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Abstract 
 
Computers are an integral part of learning in different fields of education. The ability of 
scientific computing to solve realistic problems can strengthen engineering education by 
allowing the students to analyze complex systems. To improve the quality of learning along this 
path, educators must take a step to make their teaching style flexible and include elements of 
numerical analysis as an ingredient of upper-class engineering courses. This paper documents 
our attempt to teach a difficult problem, chemical equilibrium in combustion systems, using a 
method based on matrix factorization that is very well suited to be implemented in MATLAB. 
This paper presents our novel numerical algorithm that treats chemical equilibrium beyond the 
simple balance. By doing so, we emphasize the thermodynamic and detailed nature of chemical 
equilibrium. These two concepts arise naturally by performing a singular value decomposition of 
the stoichiometric matrix, avoiding the necessity to specify reaction paths, and providing a lean 
and easy-to-understand algorithm based on matrix-vector multiplications. A complete MATLAB 
code is presented, verified and discussed in details. Educational effectiveness is investigated via 
in-class student surveys. Based on the student evaluations and feedback, it is evident that this 
module proved beneficial towards developing a sound understanding of the topic. Our results 
emphasize the benefit of teaching engineering courses from first principle. Educators should 
refrain from using web applications to teach this fundamental of mechanical engineering and 
challenge their students to carry out a detailed computational analysis. 
  

Introduction 
 
Computer technology plays a two-fold role in the field of engineering education. On the one 
hand, using computer software to create multimedia demonstrations in class aids the students in 
understanding new concepts. Previous research1,2 has shown that students who learned from 
teachings supplemented by animations performed better than those who learned through the text-
only technique. Using graphics, simulations, animations of concepts and their applications has 
the potential to explain concepts more clearly and in a shorter time when compared to the 
conventional lecture-only approach. On the other hand, scientific computing allows the analysis 
of large, complex engineering problems, involving, for example the solution of coupled non-
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linear equations. The advantage of computers in education is, in this second case, to make the 
lecture less abstract by presenting a realistic analysis.  
 
The present research investigates benefits related to the second issue. The topic under 
investigation is the definition of thermo-chemical equilibrium, which mechanical and aerospace 
engineering students learn and apply to determine chemical compositions, flame temperatures, 
specific impulses of rockets, etc..., in combustion, propulsion and atmospheric modeling classes. 
In this paper we argue that explaining the concept of thermodynamic equilibrium based on 
chemical reactions3 is an uninformative approach for two reasons. First, it does not establish that 
the equilibrium principle is derived based on purely thermodynamic considerations, where 
chemical paths play no role. The rationale for its applicability to various stoichiometric balances 
is that thermo-chemical equilibrium is a detailed balance principle4, meaning that each 
subsystem of the mixture is itself in equilibrium. Nonetheless, subsystem balances are neither 
chemical paths nor reactions and can include, for example, fractional stoichiometric coefficients. 
Second, it does not identify what information is actually needed for an equilibrium computation, 
which should include two thermodynamic variables and a number of additional constraints equal 
to the number of atom types in the mixture. Since these constraints are imposed by the 
stoichiometry, they are equal in number to the non-zero singular values of the stoichiometric 
matrix. In this regard, we argue that a proper definition of the number of system constraints is the 
dimension of the range of the stoichiometric matrix.  
The main topic of the present paper is a computational module prepared for teaching chemical 
equilibrium in a combustion course. The algorithm uses singular value decomposition (SVD) 
both to define the problem and to solve it through non-linear searches on a (reduced) manifold 
spanned by the range of the stoichiometric matrix. The numerical operations are cast in a matrix-
vector form, leading to a lean presentation and implementation. A similar SVD approach was 
used by Fox5 to reduce the finite rate chemistry species into conserved and reactive subspaces. 
Further, the idea of reducing the search manifold by manipulation of the stoichiometric matrix is 
similar to the concept of element potentials introduced by Reynolds6, but more suitable for 
education because of its definition in terms of matrix-vector products.  
In the remainder of this paper a complete MATLAB implementation of the algorithm is 
presented, verified and discussed. The educational outcomes of this work are analyzed through in 
class surveys, and, finally, the conclusions are discussed.   
 

