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Testing a Prototype System for Mining of Student Notes
and Questions to Create Study Guides

The Issue

In the foreseeable future it will be technically possible for instructors, advisors and other
delegated representatives of a college or university to access student participation and
performance data in near-real time. One potential benefit of this increased data flow could
include an improved ability to identify students at risk of academic failure or withdrawal. The
availability of these data could also lead to creation of new adaptive learning measures that can
automatically provide students personalized guidance.

Methods

(Samson, 2010) reported that the availability of mobile tools that deliberately engage students
during class dramatically changed the mechanics of course at the University of Michigan with
over 80% of students attending lecture voluntarily bringing mobile devices to class. On one
hand, surveys showed that students believe the availability of a laptop was more likely to
increase their time on tasks unrelated to the conduct of the course. On the other hand, the
surveys also ascertained that students felt more attentive with the technology, significantly more
engaged, and able to learn more with the technology than in similar classes without it.

The mobile technology led to a dramatic increases in the number of students posing questions
during class time, with more than half posing at least one question during class over the course of
a semester, a percentage far higher than achieved in semesters prior to the use of this

technology. Moreover, while 50% of men and 80% of women in the science course surveyed
claimed to be uncomfortable asking questions in a large lecture setting, 66% of all students (men
and women) ask questions when questions and subsequent answers are posted anonymously.

The tool employed for this study, LectureTools, allows the students to:
e Type notes synchronized with the lecture slides;
e Answer questions posed by the instructor
e Self-assess understanding and indicate when they are confused
e Pose questions to the instructor and view responses;
e Draw on the instructor’s lecture slides; and
e Print lecture slides and notes for off-line review.

LectureTools (http://www.lecturetools.com) enables the instructor to ask a wide range of
question types including multiple choice, reorder list, free response, numerical and image-based
questions, excellent for testing students understanding of graphs, images and maps. These
questions are embedded in the slides the instructor uploads into a tray (see Figure 1). The
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Figure 1. Workspace for instructor in LectureTools. Instructors upload their presentation slides
into LectureTools and can add videos and a variety of question types to challenge student
understanding. Instructors can also hide slides and reveal them during class.

instructor can “hide” slides so students cannot see them in class until released. The instructor
has the additional option that they can add videos to the presentation directly from popular
systems such as YouTube, Vimeo and more. An advantage of this is that students will have
access to the slides, videos and

questions during and after class. 50%
Students report higher levels of o ] ®Far1s
engagement using LectureTools than 40% SEMIErL)
their other classes (Figure 2) largely 5% Ll |---- EC;::m
because the system allows them more 8 -
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They can take notes synchronized to ; 25%
each slide bei‘ng presented, they 8 i
answer questions posed by the e
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the instructor and they can even 10%
indicate when they are confused -
during class (see Figure 3).
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rich data on student performance that
can help identify non-participating Figure 2. Student responses over four semesters to the end-
students far earlier as well as of-semester question “Using a laptop increased my
feedback on which slides and topics engagement in this class relative to other classes.”
caused the most confusion for
students.
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Figure 3. Student view of LectureTools showing various functions students have available to
promote participation in class.

Data Mining

Recent national and local reports such as the 2010 report, A Roadmap for Education Technology
(Woolf, 2010), and the 2012 report, Enhancing Teaching and Learning Through Educational
Data Mining and Learning Analytics: An Issue Brief (Bienkowski et al., 2012), describe the need
for increasing the use of educational data mining and learning analytics in order to personalize
education and improve teaching and learning. As Technology Enhanced Learning (TEL) tools
have become ubiquitous in higher education, a bulk of real-time student behavior data can be
captured, broadening opportunities for study and impact of Educational Data Mining (EDM) and
Learning Analytics techniques. The Horizon Report (Johnson et al., 2013) describes the goal of
learning analytics as enabling instructors and institutions to modify educational opportunities and
to personalize feedback to each student based on his/her own needs and abilities. Learning
analytics models could be used, for example, to predict student-learning performances and to
identify student at risk in real time and therefore increase their possibility of success (Arnold,
2010; EDUCAUSE, 2010; Johnson et al. 2011).

