
Paper ID #18191

The Application of PID Control in Student Projects

Dr. Alireza Kavianpour, DeVry University, Pomona

Dr. Alireza Kavianpour received his PH.D. Degree from University of Southern California (USC). He is
currently Senior Professor at DeVry University, Pomona, CA. Dr. Kavianpour is the author and co-author
of over forty technical papers all published in IEEE Journals or referred conferences. Before joining
DeVry University he was a researcher at the University of California, Irvine and consultant at Qualcom
Inc. His main interests are in the areas of embedded systems and computer architecture.

Miss Sogand Kavianpour

Miss Sogand Kavianpour received her B.S. degree in Electrical & Computer Engineering from the Uni-
versity of California, Irvine. She is currently working as a software developer.

Dr. Javad Shakib, DeVry University, Pomona

c©American Society for Engineering Education, 2017

Student Projects and the Application of PID Control

This paper considers the different application of PID Controls. Specifically, we

will take a look at how a group of students utilize this method in two different

applications. Many of the Electrical Engineering students had a background in

Mechatronics and Control Theory, which was beneficial in understanding the

applications at hand. The first application included a robotic car. The students

needed to direct the car to follow a predefined path. The second application

included a robotic arm. The arm needed to reach a preset target within a specific

time.

PID control is a feedback control in which it calculates an error as the difference

between the desired value and a measured value. It then applies a correction based

on proportional, integral, and derivative terms. The PID controller objective is to

reduce the error by the adjusting a variable, such as the position of a robot arm or

Robot car.

Some applications may require the use of only one variable: P, I, or D. This is

achieved by setting the other parameters to zero. PID controller 6,7,8,9 can use two

combinations of P, I, and D. It also can use the three terms to provide the

appropriate system control. PI controllers are fairly common. A derivative action is

sensitive to measurement noise, whereas the absence of an integral term may

prevent the system from reaching its target value.

In this paper, the result of the PID controllers in the student projects such as robotic

car and robotic arm, will be analyzed. The results are based on the application of

proportional, integral, and derivative control. In addition, a MATLAB and C++

programs will be used to calculate PID values.

This paper suggests one possible method to implement the concepts that students

have learned in the other courses, and use them in the real world applications.

Robotic car and Robotic arm are two examples of the projects implemented in one

of the courses in the Electronic Engineering Technology (EET) program called

“Embedded Microprocessors System”.

1- Introduction
There are a number of strategies for correcting output errors. In order to measure

the error, you need to know both the current measurement and the correct

measurement. The correct measurement is known as the set point. Obtaining the

current measurement involves a sensor. Typically, a sensor's job is to receive an

input. A motion sensor on an alarm system receives an input when the infrared

beam is broken. This causes the controller to sound the alarm. Most systems

correct errors using feedback: the output of the system is fed back into the sensor

as an input. The sensor measures the current state of its own system. The current

state is also known as the current position, current reading, and current output of

the system. An example of this would be a thermostat attached to an engine. If the

thermostat measures the temperature of the engine to be above the operating limit,

it shuts down the engine1.

Once the current state of the system is known, the controller calculates the

difference between the current state and the target state. Based on this calculation,

the controller must implement a correction strategy. The controller may have

several strategies available to it. Below we will define several important terms and

concepts.

Sensor

A sensor is a device that converts physical/chemical parameters to a

measurable signal.

Actuators

An actuator is a component of machines that is responsible for moving or

controlling a system.

Steady-state

Steady-state involves continually resetting the set point.

Open-loop control

Open-loop Control does not use feedback to determine if its output has

achieved the desired goal every day. Open-loop System is easy to build but

it is not reliable. It does not perform accurately unless calibrated and it

cannot be optimized. An example of an Open-loop System is a sprinkler

system of a house programmed to turn on at given time.

Closed-loop Control

Closed-loop Control uses feedback to determine if its output has achieved

the desired goal. Closed-loop System is difficult to build but is very reliable

and performs accurately due to feedback. It is feasible to optimize. An

example of a Closed-loop System is a sprinkler system that is programmed

to turn on if the humidity of the soil is below a certain threshold.

Proportional Control

The correction is proportional to the amount of error. For example, an

airplane is approaching an airport located at sea level. At different altitudes,

the plane descends at various speeds.

Proportional Control Equations are as follows:

• Set Position – Current Position = 𝑒(𝑡)

• Motor Speed = 𝐾𝑝 ∗ 𝑒(𝑡)

• 𝐾𝑝= proportional gain and is the problem dependent.