Chemical Equilibrium 
 
Combustion of hydrocarbon fuels releases a variety of product species. At high temperature, the 
products of hydrocarbon combustion are not just represented by the major species 
(CO2, O2, H2O, N2). These species dissociate and produce a variety of minor species, which may 
be important from both the energetic and the environmental stand-points. In this section we 
briefly discuss the theoretical background and method to calculate the mole fractions of the 
product species at a given temperature and pressure. This problem is also referred to as TP 

(temperature and pressure), but the outlined solution procedure can be easily extended to HP 
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(enthalpy and pressure) or SP (entropy and pressure) problems.   
 
Second Law of Thermodynamics 
 
The second law of thermodynamics identifies the equilibrium condition in composition space as 
the state of maximum entropy of the system. In order for equilibrium to represent a detailed 
(rather than global) balance, the entropy must be maximal over all the degrees of freedom of the 
system. For a system at given pressure and temperature, the maximization of the entropy leads to 
(see Ref. [7])  

 d 0,dT

i in nP P  ¦  (1) 

where μi are the species Gibbs functions and dni the changes in mole numbers. Constraints are of 
stoichiometric nature, and in the absence of any, the only detailed solution would be μi = 0 ∀i, 
which violates conservation of mass, thus it is discarded.  
Stoichiometry constraints on equation (1) are typically expressed in terms of the stoichiometric 
matrix  

 d 0,An b A n �   (2) 

where the matrix A is of size nelement × nspecies, and expresses the number of each atomic element 

in each species molecule. Therefore, the product An  counts the total number of elements in the 
systems, which is set to a constant by imposing equation (2). The evaluation of A can be 
implemented in MATLAB in terms of the array of strings for the species and elements, as 
demonstrated in the code fragment reported in Fig. 1.  

 
elements={’c’,’h’,’o’};  
species = {’ch4’,’o2’,’co2’,’co’,’h2o’,’h’,’h2’,’o’,’oh’,’ho2’};  
Nel = numel(elements);  
Nsp = numel(species);  
A=zeros(Nel,Nsp);  
for i = 1:Nel  
    for j = 1:Nsp  
        ip=strfind(species{j},elements{i});  
        if ~isempty(ip);  
            ip1= min(ip+1,numel(species{j}));  
            coe=str2num(species{j}(ip1));  
            if ~isempty(coe);  
                A(i,j) = coe;  
            else  
                A(i,j)=1;  
            end  
        end  
    end  
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end  
 
Figure 1. Fragment of code to determine the stoichiometric matrix A in equation (2). 

 
The implementation and manipulation of the stoichiometric constraints renders equilibrium 
didactically challenging: the Lagrange multipliers strategy discussed in Ref. [7] is effective but 
cumbersome. We propose a singular value decomposition of the stoichiometric matrix as a viable 
solution strategy, because of its lean and straightforward implementation. The algorithm starts 
with identifying the effective number of constraints as the codimension of the nullspace of A 

(N(A)), which is, as a consequence, mapped by the right singular vectors corresponding to zero 
singular values. Hence,  

� �element species:, 1:  d d , TA USV n V n n c �  �
 

(3) 

where dc is the projection of dn on the nullspace N(A), and the columns of the matrix 

� �1 element species:, 1:TS V n n{ �
 

span N(A). Thus, equation (1) becomes,  

1 1 1d d 0 0,T T TS c c S SP P P  �   (4) 

where the implication is supported by the fact that dc can be any element of N(A), which is a 
consequence of the detailed balancing principle. The MATLAB implementation is simple, i.e.,  

[U,S,V]=svd(A);  
S1 = V(:,Nel+1:end)’. 

