The ARPA-E Mission

Catalyze and support the development of transformational, high-impact energy technologies

Ensure America's

- National Security
- Economic Security
- Energy Security
- Technological Lead

ARPA-E Program Framing Questions

If it works...

will it matter?

Creating New Learning Curves

Developing ARPA-E Programs

Changing the Model

The ARPA-E Portfolio

As of January 2015, ARPA-E has funded over 400 projects, investing \$1.1 billion across 25 focused programs and open funding solicitations

Stationary	Energy	Technologies								
Solar ADEPT		FOCUS								
GRIDS	BEEIII									
IMPACCI	GENI	REBELS								
		DELTA								
	_	MONITOR								
Transportatio	on Energ	y Technologies								
BEEST	PETRO	Electrofuels								
		MOVE								
		RANGE								
		REMOTE								
Stationary & Transportation										
Energ	y Techn	ologies								
ADEPT	AMPED	SWITCHES								
HEATS	REACT									
SBIR/STTR	METALS	;								

Open

OPEN 2009 OPEN 2012 IDEAS

Active Funding Opportunities

- OPEN 2015
- Advance Research in Dry-cooling (ARID)
- Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC)
- Transportation Energy Resources from Renewable Agriculture (TERRA)
- Accelerating Low-Cost Plasma Heating and Assembly (ALPHA)
- Traveler Response Architecture using Novel Signaling for Network Efficiency in Transportation (TRANSNET)
- GENerators for Small Electrical and Thermal Systems (GENSETS)
- Network Optimized Distributed Energy Systems (NODES)

FOCUS Advanced Technologies Solar Energy

Mission

Develop technologies to advance solar energy beyond current photovoltaic (PV) and concentrated solar power (CSP) technologies to ensure solar power remains a consistent, cost-effective renewable energy option.

Program Director	Dr. Howard Branz
Year	2013
Projects	12
Investment	\$30 Million

Goals

Develop two distinct technology options to deliver low-cost, high-efficiency solar energy on demand:

- (1) New hybrid solar energy converters to turn sunlight into electricity for immediate use, while also producing heat that can be stored at low cost for later use (using the entire solar spectrum more efficiently than PV or CSP technologies)
- (2) **New hybrid energy storage systems** that accept heat and electricity from variable solar sources to deliver electricity when needed

Highlights

Coming soon!

What Makes an ARPA-E Project?

IMPACT

- High impact on ARPA-E mission areas
- Credible path to market
- Large commercial application

TRANSFORM

- Challenges what is possible
- Disrupts existing learning curves
- Leaps beyond today's technologies

BRIDGE

- Translates science into breakthrough technology
- Not researched or funded elsewhere
- Catalyzes new interest and investment

TEAM

- Comprised of best-in-class people
- Cross-disciplinary skill sets
- Translation oriented

MOVE NATURAL GAS FOR CARS

Mission

Develop (1) cost-effective ways to power passenger cars and other light duty vehicles and (2) quick-filling at-home refueling stations.

Program Director	Dr. Dane Boysen
Year	2012
Projects	13
Total Investment	\$30 Million

Goals

- 5-yr payback for light duty natural gas vehicles (NG is \$1.50/gallon of gas equivalent, gasoline \$3.50/gallon)
- Conformable tanks with energy density = CNG
- Convenient, low-cost at-home refueling

Approaches

Approach 1: Low pressure storage (< 500 psi)

Sorbent materials with energy density equal to CNG

Approach 2: High pressure storage (3,600 psi)

 High strength, conformable tanks with low cost compression

AMPED ENERGY STORAGE SYSTEMS

Mission

Develop advanced sensing, control, and power management technologies that redefine the way we think about battery management.

Program Director	Dr. Ilan Gur
Year	2012
Projects	14
Total Investment	\$30.2 Million

Goals

- Improve lifetime and valuation of battery
- Safe, rapid charging batteries
- Enable hybrid and secondary use applications
- Increase battery utilization without changes to the battery itself through adaptive management, sensing, modeling and power electronics

Highlights

- Radical sensor integration to allow real-time measurement
- Novel diagnostic and state determination through non-electronic signals
- Adaptive model and power electronic architecture approaches

OPEN 2012: 66 Projects, 24 States, 11 Areas

Measuring ARPA-E's Success

MOVING TECHNOLOGY TOWARD MARKET

- More than 37 partnerships with other government agencies
- More than 30 new companies formed

- 34 Projects have attracted more than \$850 million in private-sector follow-on funding after ARPA-E's investment of \$135 million
- Established company relationships and developed new communities
- Several technologies now in products in the marketplace

BREAKTHROUGH ACHIEVEMENTS

- Technology breakthroughs
- Patents
- Publications

OPERATIONAL EXCELLENCE

- Expedited program development and project selection
- Aggressive performance metrics

Help change the world by winning an ARPA-E award

Read the Funding Opportunity Announcement (FOA)

Demonstrate impact

Describe the technology

Compare to state of art

Read the Funding Opportunity Announcement (FOA)

Demonstrate impact

Describe technology

Identify challenges and solutions

- Motivation for the program
- Program objectives
- Technical categories of interest
- Technical performance targets

Read the FOA! Then read it <u>again</u>, *carefully*.

Describe technology

Compare to state of art

Identify challenges and solutions

23

Top 5 Tips for Writing a Competitive Proposal

- Read the Funding Opportunity Announcement (FOA)
 - Demonstrate impact
 - 3) Describe technology
 - Compare to state of art

5 Identify challenges and solutions

- How does it work? Describe with minimal jargon.
- What's new in your approach?
- Why do you think it will be successful?

2 Demonstrate impact

Describe technology

Identify challenges and solutions

- How is it done today?
- Why are today's solutions insufficient?
- How does your solution represent a dramatic improvement?

- Demonstrate impact
- 3

5

Describe technology

Compare to state of art

Identify challenges and solutions

- What is the challenge to developing your specific technology? Why is it hard?
- What approaches will you take to overcoming these challenges?

Why should we fund you?

Provide <u>key insight/unique</u> <u>approach</u> to solve a problem where others failed

www.arpa-e.energy.gov