Knowledge discovered through educational data mining is used not only to provide feedback to
learners, but also to help instructors to manage their classes, understand their students’ learning
processes, and reflect on their own teaching (Merceron and Yacef, 2005, Romero and Ventura,
2007, Baker and Yacef, 2009, Baker, 2010) Several Educational Data Mining studies of student
behavior in online and other educational tools revealed differences between groups of students in
terms of such variables as level of participation in discussion boards (Anaya and Boticario, 2009),
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Questions & Answers boards, completion of assignments, and annotations (Zakrzewska, 2008,
Anaya and Boticario, 2009, Macfadyen and Dawson, 2010). Each of these studies has helped to
validate these techniques as methods of identifying pedagogically interesting cohorts of students

based on their activity with educational technologies.

Figure 4 offers a schematic of the flow in many large
survey courses. Before the semester begins the
instructor might offer a reading or video that illustrates
points to be discussed in class. In class the instructor
will present content and optionally ask questions of the
students to assess their understanding and/or invite
discussion. Following that class the instructor may offer
homework, assign readings or video recordings that
either review material covered or prepare for the next
class session. This cycle continues until a test or quiz is
given which often triggers summative review by the
students.

The dual challenge of providing a solid discipline
foundation for STEM majors and creating understanding
and engagement for non-STEM majors requires a
commitment by both groups to participate meaningfully
in course activities. Unfortunately few STEM
instructors really know how their students behave either
in or outside the classroom so offering meaningful
guidance about desired study habits is often based on
self-reported information from the student who may be
reluctant to be totally honest about their effort,
especially before they receive their final grades.
Moreover, an instructor’s advice to students is often
informed by their experience as a student and may not
represent the best advice for students from a different
generation and a different set of background skills and
motivations. The end result is that introductory STEM
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Figure 4. A schematic of the
workflow of a course including tasks
performed in class and those performed
outside of the classroom.

instructors are limited to a post-hoc analysis of student learning challenges, and often advise
students without understanding the particular circumstances students are in or goals that they

have.

What if, on the other hand, the instructor had an objective and detailed view of each student’s
behavior with course material as the course was being taught? If the instructor could understand
such a mass of data, they could tailor course content, reviews, interactive sessions, assignments,
and exams to the needs and desires of the student body. Taking advantage of real-time access to
this data, instructors could identify meaningful cohorts based on behavior, researching variability
within a cohort to identify factors contributing to poor outcomes, and make actionable teaching
activities aimed at strengthening student learning. To make such a task tractable, an instructor
would need high fidelity (and pedagogically relevant) student-computer interaction data, a tool
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or methods by which to summarize this data quickly and effectively, and flexible course delivery
that allowed for near real-time adjustment of pedagogical techniques.

LectureTools records a unique and broad spectrum of on-line student activities during and
outside classes, including:

1. Notes written on a per student per slide basis as the lecture is delivered (students can opt
out if they wish),

Student responses to instructor questions on a per student per question basis,
Correctness of student answers (when appropriate)

Student bookmarking of slides as important or confusing,

Student annotations on slides, and

Questions posed by students to their instructor.

SARAIE

Together, these technologies cover many of the typical learning tasks described in Figure 4 and
offer a database of activities that can be compared with learning outcomes to try to identify
relationships.

Additionally, students in the Great : —
winter 2014 semester were asked 5 7
to identify their emotional and ' v
physical state at the beginning of
each lecture. This question was
posed with the hypothesis that
physical and emotional stresses
may influence student
performance. Results for one
particular day are shown in Figure
5 and illustrate a high degree of
collinearity between self-reported
emotional and physical conditions.

