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Abstract 

Many concepts studied in engineering undergraduate curriculum contain inherent tensorial 

character, such as moments of inertia in Statics and Dynamics, stresses and strains in Mechanics 

of Solids, stress and strain rates in Fluid Mechanics, Maxwell’s stress tensor in Electromagnetics, 

and momentum flux in Continuum Mechanics and Physics.  This tensor nature is inherent in the 

study of anisotropic media, thermal conductivity, linear thermal expansion, stiffness, 

compliance, electrical conductivity, dielectric permittivity, and magnetic permeability.  These 

topics are all taught in undergraduate engineering courses.  However, in institutions where the 

mathematical preparation for these topics is limited to scalar and vector quantities, there exists 

considerable effort to contort the mathematics to force the physics to fit the restrictions of scalar 

and vector quantities, whereas the correct and more easy to understand mathematics requires 

tensor constructs in most useful cases.  Such restrictions are applicable for the most mundane 

cases often leaving students confused for example understanding stress and strain as six 

component vectors as opposed to introducing the undergraduate student to the correct and more 

readily understood tensor of rank two.  This is not an add-on the already busy schedule of the 

engineering student and instructor, but is taught in lieu of the approach that is often used. 

 

Keywords as introduced to undergraduate students 

Euclidian space is simply the three-dimensional space that we live in.  Scalars have no 

directionality, such as temperature and pressure, and can be introduced as tensors of rank zero 

having one component;  Vectors have three components in Euclidian space, such as force, 

velocity and electric field intensity and can readily introduced as tensors of rank one;  Dyadics 

are tensors of rank two and in general have nine components in Euclidian space, such as stress, 

strain and the permittivity between flux densities and  field intensities in anisotropic media. 
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Introduction 

 Engineering education and engineering practice are dealing with many objects having multiple 

directionality nature.  It is easy for the undergraduate to understand that scalar quantities have no 

directionality, such as temperature and pressure.  In teaching the technical student about 

quantities such as force and velocity the teacher finds it necessary to introduce a single layer of 

directionality, by adding a direction to the magnitude of the vector.  These concepts are 

understood at lower-division college level.  As the average engineering student enters the Junior 

level he or she is ready for the next step, namely, that some quantities lend themselves to be 

better understood as having multiple levels of directionality.  For example in mechanics of solids 

the tensile stress and strain may be different from the sheer stress or strain.  Therefore it is 

convenient to introduce a second level of directionality.  Many quantities that have this dual level 

of directionality are more easily understood by the upper-division and first-year college student 

when the dyadic is introduced.  The dyadic, which is a tensor of rank two, is the mathematically 

correct and more strait forward way to bring the student into the reality of dual directionality of 

some quantities.  This is not an add-on to the already busy schedule of the engineering student 

and instructor, but is taught in lieu of the approach that is often used. 

 

In the Statics and in Dynamics courses students meet the concept of moment of inertia, which, if 

taught as a tensor of the second rank (dyadic) is easier to understand than the contorted six-

dimensional vector approach that is often used in order to avoid any discussion of tensors.  This 

adherence In the Kinematics course, students learn that the movement of element of the medium 

can be subdivided to translation, rotation, and deformation. The last two are symmetric and anti-

symmetric parts of the dyadic.  In the Fluid Mechanics course students deal with strain rate 

which is more correctly the dyadic.  Thermal and Mass Transfer are dealing with dyadics of 

conductivity and diffusivity in the case of anisotropic media. Physics and Engineering are using 

concept of momentum flux density, which is dyadic.  Electromagnetics is dealing with 

Maxwell’s stress tensor of the electromagnetic field.  Electrical conductivity of crystals 

described by dyadic, taught to the upper division undergraduate. 

 

Piezoelectric effect is described by tensor of the third rank. In the Mechanics of Solids course 

students meet concepts of stress (dyadic), strain (dyadic), stiffness and compliance of material 

(tensors of the fourth rank), taught to the first-year graduate.  These latter two examples where 

the higher-rank tensors play an essential role render the mathematics much more readily 

understood once the student and instructor has been brought into the realm of the dyadic and 

beyond. 

 

Development of Tensor Concepts beyond the Sophomore Level 

Authors of this report taught elements of tensor algebra and tensor calculus for years in 

engineering courses at different levels:  Undergraduate: Statics, Dynamics, Mechanics of Solids, 

Electromagnetics, Optical Communications.  Graduate: Fluid Mechanics, Theory of Elasticity, 

Plates and Shells, Mechanics of Composites, Advanced Electromagnetics, Finite Element 

Methods, Stress Analysis, Structural Analysis, and Advanced Engineering Mathematics. 
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One of the authors published a textbook [Reference 1] devoted to introducing tensor concepts to 

undergraduates.  When the law of recalculation of the components of a dyadic is derived in the 

framework of low level course, it is applicable in all courses, where dyadic concept is used and 

absence of necessity to derive it again and again for particular application gives free lecture time. 

