the teaching of the hardware components, and the software
and hardware interactions.

Recently, Saltzer and Kaashoek [9] introduced a pedagogical approach to teaching a
computer system engineering course at MIT. Ramachandran and Leahy [10] presented an
integrated approach to teaching computer systems architecture at GIT. Both these two
pedagogical approaches [9, 10] are similar to ours in spirit, although all these proposals
were developed independently. Also, Saltzer and Kaashoek’s approach [9] focused on the
general principles and abstraction of engineering computer systems, regardless of a
computer or an operating system, a client/server application, a database application, or a
fault tolerant disk cluster. In contrast, our approach specifically concentrated on the
introductory computer architecture course, and we have presented detailed information
on how to organize the course to emphasize the systematic view, as well as sample labs
and assignments. By comparison to Ramachandran and Leahy’s approach to teaching
computer architecture and operating system in an integrated manner [10], this paper
focuses on providing students’ the systematic view to improve their learning outcome of
studying computer architecture.

7. Concluding Remarks

Traditionally, the introductory computer architecture course focuses on the in-depth study
of various hardware components of computer systems, whose complexity often impedes
students’ learning process if not balanced with a global view of the system. This paper
introduces the emphasis of the systematic view of computers in the introductory
computer architecture course to help students overcome this learning obstacle. Such an
approach is especially useful as the content of computer architecture course is
continuously expanded and becomes more complex, with the relentless advancement of
technology and computer architectural innovations. The introductory computer
architecture course needs to provide a balance between the high-level understanding and
the component-based, low-level implementation of the computer systems. It is expected
that the emphasis on systematic view can help students improve the learning outcome of
the introductory computer architecture course.

References

[1] David A. Patterson, John L. Hennessy. Computer organization and design, the
hardware/software interface. Morgan Kaufmann Publishers, 2005.
[2] Homepage of SPIM simulator. http://www.cs.wisc.edu/~larus/spim.html
[3] Sally L. Wood, Chris Dick. Concepts of parallelism in an introductory computer
architecture course with FPGA laboratories. In Proc. of the ASEE/IEEE Frontiers in
Education Conference, 2004.

Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education

10

[4] N. Calazans, F. G. Moraes and C. Marcon. Teaching computer organization and
architecture with hands-on experience. In Proc. of the 32nd ASEE/IEEE Frontiers in
Education Conference, November 2002.
[5] M. T. Niemier and P. M. Kogge. Teaching students computer architecture for new,
nanotechnologies. In Proc. of the Workshop of Computer Architecture Education, 2002.
[6] L. Pascual, A. Torrenti, J. Sahuquillo and J. Flich. Understanding cache hierarchy
interactions with a program-driven simulator. IN Proc. of the Workshop on Computer
Architecture Education, June 2007.
[7] Y. N. Patt and S. J. Patel. Introduction to computing sytems: from bits & gates to C &
beyond. McGraw-Hill.
[8] R. E. Bryant and D. O'Hallaron. Computer systems: a programmer's perspective.
Prentice Hall, 2003.
[9] J. Saltzer and F. Kaashoek. A systems approach to teaching computer systems. In
Proc. of WCAE, 2006.
[10] U. Ramachandran and W. D. Leahy Jr. An integrated approach to teaching computer
systems architecture. In Proc. of WCET, 2007.
[11] A. Tanenbaum. Structured computer organization, fifth edition. Prentice Hall, 2005.

Biographical Information:

WEI ZHANG: Prof. Wei Zhang received the Ph.D. degree in computer science and engineering from the
Pennsylvania State University in 2003. He joined the ECE Department at Southern Illinois University
Carbondale as an assistant professor in August 2003 and has become an associate professor since July 1,
2007. His research interests are in embedded computing systems, computer architecture and compiler.

