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The 3D Estimator: Introducing Middle-School Students to Back 

of the Envelope Estimation Interactively 

Introduction 

There has been recent concern among post-secondary engineering educators that 

engineering majors arrive from high school underprepared to assess the reasonableness of 

estimates, instead relying too heavily on the output of calculators 
1
.  This echoes research in the 

education community identifying the theme of the reasonableness of estimates as an important 

and underutilized concept in K-12 education 
2
.  In response to these concerns, a new assessment 

tool, the 3D Estimator, was developed to introduce students to multi-step estimation.  This skill 

is a pre-requisite to the kind of multi-step "back of the envelope problems" that engineers often 

use to restrict or filter a problem's alternatives in the planning and ideation phases of design 
3
.  

Descriptive and correlational statistics were collected and analyzed on the nature of students' 

multi-step estimates using the 3D Estimator. 

This paper is structured as follows.  The next section deals with the objectives of two 

studies that investigated students' use of the 3D Estimator.  After that, background concepts from 

related literature are covered, including operational definitions of key terms.  The subsequent 

two sections deal with Study 1 and Study 2, respectively.  Finally, there is a section drawing 

conclusions and briefly describing future work. 

Objectives 

This research-to-practice paper reports on two studies designed to address the question of 

how middle-school students develop multi-step estimates.  A new assessment tool, the 3D 

Estimator, was developed for students to use in estimating the volume of 3D shapes.  With this 

tool, students estimate aspects including length, width, height, and radius for shapes such as 

prisms, cylinders and spheres.  Finally, they submit a calculated estimate for the overall volume 

of each shape. 

The first study was exploratory in nature, addressing questions of how the students would 

approach the software.  Of particular interest was the amount of time students spent analyzing 

the shapes from different angles.  The second study used correlations between students' error 

rates on different problem-solving components to assess how systematic their final estimates 

were.  Also collected was the number of estimates that students generated in each series of 

estimates.  For example, if a student was attempting to estimate the volume of a 60 cubic-foot 

shape, a series of estimates might be 100 cubic feet (too high), then 40 (too low), then 50 (still 

too low).  Estimates were labeled as reasonable if they fell within a +/-15% tolerance range.    

The +/-15% tolerance was established over the course of previous research as a range that would 

be forgiving enough to allow for a variety of estimation strategies, but tight enough to force 

students to think carefully. 

One of the key features of the 3D Estimator is its use of feedback.  For each estimate that 

a student makes, the interface provides feedback in the form of a horizontal error bar.  The bar 

indicates relative error, extending to the left from a central point for estimates that are low, and 

extending to the right from the center for estimates that are high.  There is a red box around the 
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center of the graph to show the +/-15% tolerance region.  Estimates that are deemed reasonable 

will have an error bar that is within the red box.  Once a student makes an estimate that is within 

this region, the actual exact answer is shown in the display (see Figure 1). 

 

Figure 1.  The 3D Estimator.  The left half shows the information that is shown to the student, 

including the manipulable 3D shape, the human figure and labeled dimensions, as well the shape's name 

and formula.  The right half shows a sequence of estimates made by a student for the height of the figure 

and the orange error feedback bars for both of the initial estimates (overestimate of 5 and underestimate 

of 3). 

Background 

Knowledge Components 

This description of the present research refers to elemental chunks of known or to-be-

learned information as knowledge components, or KCs 
4
.  KCs can consist of simple factual 

knowledge such as: "the volume of a rectangular prism is the product of its length, width, and 

height".  KCs can also be production rules, which are if-then statements that are used to perform 

actions, such as: "if the light is red, stop the car."  Anderson
5
 points out the functional 

equivalency of factual KCs, which cognitive psychologists call declarative knowledge – and 

production rule KCs – or procedural knowledge.  A factual KC can be stated as a production rule 

KC, such as: "if you are asked to find the volume of a rectangular prism, first establish its length, 

width and height, then calculate the product of all three."  However, it is more efficient to encode 

the volume of a rectangle as a factual KC, such as length × width × height, rather than the more 

elaborate rule starting with "If you are asked to find…" 

The 3D Estimator is concerned with assessing the production rules associated with "if 

you are asked to estimate…" which has a larger space of possible valid approaches than "asked 
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to find".  Finding or calculating an exact answer usually elicits one of a small set of standard 

arithmetic algorithms from students, or the use of a calculator.  On the other hand, if students are 

asked to estimate an answer, students may choose from a larger set of strategies 
6
 
, 7

.  The present 

research is more concerned with students' estimation strategies than with memorization of factual 

KCs such as the formula for the volume of a rectangular prism.  For this reason, the 3D estimator 

provides such formulas in the interface (see Figure 1). 