This time savings allows for including the introduction to tensors in the third math course for 

engineers as a substitute rather than an add-on as stated above. 

 

The unit vector and vector are simply introduced as in Section 1.1 through 1.1.5 of Reference 1.  

The dyadic is introduced in Section 1.1.6 together with five examples in undergraduate 

engineering topics.  “Each of the nine components of the dyadic has a magnitude and a dually 

directed unitary dyadic called a unit dyad just as does each of the components of a vector have a 

magnitude and a singly directed unitary vector called the unit vector.”  This section importantly 

introduces the concept of tensor rank:  “The quantitative property of a tensor that specifies its 

directional compoundedness is ‘rank’,  Thus dyadics are tensors of ‘rank two’ because of their 

dual directivity.  Similarly, vectors and scalars are also tensors but at rank one and zero, 

respectively, because vectors have single directivity and scalars have no directivity.” 

 

Section 1.1.7 of Reference 1 introduces tensors and the various ways that tensors are portrayed.  

Chapter 3 gives an “Elementary Tensor Analysis” that is taught as part of and in lieu of the third 

math course for engineers with no addition to the already fully loaded schedule. 

 

The components of the invariant vector are recalculated from original orthogonal system of 

coordinates to components in rotated system of coordinates according the formula: 
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Here ji  is the cosinus of the angle between i-th axis of the original (black) system of 

coordinates and j-th axis of rotated (red) system of coordinates (Figure 1). 

 

Equation (1) guarantees that the sets of components ia and ja  represent one and the same vector. 

It is invariance with respect to rotation of the system of coordinates.  Invariance with respect to 

translation of the coordinates is achieved by using differences of coordinates.  Other invariant 

objects can be built by using formally a generalization of the Equation (1)  
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Each object is called “tensor”.  Total quantity of symbols in subscript in the left side of the 

expression is equal to the rank of tensor ( r ).  Here i,j,k,...;u,v,w,... are sets of non-repeated 

symbols. 

 

The number of components of a tensor in 3D space is N=           is the tensor rank.  Thus 

the scalar is a tensor of rank 0 and has 1 component, the vector is a tensor of rank 1 and has 3 

components, and the Dyadic is a tensor of rank 2 and has 9 components. 

 

 



2017 ASEE Gulf-Southwest Section Annual Conference 

Proceedings of the 2017 ASEE Gulf-Southwest Section Annual Conference 

Organized by The University of Texas at Dallas 

Copyright © 2017, American Society for Engineering Education 

 

 
 

        Figure 1.  Representations of the same vector in two systems of coordinates and 

recalculation of components of the vector from one system to another one. 

 

This is the first formal definition of tensor.  It will be used for verification of tensor nature of 

following objects and for evaluation of the rank of them.  The physical meaning of dyadic is 

illustrated by example of electric conductivity of a crystal.  Ohm’s law for isotropic medium can 

be written as: 

    j E         (3) 

where j  is the electrical current density, E  is the electrostatic field strength, and   is the 

specific conductivity of the medium.  This law is derived from Ohm’s law for a wire: 

    
U

J
R


         (4) 

where J is electrical current, ΔU is the difference in voltage, R is the resistance, which is 

estimated as 

    
1l l

R
A A




         (5) 

Here  is the material specific resistivity, l is the wire length, and A is the cross sectional area. 
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The form (3) of the law is independent of the geometry of the electrical conductor.  When the 

electrical field strength vector (gradient of voltage with opposite sign) is applied to isotropic 

medium, the vector of current density is oriented in the same direction.  Another story if the 

medium is anisotropic (see Figure 2). 

 
   Figure 2. Vector of electric field strength (blue) and vector of density of 

electric current (green) in a crystal. 

 

Applied vector of electric field strength E   (blue on Figure 2) can be decompose along the 

planes of symmetry of the crystal.  Let’s suppose that the conductivity along 1x and 

corresponding component of the electric current density vector (along 1x ) green on  

Figure 2 are relatively large, but the conductivity along 2x  and component of the electric current 

density vector (along 2x ) are small.  Then we obtained the obvious components of the direction 

of the resultant electric current density and the electrical field strength vector,  In the red system 

of coordinates of Figure 2, two different conductivities are characterizing the medium..  