 
Note that the vector μ contains the unknown mole fractions X, in fact, 

, 
where g0 ≡ h-Ts

0, and p0 is the pressure at which s0 is evaluated (typically 1 bar).  
 
We start manipulating eq. (4) by focusing on a TP problem. The unknowns are brought to the 
left-hand side and the following system is obtained,  

0

1 1 1 0 1log [1,1, ,1] log / .ˆ
Tg

S X S S p p v
RT

 � � } {
 

(5) 

Equation (5) provides 𝑛௦௦ − 𝑛௧௦ equations that are supplemented by equation (2), 
which is recast in an homogeneous form dependent on the mole fractions as follows,  

2 2
ˆ0,  where,   .TS X S A bM A { �  (6) 

Here 𝑏෨ is the vector of the mole mass ratios of the elements, and 𝑀  is the vector of the atomic 
molecular weights; e.g., 𝑀 = [12,1,16]் for the MATLAB code in Fig. 1. The matrix S2 in 
equation (6) is obviously singular because it does not enforce conservation of mass, and thus one 
of its rows is replaced by the condition 

0
0

ˆ ˆ/ / log log /RT g RT X p pP { � �



 

 

Proceedings of the 2013 ASEE Gulf-Southwest Annual Conference,  

The University of Texas at Arlington, March 21 – 23, 2013. 

 Copyright � 2013, American Society for Engineering Education 

species
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X
 

 ¦
;  

whereby the system is non-singular, but also non-homogeneous. Finally, we have 

2 2[1,0, ,0] ,TS X v } {  (7) 

as second part of the resolvent system.  
 
Each of the two sub-systems is linear; equation (4) in log X and equation (7) in X. Nonetheless, 
the combination of the two systems is not linear. Since the dimension (nr) of the range of S1 is 
typically much larger than that of S2, we find it computationally efficient to reduce equation (4) 
by parameterizing the variation of its solution with a vector of size equal to the codimension of 
the range of S1. Hence, we carry out a singular value decomposition 

1 0  TS L K R ,  
and set 

log  ,X N Rc �  (8) 

where,  
1

1 1 1 1( ) ,N R S R v�{  (9) 

and  

1 0 0  and(:,1: ) (:, 1: end).r rR R n R R n{ { �  (10) 

This operation is performed in MATLAB without the need of the matrix inversion as shown in 
Fig. 2.  

 
[L,K,R0]=svd(S1)  
N=R0(:,1:nr)*((S1*R0(:,1:nr))\V1);  
R=R0(:,nr+1:end);  
 
Figure 2. Fragment of code to reduce the dimensions of the solution log X by manipulation of 
equation (4).  

 
Thus, the search of the solution is restricted to a vector of size equal to the codimension of the 
range of S1, which is typically equal to the number of elements. This drastic reduction of the 
unknown space from (possibly) hundreds to a few elements sharply decreases the computational 
burden associated with the solution of the non-linear system in equation (7). Another advantage 
of equation (8) is that it voids the problem with species disappearing from the mixture at high 
temperature, in which case the Newton update of the original formulation becomes singular 
because of the problem with log(0) → −∞.  
The solution of a TP problem can be accomplished by a multivariate minimization procedure 
instead of the Newton method, thus augmenting the solution convergence radius. This outcome 
becomes important when one uses equilibrium to teach problems with variable parameters, e.g., 
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when evaluating Hugoniot curves for detonation waves. Multivariate minimization is 
implemented in MATLAB using the intrinsic function fminsearch as described in Fig. 3.  

 
options=optimset(’TolFun’,1d-9,’TolX’,1d-9,’MaxFunEvals’,10000);  
cv0 = cguess*ones(nv,1);  
c = fminsearch(@locfun,cv0,options);disp(c);  
X=exp(N+R*c);  
    function out=locfun(cv)  
        l=N+R*cv;  
        resid=b2-Z2*exp(l);  
        out = norm(resid);  
    end  
end  
 
Figure 3. Code for the evaluation of chemical equilibrium using a multivariate minimization 
strategy. 