Estimation & Fermi Problems 

Fermi problems, or “back-of-the-envelope” problems are named after the physicist 

Enrico Fermi (1901 – 1954).  They are quick, mathematical approximations to real world 

problems that depend on a sequence of estimates, combined via computation 
8
.  Educationally, 

they are often used in engineering classes because they are thought provoking and because 

practicing engineers often make similar approximations as a way of restricting or filtering a 

problem's design space 
3
.  In practice, a quick approximation can often provide insights into the 

feasibility of a design approach. 

Calculations used in solving Fermi problems tend to be based on estimates and answers 

depend on computational estimation.  A classic example of a Fermi problem is how many gallons 

of gasoline do all motor vehicles in the U.S. use in one year?  The answer can be calculated in a 

variety of ways, using known or estimable information, such as [(U.S. population) × (vehicles 

per capita) + (number of U.S. private or public establishments) × (vehicles per establishment)] × 

(mean miles driven per day per vehicle) × (mean fraction of a gallon per mile).  This is a 

relatively simple expression for solving this gasoline Fermi problem.  Solutions with more terms 

have the potential to be more accurate, but may introduce extra complexity and can eventually 

violate the spirit of Fermi problems.  By convention, a Fermi problem should be able to be 

calculated on the back of an envelope – that is, no more than a handful of calculations should be 

involved. 

By their nature, Fermi problems depend on the use of some prior knowledge.  Students 

must be able to perform the following steps: 1) conjure up relevant values such as the 

approximate U.S. population or MPG of a car, 2) understand the necessary mathematical 

operations to perform on these values, 3) use those operations in a logical and cohesive 

mathematical way, and 4) reflect on whether the estimate might or might not be reasonable.  The 

kinds of problems presented by the 3D Estimator primarily assess students' performance of the 

third step, thereby assisting with performance on the fourth.  That is, the 3D Estimator assesses 

students' use of mathematical operations and numerical strategies for producing reasonable 

estimates.  Producing reasonable estimates requires a flexible understanding of the number 

system, and relies heavily on number sense and skills such as the ability to work with powers of 

10 
9
.  These fundamental estimation skills are first taught in primary grades, but they are often 

found to be lacking in adolescents and teenagers 
10

. 

There has been recent concern among some post-secondary engineering educators that 

engineering majors arrive from high school underprepared to assess the reasonableness of 

estimates, instead relying too heavily on the output of calculators 
1
.  This echoes a study 

surveying 40 U.S. teachers who see the theme of the reasonableness of estimates as an important 

and underutilized concept in K-12 education 
2
. 
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Reference Points 

An understanding of the reasonableness of estimates is an invaluable metacognitive tool 

when a student is attempting to generate his or her own original estimates.  Such understanding 

is referred to in the present work as a knowledge component (KC) and this is certainly a 

multifaceted one, referred to in related literature as an integrative KC 
11

, meaning one that is 

composed of smaller KCs.  In order to assess the reasonableness of an estimate, it helps to have 

an understanding of related values.  For example, for a student to estimate the dimensions of his 

or her gas tank, it may be helpful for that student to think of related volume measures that might 

be more familiar.  If a student can picture twelve gallon-size bottles of milk, or a half-filled 20 

gallon aquarium, he or she may have an easier time estimating the dimensions of a 12 gallon gas 

tank.  This kind of familiar point of comparison is sometimes called a reference point 
12

 or, more 

broadly, an anchor for estimation 
13

. 

An iterative check on reasonableness increases the robustness of estimation.  That is, a 

student may use one strategy to generate an estimate, and then use another strategy to check its 

reasonableness.  A student who estimates that a 12 gallon fuel tank is 3 feet × 3 feet × 3 feet will 

recognize that these dimensions are not reasonable when he considers that a fuel tank must be 

small enough to fit underneath a car. 

The 3D Estimator was designed as an assessment instrument.  However, one of the 

questions addressed in the present research is whether noticeable learning occurs between 

problems.  In other words, do students improve from one problem to the next?  Since each 

problem presented in the 3D Estimator concerns the use of volume estimation, we hypothesized 

that students might be able to use the answer from previous problems as reference points.  As 

described below, Learning Factor Analysis 
4
 was used to investigate this hypothesis.   