• 𝑒(𝑡) = Error

• 𝐾𝑝 determines how fast the object reaches the set point.

Derivative Control

Derivative control takes into account how fast the error is changing. The faster

the error is increasing, the more correction that is applied. The slower the error

is increasing; the less correction is applied. If a car stops suddenly in front of

you on the freeway, you would apply a lot of brakes. If a car is stopping

gradually, you would apply a little brake.

The Derivative Control Equations are as follows:

• Set Position – Current Position = 𝑒(𝑡)

• 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑒(𝑡) = 𝑑 𝑒(𝑡)
𝑑𝑡

• 𝐾𝑑 𝑑𝑡𝑑 𝑒 Motor Speed

 Integral Control

Consider an altimeter that takes a reading every t seconds. If the sum of all the

errors adds up to zero, then integral control would not correct it. Now, let us

look at a second situation where every time a reading is taken, the altitude is

two feet. Then the integral control would integrate over the magnitude of the

readings times the numbers of time it was read and apply a correction to two

feet. Integral takes into account the time of the error before applying a

correction.

The integral Control Equations are as follows:

• Set Position – Current Position = 𝑒(𝑡)

• Integral of 𝑒 = 𝑑𝑡 • 𝐾𝑖 Motor Speed

• 𝐾𝑖 is integral gain.

The Integral can be calculated by approximation: divide the region under the

curve into rectangles. In conclusion, the integral is the sum of the areas of these

rectangles.

2- PID Control
PID control consists of:

• Proportional Control

• Integral Control

• Derivative Control

Figure 1: PID Control System The

PID Control Equations are as follows:

• 𝑃𝐼𝐷
𝑑𝑡

Proportional control deals with present behavior.

Integral control deals with past behavior.

Derivative control deals with future behavior.

3- Student Projects
Robotic car and Robotic arm are two examples of the projects implemented in one

of the Electronic Engineering Technology (EET) courses called “Embedded

Microprocessors System”. The objective in this course is to use embedded

programming in the real life application such as the PID concepts that they already

studied in the previous EET courses such as Control Theory and Mechatronics.

3.1 PID Control in a Robot Arm

Figure 2: Robotic Arm

Consider a robotic arm (Figure 2) with four joints:

1: Turntable, 2: Bicep, 3: Forearm, 4: Wrist

Joints are moved by a DC/Servo motor. The Robotic Arm controller consists of

four PIDs (one per joint). 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 for each PID loop is calculated separately.

This process can be time-consuming. Alternatively, you can tune all four PID loops

subject to system-level requirements. MATLAB has the tools to calculate PID

values. The transfer function of a PID controller is found by taking the Laplace

transform.

We can also define a PID controller in MATLAB directly using the transfer

function, for example:

Kp = 1;

Ki = 1;

Kd = 1;

C = Kp + Ki/s + Kd*s

C = (s^2 + s + 1)/s

Alternatively, we may use MATLAB's pid controller object to generate an

equivalent continuous-time controller as follows:

C = Pid (5,1,2)

Kp = 5, Ki =1, Kd =2

C = Kp + Ki /s + Kd*s

3.2 PID control in a Robotic Car

In this project, students are required to design an autonomous robot car (Figure 3a)

to navigate a track. The objective is to keep the car to follow the track (Fig 4) by

PID control method. The processor board 2,3,4,10 for this project is the Axiom

TWR-S12G128. It contains the MC9S12G128 Central Processor Unit (CPU). The

board has many input/output ports, analog-to-digital (A/D) inputs, and pulse width

modulation (PWM) outputs.

Figure 3a: Robotic Car

Figure 3b: Robotic Car

Figure 4: Car Track

Above we see the car track that the car must follow. This car also has two optical

sensors. Figure 5 is an interface module for connecting optical sensors to one of the

input port of the controller.

Figure 5: Sensor Driver

A robot car has two servo motors powered by an H-bridge. The H-brides receive

input from the timer of the controller, as shown in Figure 6. The EN pins in the two

H-Bridge are connected to two timers. The two timers control the speed of the

motors. The program must stop the right wheel if the left sensor sees the white

background. Similarly, the left wheel is stopped if the right sensor sees the white

background. In either case, the wheel which is still turning moves the sensor back

onto the black stripe. If both sensors light up, it means that the car has gone off the

black stripe completely, and both motors stop.