 
 
 
Properties 
 
The evaluation of the mixture properties is an important aspect of the algorithm and comes about 
in the definition of the potentials g0. Assuming the mixture composed of calorically perfect 
gases, the information necessary for the computation of the chemical potential is the temperature 
dependent heat capacity Cp

∘, plus the enthalpy and entropy at formation. We find it useful to 
point students to a website where they can obtain thermodynamic information on a wide variety 
of gases, so that they can use this knowledge for other problems, beyond the scope of 
combustion education. On the National Institute of Standards website 
(http://webbook.nist.gov/chemistry/), the Shomate equation defines the heat capacity in terms of 
five coefficients A - E, which can be used to evaluate the standard entropy and enthalpy by 
means of additional integration constants,  

2 3 2 ,/pC A Bt Ct Dt E tq  � � � �
 (11a) 

298 298
d ,

T

K p
K

h h C Tq�  ³  
(11b) 

298 298
d .

T p

K
K

C
s s T

T

q
q q�  ³

 
(11c) 

Verification 
We have carried out sample computations involving small hydrocarbons (𝐶ହ𝐻ଵଶ, 𝐶ଷ𝐻଼, 𝐶𝐻ସ and 
air, and found that with the initial guess 𝑐 = [−20, −20,−20,−20]் the algorithm converges 
everywhere in the temperature range 𝑇 ∈ [1000 − 3000]𝐾,  and for fuel weight fractions 
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𝑊  ∈ [0.05, 0.95]. The accuracy of the approach is verified against the NASA thermochemical 
equilibrium code7 by evaluating the product composition supported by CH4 + Air burning at 
3000 K, 1 bar and with weight fractions 𝑊ுర = 0.055,𝑊ைమ = 0.21, and,𝑊ேమ = 0.735. Results 
reported in table (1) show a good agreement between the two algorithms, also considering that 
the interpolating polynomials used to define the thermodynamic properties (equation (11)) differ.  

 
   

Species NASA  Present 
   

CO  5.9803 ×10-2 5.9832 ×10-2 
CO2  2.6807 ×10-2 2.6956 ×10-2 
H  2.8659 ×10-2 2.8901 ×10-2 
H2  3.2837 ×10-2 3.341 ×10-2  
H2O  1.0895 ×10-1 1.096 ×10-1  
N  1.1266 ×10-5 1.126 ×10-5  
NO  1.4111 ×10-2 1.4716 ×10-2 
NO2  2.6669 ×10-6 2.4375 ×10-6 
N2  6.5577 ×10-1 6.5538 ×10-1 
O  1.6799 ×10-2 1.6847 ×10-2 
OH  3.4207 ×10-2 3.2225 ×10-2 
O2  2.2040 ×10-2 2.2107 ×10-2 

   

 
Table 1. Verification of the chemical equilibrium algorithm against the NASA thermochemical 
equilibrium code7. 

 
 

HP algorithm 
 

HP problems are rather important in mechanical/aerospace engineering education because they 
define flame temperatures, rocket chamber pressures and specific impulses, and the detonation 
speed according to the Chapman-Jouguet theory. The core algorithm for an HP problem is only 
slightly different from what discussed in the previous sections. The conservation of energy in 
terms of the mass fraction is written as  

� �0
ˆ 0,T TX h A Mh�  

 
(12) 

where h is the vector of molar enthalpies of products and h0 is the enthalpy of the reactants per 
unit mass. The HP algorithm requires two modifications with respect to the TP analog. First, the 
vector v1 is not fixed at the beginning of the computations, thus we find useful to rewrite 
equation (8) as 

 , (13) 

where N0 should be evaluated before the non-linear search. Note that if the matrix S1 was full-
rank, equation (13) would become 