Floundering 

One of Anderson, et al.'s 
14

 definitions of floundering with interactive learning software is 

repeating the same kind of mistake three times (p. 174).  This definition proved useful for 

analyzing the student results with the 3D Estimator.  The 3D Estimator follows in a line of 

research initiated with the Estimation Calculator 
15

.  Both depend upon providing feedback on 

the reasonableness of an estimate, as measured by its relative error,
   

 
, where S is the exact 

solution, and E is the estimate for the solution.  Log files store student activity data, including the 

series of student estimate errors, which will, if students are paying close attention, eventually fall 

within +/-15%.  Students were shown the relative error of each estimate in turn, and used a 

combination of this error feedback and their understanding of the problem to produce a revised 

estimate.  When an estimate converges on +/-15%, the 3D Estimator provides the exact answer, 

so a student stops making estimates at that point. 

  The +/-15% tolerance was established over the course of the research as a range that 

would be forgiving enough to allow for a variety of estimation strategies, but tight enough to 

force students to think carefully.  It is more restrictive than traditional Fermi problems, which are 

often evaluated based on order-of-magnitude reasonableness 
3
.  However, for the small-

magnitude values of the problems under investigation here, this tolerance is more informative 
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and useful for students.  Research with the Estimation Calculator indicated that students with a 

tenuous grasp of number sense would make large numbers of estimates, sometimes as many as 

seven estimates, relying heavily upon the feedback in the display rather than carefully rethinking 

estimates whose error was large.  The term floundering is used to describe entering more than 

three estimates that do not converge on the +/-15% tolerance range. 

Computational and Measurement Estimation 

Making estimates for aspects of the shapes and making estimates for the volumes 

suggested two distinct abilities.  Measurement estimation and computational estimation have 

been found to be independent abilities 
16

.  Estimating aspects, such as length or radius, is a form 

of measurement estimation 
12

.  Estimating volume can be a form of computational estimation 
17

 

because it requires the synthesis of the previous aspect estimates combined via geometric 

formulas.  For example, a student might perform measurement estimation on a rectangular prism 

with dimensions of approximately 3, 4 and 5 feet.  Then she might perform computational 

estimation to estimate 50 cubic feet as the volume of the 3 foot × 4 foot × 5 foot prism.  She 

might first reformulate 3 × 4 × 5 to 10 × 5 because 10 is close to 12. 

Spatial Ability  

Mental rotation ability is a subset of spatial visualization skills 
18

.  It predicts engineering 

abilities and has been found to be mutable and teachable 
19

 
20

.  It is defined as the ability to 

mentally rotate shapes and to imagine them in different orientations.  In order to form estimates 

with the 3D Estimator, a student must translate a measure shown in one dimension to other 

dimensions (see Figure 1).  The height of each shape in the 3D Estimator can be estimated by 

comparison with the height of the human figure shown in the display.  The shape can be clicked 

and dragged to different orientations.  Meanwhile, the human figure retains its orientation 

relative to the shape, so that a user looking at the bottom of the sphere will also see the bottom of 

the feet of the human figure, which is provided.  Thus, in order to estimate the dimensions of 

width and height, a student using the 3D Estimator must rotate the one of the reference points 

mentally.  For example mental rotation of the human figure or another side of the shape would 

facilitate this estimation. 

Ability as Enhancer Hypothesis 

Huk 
21

 and Mayer and Sims 
22

 attribute the better performance of high mental rotation 

ability individuals to an ability-as-enhancer hypothesis that holds that high mental rotation ability 

enhances learning using visualizations.  The opposing view is the ability-as-compensator 

hypothesis that individuals of low mental rotation ability will depend more heavily upon 

visualizations and thus benefit more from them.  Their proposed mechanism is that individuals of 

high mental rotation ability have more cognitive resources available to form referential 

connections when working with visualization than do low mental rotation ability individuals.  

Following the ability-as-enhancer hypothesis, we hypothesized that mental rotation ability would 

be a moderating variable between the use of a 3D visualization and measurement estimation, and 

that high mental rotation individuals would spend more time using the 3D geometry 

visualizations in order to form measurement estimates. 
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The Use of Log Files for Assessment 

The National Education Technology Plan 
23

 recommends the design of systems that 

“collect evidence of [students’] knowledge and problem-solving abilities as they work” (p. xi).  

The plan suggests manipulation of simulation parameters (p. 27) as a use of technology and 

encourages that systems be created to “learn” about student abilities and readiness.  In practice, 

data can either be stored in memory temporarily for per-session response to user activity, or 

written to disk for later use.  It is the permanent storage of user data in the form of log files 

stored by server software that we will address here.  A study of multi-step estimation problem 

solving lends itself to extended research study using log files. 