Figure 6: Motor Driver

3.3 PID Program

The robot car is controlled by two different programs. One program using

proportional control and the other program uses a combination of proportional and

integral control. These two cases can be defined in MATLAB using the transfer

function directly.

Case 1: Proportional control

Kp = 1;

Ki = 0;

Kd = 0;

C = Kp + Ki/s + Kd*s

C = (s^2 + s + 1)/s

Case 2: Proportional and integral control

Kp = 1;

Ki = 1;

Kd = 0;

C = Kp + Ki/s + Kd*s

C = (s^2 + s + 1)/s

In the following, the PID program written in C++ language will be discussed.

The microcontroller has eight timers. Each timer of the controller has two registers.

They are called duty cycle register (PWMDTY) and period register, (PWMPER).

These two registers control the speed of the motors. The function of PWME

register is to enable the timer. The value of the registers for timer 0 and timer 1

considering the main clock of 24MHZ are as follows:

PWMPER0 = 200;

PWMDTY0 = 150;

PWME0 = 0x02;

PWMPER1 = 200;

PWMDTY1 = 150;

PWME1 = 0x02;

3.3.1 Proportional Control with C++ Program

This program reads output of the sensors and adjusts the speed of the motors

accordingly. The program 5 is as follows:

sensor = PORTA & 0x03;

 switch(sensor)

{ case 0: // Both sensors are

off.

 PWME = 0x03; // Turn both motors
on. break; case 1: // Right sensor

is on.

 PWME = 0x01; // Turn right motor on, left motor off.

 break; case 2: // Left

sensor is on.

 PWME = 0x02; //Turn left motor on, right motor

off. break; case 3: //Both sensors are on.

 PWME = 0x00; // Turn both motors off.

 break;

}

3.3.2 Proportional and Integral Control with C++ Program

This program reads the output of the sensors and adjusts the speed of motors. It

continues to read the output of the sensors until errors are minimized. The program

is as follows:

sensor = PORTA & 0x03;

LL: switch(sensor)

{ case 0: // Both sensors are off.

 PWME = 0x03; // Turn both motors on.

 sensor = PORTA & 0x03;

 break; case 1: // Right sensor

is on.

 PWME = 0x01; // Turn right motor on, left motor off.

 sensor = PORTA & 0x03; break;

case 2: // Left sensor is on.

 PWME = 0x02; //Turn left motor on, right motor off.

 sensor = PORTA & 0x03;

 break; case 3: //Both
sensors are on.

 PWME = 0x00; // Turn both motors off.

sensor = PORTA & 0x03;

break; }

Go to LL;

By comparing the movement of the robot under these two programs, it is clear that

the second program making the correction very fast and the car follows the track

very smoothly. This program reads the output of the sensors until errors are

minimized (proportional and integral control).

4- Conclusion

This paper suggests one possible method to implement the concepts that students

have learned in the other courses, and use them in the real world applications.

Robotic car and Robotic arm are two examples of the projects implemented in one

of the courses in the Electronic Engineering Technology (EET) program called

“Embedded Microprocessors System”. The objective in this course is to use

embedded programming in the real world application such as the PID concepts that

they already studied in the previous EET courses such as Mechatronics. These type

of projects help students to understand the difficult concepts in their courses and

relate theory to the real world applications.

5- References

1- Christopher T. Killian. (2006) Modern Control Technology, Third Edition,

Thompson Delmar Learning.

2- Valvano, J. W. (2000). Embedded microcomputer systems: Real-time

interfacing. Pacific Grove, CA: Brooks-Cole.

3- Mazidi, M. A., & Causey, D. (2009). HCS12 microcontroller and embedded

systems using Assembly and C with CodeWarrior, Pearson/Prentice Hall.

4- Daniel J Pack and Steven F. Barrett. (2008). Microcontroller Theory and

Applications: HC12 and S12, 2nd Edition, Pearson/Prentice Hall.

5- Bjarne Stroustrup (2009). Programming: Principles and Practice Using C++,

Addison Wesley.

6- Jens Graf (2013) PID Control, Create Space Publisher.

7- Kok K. Tan. NEW Advances in PID Control (2011), Springer.

8- Michael Johnson and Mohammad Moradi. PID Control (2010), Springer.

9- Antonio Visioli (2006). NEW Practical PID Control, Springer.

10- www.digilentinc.com. Digilent Robotic Start Kit Reference Manual.

http://www.digilentinc.com/