� �1
1 1 1 1 0 0log ( ) [1,1, ,1] log /   T

pX R S R S p p Rc N Rc NQ Q� � � } �  � �
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� �0log [1,1, ,1] log /TX p pQ � }
, 

which we previously identified as the solution for the non-constrained problem. Second, solving 
the problem as a multivariate minimization is inefficient, because the computer time necessary in 

evaluating mixture properties (𝜈 ≡ బ

ோ்
 and ℎ) overwhelms the linear algebra time. The large 

computational time becomes an issue when the algorithm is run with a large set of initial values, 
as when evaluating the Hugoniot curve for a given fuel in the context of a combustion wave 
analysis. Therefore, we use the Newton method with solution vector [𝑐், 𝑇்], residual,  

� �2 2 0
ˆ, , 

T
T Tr v S X X h A Mh � �ª º

¬ ¼  
(14) 

and Jacobian,  

 

(15) 

with  
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ˆ ˆ,       ,
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D D

D D
 

(16)  

where 𝐷[𝑋] is a square matrix having  X on the main diagonal and the prime indicates 
differentiation with respect to the temperature. A sample code for the calculation of the adiabatic 
flame temperature of a generic hydrocarbon 𝐶𝐻 in stoichiometric air is included in Fig. 4. The 
only module to be added to this program is the perfgas.m routine, needed to evaluate the 
thermodynamic properties of the mixture. This code was validated against data provided in Ref 
[3] (Appendix B) and results shown in table (2) show that the flame temperatures are evaluated 
with an error lower than 2 K. No convergence problem was detected when analyzing 
hydrocarbons with m up to 10.  

 
   

Fuel  Glassman3 Present 
   

CH 4  2226K  2227 K 
C 2H2  2541K  2539K  
C2H6  2260K  2261K  
C3H8(L)  2257K  2258K  
C5H12(L)  2262K  2263K  
C10H16(L) 2308K  2308K  

   

 
Table 2. Verification of the HP algorithm against adiabatic flame calculations in normal 
stoichiometric conditions reported in Ref. [3]. 
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function T= Tflame(m,n,Tcold,p)  
p0=1; %bar  
Nfrac = 3.76; %molar ratio between nitrogen and oxygen in air  
  
%set the problem data  
W_F = (m*12+n)/(m*12+n + (m+n/4)*(32+3.76*28)); W_A = 1-W_F;  
fuel = [’c’,num2str(m),’h’,num2str(n)];  
W_O = W_A*32/(32+Nfrac*28); W_N = W_A*Nfrac*28/(32+Nfrac*28);  
  
%Mass matrix:  
elements={’c’,’h’,’o’,’n’};  
species = {fuel,’o2’,’n2’,’co2’,’co’,’h2o’,’h’,’h2’,’o’,...  
    ’oh’,’ho2’,’no’,’hno’,’n’,’no2’};  
Nel = numel(elements);Nsp = numel(species);  
A=zeros(Nel,Nsp);  
for i = 1:Nel;  
    for j = 1:Nsp  
        ip=strfind(species{j},elements{i});  
        if ~isempty(ip);  
            ip1 = ip-1+ regexp(species{j}(ip:min(ip+2,end)),’\d’);  
            coe=str2num(species{j}(ip1));  
            if ~isempty(coe)&& ip1(1)-ip <=1;  
                A(i,j) = coe;  
            else  
                A(i,j)=1;  
            end;  
        end;  
    end;  
end  
  
%Molar Mass of elements and species  
Mel = [12,1,16,14];Msp = Mel*A;  
  
%system matrices  
[U,S,V]=svd(A);S1 = V(:,Nel+1:end)’;S2 = A;  
  
%RHS vectors  
Sp = ones(size(S1,2),1)*log(p/p0);  
V2 = W_F/Msp(1)*A(1:4,1)+[0;0;W_O/Mel(3);W_N/Mel(4)];  
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%mole-mass of reactants  
eta0=[W_F,W_O,W_N]./Msp(1:3);  
%enthalpy of reactants (per unit mass)  
H0=0;for k=1:3;H0=H0+ eta0(k)*perfgas(’h’,Tcold,species{k});end  
  