There are implicit tradeoffs of quality versus quantity that emerge when a researcher 

chooses the granularity of a study.  The advent of digital technologies allows for extremely fine-

grained microgenetic 
24

 analysis, which seeks to capture data at various points during the period 

that students attain new knowledge and improve their abilities. 

The 3D Estimator  

Students use the 3D Estimator in the manner described above, making estimates for each 

aspect of a three dimensional shape and then making an overall estimate for the volume of the 

shape.  Students are not expected to know the formulas for the volume of each shape.  These 

formulas are provided in the interface and students use them to make estimates for the volume.  

A sequence of estimates is shown along the right hand side of Figure 1.  The feedback in the 

form of error bars is shown under each estimate, students are shown the exact answer if their 

estimate is within the tolerance region.  As with the Estimation Calculator, the tolerance region 

was chosen to be +/– 15%. 

WISE and WISEngineering 

The learning management platforms underlying the 3D Estimator are WISE 

(http://wise.berkeley.edu) and WISEngineering (http://wisengineering.org).  The WISE learning 

management system allows students to work through a curriculum step-by-step.  Steps are 

individual web pages based on WISE templates, or step-types.  This unit included one step-type 

that was specifically designed for WISEngineering, a new system based on WISE.  

WISEngineering aims to incorporate knowledge integration 
25

 with engineering pedagogy 
26

.  

Mathematics and science units developed for WISEngineering scaffold students' engineering 

projects in a systematic and iterative fashion.  WISE has been built to support visualizations for 

teaching science 
27

.  A natural extension for WISEngineering was the incorporation of 

visualizations for mathematics.  The 3D Estimator uses these new mathematics visualization 

capabilities to allow students to practice estimation. 

Study 1 

Research Question 

RQ1) How do students describe their own strategies when solving multi-step geometry 

estimates? 
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RQ2) Do interactive 3D visualizations differentially support students of high and low 

mental rotation ability in solving multi-step 3D geometry problems? 

Participants 

Participants in this study included 34 eighth graders at a private K-8
th

 school.  This was a 

convenience sample; the researcher knew the earth science teacher of these students and 

administered the online activity during time usually designated for earth science lessons.  The 

students belonged to two different sections of the eighth grade class.  In this study the two 

sections were treated as distinct groups – the calculator group and the no-calculator group.  This 

split was made for purposes of convenience, although undetected systematic differences may 

exist between the two groups. 

Methodology 

Activity 

The two groups performed the activity on desktop computers running Microsoft 

Windows, with one student per computer.  First, participants were given the Purdue Spatial 

Visualization Test – Rotations (PSVT-R)
28

 to measure mental rotation ability.  Six questions 

chosen at random from the rotations subtest were administered as part of the online activity. 

Immediately following this the six 3D geometry estimation problems were presented.  

The first shape was a cube.  The remaining shapes included two other rectangular prisms, a 

triangular prism, a cylinder and a sphere.  Next to each shape was a representation of a person 

(See Figure 1).  The person's height was given to the students in the explanatory text, so that this 

could be used as a reference point 
12

.  The shapes could be rotated in all three dimensions by 

clicking and dragging.  The position and relative orientation of the person stayed the same as the 

student rotated the shape.  For example, if the student rotated the shape to be upside-down, then 

the person would also rotate to be shown upside down.  The shapes were represented in 

perspective.  The user's ability to rotate the shape to orient it perpendicularly to the view was 

expected to reduce foreshortening effects 
29

 that can arise with similar estimation tasks in virtual 

environments.  Participants in the first group were allowed to use calculators, and several 

students chose to use the Calculator Windows application.  Participants in the second group were 

prohibited from using any form of calculators and both groups were prohibited from writing 

anything on paper. 

Unfortunately, during this pilot study, the color scheme of the shapes did not render 

correctly on the PCs.  The result was the 3D shapes were displayed as white shapes on a white 

background, instead of the intended green-on-white.  This meant that shape surfaces that were 

orthogonal to the field of view were invisible, while outlines and sides the user could see at an 

oblique angle were visible as a shade of gray.  Needless to say, this made the task of estimating 

the dimensions of the shapes in the exercises more difficult than they were intended to be. 

Analysis and Results 

Students' written descriptions of their strategies were captured in log files.  These 

descriptions varied in detail.  Some students wrote one-word answers, such as "guess".  Others 
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provided more nuanced explanations, such as the following: "i found the area of one side and 

multiplied by the height but i did the math in my head sop [sic] it wasn't correct."  In general, 

explanations were eloquent and expressed an understanding of key geometry concepts such as 

congruency and proportion, such as: "I guessed the value of the length, and figured out the width 

and the height from eyeballing what looked proportionally correct to me."  Finally, there were 

purely mathematical responses, such as: "11x11x11=1331". 