 

In 3 D case, there will be 3 different conductivities. In this system of coordinates, the directions 

of corresponding components of two different vectors are matching.  In the black system of 

coordinates, one component of electrical field strength produces three components of electrical 

current density.  As a result, in arbitrary oriented system of coordinates, the linear dependence of 

electrical current density on the electrical field strength has to be characterized with help of 9 

coefficients of proportionality: 



2017 ASEE Gulf-Southwest Section Annual Conference 

Proceedings of the 2017 ASEE Gulf-Southwest Section Annual Conference 

Organized by The University of Texas at Dallas 

Copyright © 2017, American Society for Engineering Education 

 

    
3

1
mi im

m

j E


        (7) 

It is easy to prove that rotation of the black system of coordinates to the red provides nine 

coefficients that are transformed as components of dyadic.  In general, tensor of rank  r+q 

linearly connects two tensors: one of rank  r and the other of rank q. This is the second approach 

to tensors. 

 

Let’s cut the strips from a sheet of anisotropic material.  Let’s apply gradient of electrical 

potential to a sample and measure component of the density of electrical current in the same 

direction.  We will obtain a coefficient of proportionality  or  .  Then let’s change the 

direction of cutting and repeat experiment.  After series of such experiments, we can draw the 

polar diagram (in 2D case) of   or  .  (Figure3a).  We can also apply gradient of potential in 

one direction and can measure the density of electrical current in the perpendicular direction and 

calculate the ratio of them. After series of such an experiment, we also can draw the polar 

diagram (Figure 3b). The shapes of the polar diagrams shown reflect the law (2) of transforming 

of the components of tensor and they are never arbitrary. 

 

The specially oriented coordinate system (as the red one on the Figure 2), when each component 

of the “vector of the result” has the same direction as the corresponding component of the 

“vector of cause” is called “principal axes of the dyadic”. 

 

  

a)  11( )      b)   21( )     

Figure 3. Polar diagrams of conductivity coefficient of the anisotropic medium. 

 

Let us consider equation of an ellipsoid centered at the origin and oriented under angles with 

respect to coordinate system (Figure 4).  Then we have 
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  Figure 4. Ellipsoid oriented under angles to coordinates 
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It is easy to prove that in rotation of the system of coordinates, the set of coefficients ikA  is 

transformed exactly according expression (2) for the case of the dyadic.  Principal axes of the 

dyadic are the usual principal axes of ellipsoid.  Thus, ellipsoid is the geometrical image of the 

dyadic, more exactly the symmetric dyadic. 

 

Now let’s consider a formal multiplication of two vectors, when each component of one vector is 

multiplied by each component of another vector. From vectors a  and b  we can built a matrix 
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2 1 2 2 2 3
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a b a b a b

a b a b a b

a b a b a b

 
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        (9) 

Components of this matrix are transformed as components of dyadic, which is easy to prove.  

Such multiplication is called “tensor multiplication” and it is denoted by the sign    
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Formal tensor product of the unit vectors is the vector basis of dyadics and it is called 

“dyada”.  Tensor product of two vectors represent symmetric dyadic because i k k ia b b a . 

General dyadic can be represented as 
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Tensor of the rank r can be represented as 

   
3 3 3

...

1 1 1

... ...
r

ikl i k l

i k l

T e e eT
 

  

          (12) 

This is the third approach to the tensors. 
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Using nabla-operator, which combines vector nature and differentiation nature 
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The following operators are built  

   

gradU U vector

divA A scalar

curlA rotA A vector

GradA A dyadic

  

  

   

         (14) 

Gradient of the vector field is used in building vector-Laplacian, strain tensor, and the strain rate 

tensor.  Stresses kl  and strains ij relationships as two dyadics are often approximated by linear 

law, which is generalization of Hook’s law: 

   
4

0 :T   
 

            (15) 

where   is the thermal expansion dyadic, 
0 is the dyadic of physical and chemical shrinkage, 

T  is the temperature change, 
4 

  is the compliance tensor of the fourth rank,”  : ”  is the 

symbol of double scalar multiplication. 

 

By way of introduction to tensors these concepts were presented successfully to juniors, seniors 

and first-year graduate students during several years at Kansas State University, Lamar 

University and the University of Texas, Arlington.  

 
Other examples of tensor concepts applications are shown in Reference 2.  

Conclusions 

We have found that introducing tensors through the dyadic to undergraduate students during 

their third term of calculus is readily understood and appreciated at that level and can be fitted 

into the crowded academic schedule when introduced in lieu of some of the contortions that 

students and instructors must go through in order to avoid the topic.  As our teaching experience 

shows, one lecture on tensors in Statics course (when dyadic of inertia is studied) and two 

lectures in Mechanics of Solids (when dyadics of strains and stresses are studied) create initial 

concept of tensors for majority of students. This introduction to tensors becomes natural to the 

student at this level and serves to open opportunities as the student progresses to higher levels. 
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