OK e O »f ffffffffffffffffff

Physically, today | feel

Study Guides

Poor
One initial outcome of this Poor OK Great
research has been the generation Emoti onally tod ay | feel

of student study guides based on ?

the mining of students’ notes. Figure 5. An example of student self reports to daily request
Note are “sniffed” in real-time “Where on this wellness chart would you put yourself

and word clouds (called “Lecture TODAY?” Note collinearity between reported physical and
Clouds”) are created with greater ~ cmotional wellness.

weight given to a list of keywords

defined by the instructor. After class students can view the Lecture Clouds summarized by
lecture (Figure 6a) or by slide within a lecture (Figure 6b).
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Weather Forecasting

range forecasting weather look models (wind| looking days clouds long short cloud
atmosphere forecast |humidity| cold cover temp
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[rain| cloud thunderstorm storm updraft ground (wind| gust cold [tornado| winds shelf
|[downburst| warm line rate severe just anvil green
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ground thunderstorms radiation temperature energy heat temp heating [rain
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ground wave wind| cover energy cities urban
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Figure 6a. A “Lecture Cloud” of words typed by students during class. Two categories of words are
offered, those included in the list of keyterms provided by the instructor and those words not in the list of
keyterms. The words are each automatically linked to external resources (e.g. Wikipedia, YouTube).

LECTURETOOLS
Wednesday, April 3rd, 2013 | Tyaes thie
Class Aggregated Whole Class Notes C: ked d
Thunderstorms [rain] cloud thunderstorm storm updraft
. 4799 ground |wind| gust cold [tornado| winds shelf 0 4 50
e |[downburst| warm line rate severe just anvil green
Total
# Students | Words Typed Number Total Total
Slide # View Taking Notes per Slide Word Cloud of Notes by Slide Confused ked
1 4 24 Too few words written to analyze 0 0 0
|fronts| [thunder| [air mass| (air mass
2 5 45 thunderstorm| [gust front/ gust convergining cool 0 0 0
formation land mass
3 21 Too few words written to analyze 0 0 0

[tornadoes| severe [severe thunderstorm|
4 44 [thunder| [tornado) (wind storm thunderstorm 0 1 0
makes approaching considered
inversion| atmosphere |lapse rate unstable
334 need thunderstorms |lapse rate| rapid rising 0 1 0
[severe thunderstorm| [thunder] thunderstorm
layer warm cold moist rate [saturation)
10 252 ground [inversion| (convective instability| cool 0 1 0

— lapse |lapse rate|

updraft thunderstorm [rain| cloud ground
7 storm severe fall [precipitation| makes angle 0 2
flowing rising cold (Hall et

al., 2009)

Figure 6b. The “Lecture Cloud” displayed on a per side level. This view affords a view of which slides
produced the most student notes and which slides were most annotated or bookmarked.
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Wellness

Student self-reports of
emotional and physical state 85
were used to cluster students

into similar patterns through the

semester. Using Weka (Hall et 80
al., 2009) the emotional and
physical states reported prior to
the first exam were clustered
with an inflection point
happening at nine clusters.
Figure 7 shows the result that
student grades on the first exam
were well correlated with both
the reported physical and
emotions state of the students.
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class, and especially large by nine groups obtained by clustering their daily self-reported

survey courses, they will. The emotional state.

key here is providing tools that

give instructors more opportunities to involve students actively in class through challenging
questions and responding to student questions.

The work on mining the data from this system is still in its infancy. Students have anecdotally,
warmly received the creation of study guides based on student note taking. They are particularly
interested in having the words linked to resources that challenge their understanding on the
concept. To this end the system was expanded to link words to the page in their eTextbook that
is best matched to the concept.

It remains a challenge to demonstrate whether these interventions have led to deeper student
learning. The variation in student outcomes, as measured by grades, are due to many factors that
make it difficult to identify the effect of a specific tool. Continued research will cluster students
who participate in class in the same way to see if variations within a cohort of “similar” students
can allow a firmer understanding of the impact of specific interventions.

One initial clustering effort, based on student self-reports of physical and emotional state
demonstrates a strong relationship in outcomes and emotional state. While this is not necessarily
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surprising this result raises questions about what responsibility do instructors have to identify
students having emotional distress? And, once identified, what are the best strategies for dealing
with the students who score low in self reported wellness?
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