Spatial visualization ability was compared between the two groups.  The calculator 

(n=16) and non-calculator (n=18) groups did not differ significantly in mental rotation ability, 

F(1, 32) = 1.05, p = .31.  Nor did they differ in time spent rotating the 3D shapes on screen, F(1, 

32) = 1.34, p = .26.  Finally, using Fisher's r-to-z transformation, a comparison of the 

correlations within each group of mental rotation ability and time spent rotating shapes was non-

significant, zdifference = .10, p = .92.  Thus data from the two groups was aggregated to answer 

research question RQ2. 

Mental rotation ability was significantly correlated with total time spent rotating the 3D 

geometric shapes on the screen, r(34) = .35, p < .05.  This matches results from 
21

 indicating that 

students with high spatial ability will use 3D models for longer periods of time than students 

with low spatial ability.  This lends further support to the ability-as-enhancer hypothesis 
22

. 

Discussion 

The variety of student answers highlighted the need to allow students to explain their 

answers in multiple ways.  Estimation of this sort involves the synthesis of geometric concepts 

such as congruency and proportion, which students mentioned.  It also involves the straight 

mathematical computations, such as multiplying 11×11×11, as one student explicitly wrote.  

Subsequent research will provide students with space to describe their work using both words 

and formulas separately.  It is hoped that students will refer explicitly to reference points that 

they use, as well as mathematical strategies, if they are prompted appropriately in the software. 

The fact that students of higher mental rotation ability spent more time physically 

rotating the shapes on the screen may have been in part an artifact of the difficulty inherent in 

seeing those shapes.  The ability-as-enhancer hypothesis suggests that students with high mental 

rotation ability will use visual aids such as these 3D shapes in more effective ways than students 

with lower mental rotation abilities.  Perhaps students with greater mental rotation ability found 

the tasks more inherently interesting and were therefore more willing to devote more time to 

"playing" with the 3D shapes on screen. 

There is value in seeking viable scaffolds and supports for those students with limited 

mental rotation ability so that they can find success in science, technology, engineering and 

mathematics.  This research lays the groundwork for online systems that assess students' spatial 

ability first and then tailors instruction to the needs of the learner.  If students are found to have 

low mental rotation ability, software may adjust activities dynamically so that problems are 

solved via symbolic rather than visuo-spatial means.  Since mental rotation ability is mutable and 

research has demonstrated methods for its enhancement, 
20

 curriculum could also be altered to 

respond to formative assessment. 
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Study 2 

The second study relied on descriptive statistics, as well as the use of Learning Factors 

Analysis (LFA).  The inclusion of LFA was predicated on the idea that even assessment 

instruments can sometimes provide learning opportunities.   LFA uses a mathematical model 

based on logistic regression to tease apart learning on individual items.  Learning is 

operationalized as a reduction in student error across all students for each assessment item 

corresponding to a knowledge component (KC).  For example, estimating the height of a prism 

might be considered to be a KC, so that each time any student is asked to make an estimate for a 

prism's height, his or her response is tied to that KC.  The technique of LFA is used to confirm 

whether, for example, estimating the height of a prism is a truly elemental KC, or whether it 

needs to be divided into smaller KCs, such as estimating the height of triangular and rectangular 

prisms. 

Although the sample size in Study 2 was too small (N = 59) to draw conclusions about 

learning of specific KCs, the LFA technique was used to determine whether certain problem 

types resulted in similar levels of error across students.  It was hypothesized that dimension 

estimates such as length, width and height would "hang together" as a measurement estimate KC, 

and would be distinct from combined estimates for volume, which would be a separate volume 

calculation KC. 

Research Questions 

The research was designed to address three questions. 

RQ1)  Do measurement estimations of one-dimensional aspects and computational 

estimations of three-dimensional volume represent distinct, separable knowledge components 

(KCs)?  For this, LFA was used. 

RQ2)  What are the relationships between number of aspect estimates, relative error of 

aspect estimates, number of volume estimates, and relative error of volume estimates?  These 

relationships were intended to shed light on how strategic or haphazard students' estimation 

behaviors were.  A strong correlation between number of estimates and error of estimates would 

indicate a haphazard approach. 