Tguess=1000;cguess = -10*ones(Nel,1);  
[X,cv] = NewtonHP(S1,S2,V2,Msp,species,H0,Sp,[cguess;Tguess]);  
T=cv(end);  
  
function [X,cva]=NewtonHP(S1,S2,V2,Msp,species,H0,Sp,cguess)  
Runi = 8.31447215;  %KJ/Kmole  
[L,K,R0]=svd(S1);  
nc=size(S1,2);nr=size(S1,1);nv=nc-nr;Nsp = numel(species);  
N0=-R0(:,1:nr)*inv(S1*R0(:,1:nr))*S1;R=R0(:,nr+1:end);Np= N0*Sp;  
nu = zeros(Nsp,1);h  = zeros(Nsp,1);nu1= zeros(Nsp,1);h1 = zeros(Nsp,1);  
  
Z2=[ones(1,size(S2,2));S2-V2*Msp];  
Z2=Z2(1:nv,:);b2=zeros(nv,1);b2(1)=1;  
Hi=(Msp*H0)’;  
  
cva = cguess;iter=0;  
while iter < 5000  
    iter=iter+1;  
    cv=cva(1:end-1);T=cva(end);  
    for k = 1:Nsp;nu(k) = perfgas(’g’,T,species{k})/(Runi*T);end  
    for k = 1:Nsp;h(k) = perfgas(’h’,T,species{k});end  
    Tp=T+.1;  
    for k = 1:Nsp;nu1(k) = perfgas(’g’,Tp,species{k})/(Runi*Tp);end  
    for k = 1:Nsp;h1(k) = perfgas(’h’,Tp,species{k});end  
    h1=(h1-h)*10;nu1=(nu1-nu)*10;  
    X=min(max(exp(N0*nu+R*cv+Np),1d-18),1);  
    resid = [b2-Z2*X;-X’*(h-Hi)];  
    if norm(resid) < 1d-8;break;end;  
    J=[Z2*diag(X)*[R,N0*nu1];(X’.*(h-Hi)’)*R,X’*h1+(X.*(N0*nu1))’*(h-Hi)];  
    cva = cva + min(max(J\resid,-10),10);  
end  
 
Figure 4. Complete code to evaluate the adiabatic flame temperature of a generic hydrocarbon 
𝐶𝐻 in stoichiometric air at the given pressure and temperature. 

 
 

Educational approach and results 
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We first introduced the topic of chemical equilibrium to the students with a verbal lecture that 
emphasized the concepts of singular value decomposition and projection over finite dimensional 
vector fields. Then, we used a computer connected to a projector to explain the same concepts 
using MATLAB. The code was explained to the students line-by-line. The students were given a 
demo on how to use the code to obtain results. Homework was assigned where the students were 
asked to perform two tasks. a) Validate the code by comparing the results of the SVD procedure 
to the NASA thermo-chemical equilibrium code7. b) Solve a series of problems involving 
thermo-chemical equilibrium.  
The analysis of the educational outcomes focused on the following issues:  

1. Student keenness in using advanced linear algebra concepts to solve problem.  
2. Ease with which students can learn the tool.  
3. Ease with which students can apply the tool.  
4. Student’s learning performance with the aid of the tool. 

 
Student Feedback  
 
Students were asked to give their feedback, by answering a questionnaire, so that we could 
assess if the use of computer technology to teach this topic was beneficial. The questionnaire 
contained the following questions.  
On a scale of 1 to 5, 1 being the lowest and 5 being the highest, rate the following:  
Q1 How well did you understand the principle of chemical equilibrium in combustion?  
Q2  How helpful was the MATLAB program in understanding the principle of chemical 

equilibrium?  
Q3  What is your level of experience with MATLAB?  
Q4  How good would your understanding be if you were explained only the theory behind the 

principle of chemical equilibrium?  
Q5 To what extent do you think that computer aided teaching can replace just lecturing?  
Q6 How helpful do you think it would be to apply this computer aided teaching technique to 

other topics? 
The feedback was anonymous and the students were given a week to answer all the questions at 
home.  
 