RQ3)   How do students use feedback on the errors of their estimates (hereafter estimate-

error-feedback, or EEF) for a volume estimation task?  Problem solving involved making 

measurement estimates using a reference point 
12

 and then synthesizing these estimates through 

computation estimation.  The EEF as error bars were provided for each estimate that a student 

made (See Figure 1).  This included estimates for aspects as well as estimates for total volume. 

Methodology 

Activity 

The research design was exploratory in nature.  The intention of the study was to collect 

descriptive statistics on students' use of the 3D Estimator, and data for correlation and Learning 

Factor Analysis.  All students were given a forty-five minute regular class period in which to 
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complete the activities.  The two eighth grade mathematics teachers devoted their class time to 

the activities for one day, over the course of three consecutive sections. 

Participants 

Participants included three groups of eighth grade students (N = 59) at a central Virginia 

public middle school.  These groups constituted the entire eighth grade, including all levels of 

mathematics proficiency at the school. 

Assessment 

Before making estimates with the 3D Estimator, students took the rotations component of 

the Purdue Spatial Visualization Test.  After completing the mental rotations test, students used 

the 3D Estimator to estimate the volume of six shapes, as in Study 1.  In this study, each estimate 

that a student entered was recorded and stored in the database. 

Analysis and Results 

The first research question was: Do measurement estimations of one-dimensional aspects 

and computational estimations of three-dimensional volume represent distinct, separable 

knowledge components (KCs)?  Determining distinct KCs for the 3D Estimator task requires the 

use of a learning factors analysis (LFA) and the iterative process of determining q-matrices 

described by 
4
.  The analysis shows whether a smooth learning curve exists for a given KC.  

Smooth curves mean that the entire set of participants makes fewer errors with each attempt.  

Data were analyzed using DataShop (https://pslcdatashop.web.cmu.edu/).  Learning curves were 

established using only the first estimate in each series.  Results were inconclusive.  They failed to 

show a reduction in errors from problem to problem, revealing improvement within each 

problem instead.  Improvement within a problem was to be expected, since making estimates for 

width (for example) was easier after having converged on a reasonable estimate for height using 

the error feedback in the bar. 

The second research question was: What are the relationships between number of aspect 

estimates, relative error of aspect estimates, number of volume estimates, and relative error of 

volume estimates?  Correlations were calculated between these four variables (Table 2).  These 

correlations are intended to shed light on the questions of how systematic students have been in 

the process of making their estimates.  They were calculated per student, and relative error of 

estimates is calculated as mean absolute deviation 30. 

If number of estimates and the mean deviation (error) in those estimates is highly 

correlated, that would suggest a haphazard estimation strategy, or floundering.  It implies that the 

length of estimate series and the error in those estimate series are linearly related.  Students who 

start with very unreasonable estimates require many attempts to converge on a reasonable 

estimate.  Students who start with moderately unreasonable estimates require a moderate number 

of attempts, etc.  There is a significant correlation (r = 0.45, p < 0.01) between number of 

volume estimates and error contained in those volume estimates, suggesting that students were 

haphazard in their approach to volume estimation.  However, there is no such correlation 

between the number of and error in aspect estimates (r = 0.08).  This does not demonstrate 

conclusively that students were systematic in estimating aspects; however they may have been 
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able to use cues to converge on reasonable estimates more rapidly than by simply using the error 

feedback bar. 

The other significant correlation that appeared was between the number of aspect 

estimates and the number of volume estimates (r = 0.50, p < 0.01).  Thus students who made 

many attempts for aspects of the shapes also made many attempts at estimating volumes.  This 

runs counter to the hypothesis that these two types of estimation represent the independent 

abilities 
16

 of measurement and computational estimation. 

The third research question was:  How do students use estimate error feedback (EEF) for 

a volume estimation task?  An analysis of the distribution of students' estimates was used to 

address this question (see Figure 2).  Estimates were grouped by series, where a series of 

estimates meant all sequential estimates made for the same aspect or volume.  Out of 929 series 

of estimates for both aspects and volume, 100 did not result in a reasonable estimate.  In other 

words, students stopped or gave up before reaching the +/– 15% tolerance and seeing the correct 

answer in the output.  Patterns of estimation varied widely.  On average, students made 2.01 

estimates (SD = 1.67).  However, the distribution of the estimates could be fit very well by an 

exponential decay curve (r
2
 = 0.96).  The four longest estimate series had lengths of 11, 12, 14 

and 17, respectively.  More than half (524 series, 56%) contained only one estimate.  Of 829 

converging estimates, 713 (86%) converged in ≤ 3. 

 

Figure 2:  A histogram of students' series of estimates.  Converging series reached a final estimate that 

was within +/–15% of the exact answer.  Of these, 86% of estimates converged in within 3 attempts. 

Discussion 

Overall, the results highlight the need to interrupt floundering 
14

 among certain students 

in order to encourage them to think carefully about their estimates.  Most estimate series were 

fruitful.  Of the 829 estimate series that resulted in reasonable estimates, 713 (86%) converged 

on the reasonable tolerance within three attempts.  At the opposite extreme, students made as 

many as 14 or 17 estimates before providing a reasonable one.  The correlational analysis 

suggests that the students who tended to make these long series of unsuccessful estimates made 

them in similar proportion for shape aspects and for computed shape volumes.  This 

quantitatively supports the notion of floundering established in Studies 1 and 2.  Another result, 
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the indication that students are haphazard in their formation of volume estimates also warrants 

further attention.  Finally, the results of the LFA suggest that much care and attention to 

instructional design, as well as a larger sample size would be necessary to empirically establish 

KCs and corresponding problems. 

Conclusions 

In study 1, students with high mental rotation ability tended spend a more extended 

period of time exploring 3D models than did students with low spatial ability, echoing Huk 
21

.  

These results are possibly confounded by the difficulty that students had in seeing those shapes, 

which was a result of a technical issue.  If this is the case, then the results apply more to the 

persistence of students of high mental rotation ability in the face of such difficulties. 

In study 2, the correlational statistics indicate that students were unsystematic in their 

approaches to estimation.  However, the lack of a systematic approach was not universal.  The 

erratic estimates were largely confined to a few students who made numerous repeated estimates. 

Those students showed a notable persistence, generating as many as 17 estimates before 

providing one that was reasonable, as defined by the predetermined tolerance of +/-15%.  Such a 

high number of repeated trials suggests a combined lack of number sense and an inability to 

generate valid initial estimates, and qualifies as floundering. 

The encouraging result in all of this is that students usually do reach reasonable estimates 

within 3 attempts.  A large majority of estimate series (86%) managed to converge on a value 

within the tolerance range in three estimates or less.  This suggests that the technique of 

providing feedback may be unnecessary until students have had a chance to adjust estimates 

according to the instant feedback in the display. 

Limitations 

Small sample sizes limited the generalizability of the results in both studies.  Technical 

difficulties made the shapes in the 3D Estimator more difficult to see in Study 1, which may have 

contributed to the observed correlation between mental rotation ability and time spent rotating 

the shapes.  The possibility of making estimates based solely on the feedback from the 3D 

Estimator may itself be a limitation, although one which this research has provided some 

evidence to help remedy. 

Future Work: Prompting Reflection 

The next version of the 3D Estimator is currently in development.  This version of the 

software will actually stop students after 3 attempts and encourage them to describe their thought 

processes.  It is believed that this will foster a more metacognitive approach in students.  If 

students make 3 unreasonable estimates, the software will provide text boxes for explaining, both 

numerically and verbally, what they are doing.  This version of the software will also have two 

different operating modes.  One mode will be used for assessment, as described in the research 

here.  The other mode will be used for students to practice estimation, and thereby, perhaps, get 

better at providing reasonable estimates for this kind of multi-step geometry problem. 

 

P
age 23.1165.13



 

Bibliography 

1
 French, J. J., & Leiffer, P. R. (2012). The Genesis of Transformation: Preventing “Failure to Launch” Syndrome in 

Generation in First-year Engineering Students. Proceedings of the 2012 ASEE Annual Conference & 

Exposition. Session AC 2012-3282 
2
 Rheinlander, K., Wallace, D., Morrison, W., Ansari, D., Coch, D., & Williams, B. V. (2008). Teachers talk: 

Pressure points in the k-8 mathematics curriculum. Numeracy, 1(1), 1–19. doi:10.5038/1936-4660.1.1.4 
3
 Dunn-Rankin, D. (2001). Evaluating design alternatives – the role of simple engineering analysis and estimation. 

Proceedings of the 2001 ASEE Annual Conference & Exposition. Session 2525 
4
 Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The knowledge-learning-instruction framework: bridging 

the science-practice chasm to enhance robust student learning. Cognitive science, 36(5), 757–98. 

doi:10.1111/j.1551-6709.2012.01245.x 
5
 Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. 

6
 Shrager, J., & Siegler, R. (1998). SCADS: A model of children’s strategy choices and strategy discoveries. 

Psychological Science, 9(5), 405–410. Retrieved from http://pss.sagepub.com/content/9/5/405.short 
7
 Lemaire, P., & Lecacheur, M. (2011). Age-related changes in children’s executive functions and strategy selection: 

A study in computational estimation. Cognitive Development, 26(3), 282–294. 

doi:10.1016/j.cogdev.2011.01.002 
8
 Carlson, J. E. (1997). Fermi problems on gasoline consumption. The Physics Teacher, 35(5), 308. 