 Survey Results 
 
Thirteen of the fifteen students enrolled in the class responded to the survey. The responses to 
the six questions listed in the previous section are shown in Fig. 5. Overall, the students 
considered the present computer approach to teaching combustion useful. Only one student 
strongly disagreed with the teaching method, and he marked both questions Q2 and Q6 with a 
score of one. In his comments such a student remarked that he previously took a combustion 
course at another university, that he understood chemical equilibrium well (the Q1 score was 4), 
and that he would have preferred an approach based on an existing graphic user interface (GUI) 
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program (the NASA CEA code7); in other words, he deemed modifying an existing program 
provided to the class by the instructor “frustrating” and “futile”. Based on these and other 
comments made in person to the instructor, we conclude that having previously being taught the 
subject with a different approach made him reject our alternative explanation. We also remark 
that the student has a strong visual and global approach to learning2, which explains his 
preference for a GUI computer program. His learning style might interfere with the analytical 
computational approach to teaching proposed here. 

 
Figure 5.  Results of student surveys. The six questions are analyzed independently and 
displayed in increasing order from left to right, top to bottom. The first number close to each pie 
segment refers to the score (1 lowest, 5 highest), the second number to the percentage of students 
agreeing with that score. 

 
The correlation coefficient matrix based on the survey answers is shown in table (3). As 
expected, questions Q2 and Q6 are strongly correlated. Surprisingly, question Q3 (i.e., MATLAB 
knowledge) is negatively correlated with both Q2 and Q6, which indicates that students with 
weak prior MATLAB knowledge are willing to learn this language and use it to solve 
engineering problems. Further, the strong negative correlation between Q4 and both Q2 and Q6 
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indicates that students thought that the MATLAB approach helped them learning the theory.  

 
       

Question Q 1  Q2  Q3  Q4  Q5  Q6  
       

Q 1  1  0.5  0.24 0.08 0.17 0.22 
Q 2  0.5  1  -0.2  -0.44 0.28 0.81 
Q3  0.24 -0.2  1  0.36 -0.06 -0.37 
Q4  0.08 -0.44 0.36 1  0.12 -0.45 
Q5  0.17 0.28 -0.06 0.12 1  0.32 
Q6  0.22 0.81 -0.37 -0.45 0.32 1  

       

 
Table 3. Correlation coefficient based on the answers to questions Q1 - Q6 reported in this 
section. 

 
 

Summary and Conclusions 
 

We propose a MATLAB program based on singular value decomposition (SVD) of the 
stoichiometric matrix to explain the equilibrium composition of high temperature combustion. 
The teaching of equilibrium should focus on two aspects 1) that it is a purely thermodynamic 
rather than kinetic principle 2) that it represents a detailed rather than global balance. The 
proposed formulation accomplishes these objectives by eliminating reaction paths, and reducing 
the degrees of freedom of the system to the vector basis spanning the nullspace of the 
stoichiometric matrix: detailed balance implies maximization of entropy over these degrees of 
freedom.  
 
The proposed use of SVD to impose the atom conservation constraints and to reduce the size of 
the unknown (search) manifold leads to a simple implementation that involves only matrix-
vector products, suitable for engineering education.  
 
From the evaluation of the student feedback, we found that 48% of the students found the 
computer aided teaching either helpful or very helpful. A follow-up test proved that the students 
had understood the concept well. Regardless of their previous experience with MATLAB, a 
majority of students found it easy to understand a provided code and modify it towards learning 
the chemical equilibrium principle. Hence, we conclude that the use of computer technology as 
an aid to traditional teaching methods can help the students understand concepts more easily and 
remember them for a longer time. 
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