9
 Rubenstein, R. N. (1985). Computational estimation and related mathematical skills. Journal for Research in 

Mathematics Education, 16(2), 106–119. 
10

 LeFevre, J., Greenham, S. L., & Waheed, N. (1993). The development of procedural and conceptual knowledge in 

computational estimation. Cognition and Instruction, 11(2), 95-132.  
11

 Stamper, J., & Koedinger, K. R. (2011). Human-machine student model discovery and improvement using data. 

In J. Kay, S. Bull, & G. Biswas (Eds.), Proceedings of the 15th International Conference on Artificial 

Intelligence in Education (pp. 353–360). Berlin: Springer.  Retrieved from: 

http://www.learnlab.org/research/wiki/images/8/86/Stamper-Koedinger-AIED2011.pdf 
12

 Joram, E., Subrahmanyam, K., & Gelman, R. (1998). Measurement estimation: Learning to map the route from 

number to quantity and back. Review of Educational Research, 68(4), 413–449. 
13

 Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124– 

1131. 
14

 Anderson, J.R., Corbett, A.T., Koedinger, K.R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The 

Journal of the Learning Sciences, 4(2), 167-207 
15

 [Removed for blind review] 

16
 Hogan, T. P., & Brezinski, K. L. (2003). Quantitative estimation: One, two, or three abilities? Mathematical 

Thinking and Learning, 5(4), 259–280. 
17

 Reys, R. E., Rybolt, J. F., Bestgen, B. J., & Wyatt, J. W. (1982). Processes Used by Good Computational 

Estimators. Journal for Research in Mathematics Education, 13(3), 183–201. Retrieved from 

http://www.jstor.org/stable/748555 
18

 Sternberg, R. J. (1990). Metaphors of mind: Conceptions of the nature of intelligence. Cambridge: Cambridge 

University Press. 
19

 Hsi, S., Linn, M. C., & Bell, J. E. (1997). The Role of Spatial Reasoning in Engineering and the Design of Spatial 

Instruction. Journal of Engineering Education, 82(2), 151–158. 
20

 Sorby, S. A. (2009). Educational research in developing 3-D spatial skills for engineering students. International 

Journal of Science Education, 31(3), 459-480. 
21

 Huk, T. (2006). Who benefits from learning with 3D models? the case of spatial ability.  Journal of Computer 

Assisted Learning, 22, 392–404. 
22

 Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding 

theory of multimedia learning. Journal of Educational Psychology, 86(3), 389–401. doi:10.1037//0022-

0663.86.3.389 

P
age 23.1165.14



23
 National Assessment of Educational Progress (NAEP). (2010).  [Hot air balloon simulation to design and conduct 

an experiment].  TRE Simulation.  Retrieved from 

http://nces.ed.gov/nationsreportcard/studies/tba/tre/tresim/simulate.asp 
24

 Siegler, R. S., and Crowley, K.  (1991).  The microgenetic method: A direct means for studying cognitive 

development.  American Psychologist, 46(6), 606-620. 
25

 Linn, M.C., Lee, H. –S., Tinker, R., Husic, F., & Chiu, J.L. (2006). Teaching and assessing knowledge integration 

in science. Science, 313(5790), 1049-1050. 
26

 Chiu, J. L. & Linn, M. C. (2011). Knowledge integration and WISE engineering. Journal of Pre-college 

Engineering Education Research, 1(1), 1-14. 
27

 Xie, Q., & Tinker, R. (2006). Molecular dynamics simulations of chemical reactions for use in education. Journal 

of Chemical Education, 83(1), 77–83. 
28

 Guay, R. B. (1976). Purdue spatial visualization test. Educational Testing Service Test Collection.  Princeton, NJ: 

ETS 
29

 Richardson, A. R., & Waller, D. (2005). The effect of feedback training on distance estimation in virtual 

environments. Applied Cognitive Psychology, 19(8), 1089–1108. doi:10.1002/acp.1140 
30

 Gorard, S. (2004). Revisiting a 90-year-old debate: the advantages of the mean deviation. Paper presented at the 

British Educational Research Association Annual Conference, University of Manchester, 16-18 September 

2004. Accessed online at: http://www.leeds.ac.uk/educol/documents/00003759.htm 

P
age 23.1165.15


