
Paper ID #38390

The Combination Approach: Increasing Student Learning and Understand-
ing
of Introductory Computer Science Topics

Mr. Thomas Rossi, Penn State Behrend

Thomas Rossi is a lecturer in Computer Science and Software Engineering at Penn State Behrend. His
research focuses on improving the post-secondary experience for students through the use of current com-
puting tools and technologies. Thomas graduated with his MS in Computer Science from the University
of New Hampshire in 2016.

Dr. Paul C. Lynch, Penn State Behrend

Paul C. Lynch received his Ph.D., M.S., and B.S. degrees in Industrial Engineering from the Pennsylvania
State University. Dr. Lynch is a member of AFS, AIST, SME, IISE, and ASEE. Dr. Lynch’s primary
research interests are in metal casting, manufacturing systems, engineering economy and engineering ed-
ucation. Dr. Lynch has been recognized by Alpha Pi Mu, IISE, and the Pennsylvania State University
for his scholarship, teaching, and advising. He was awarded the Penn State Behrend School of Engi-
neering Distinguished Awards for Excellence in Advising (2018), Teaching (2019), and Research (2020).
Dr. Lynch was also awarded the Penn State Behrend College Awards for Excellence in Advising (2018),
Teaching (2019), and Outreach (2021). He received the Institute of Industrial and Systems Engineers En-
gineering Economy Teaching Award in 2018. Dr. Lynch received the Outstanding Industrial Engineering
Faculty Award in 2011, 2013, and 2015, the Penn State Industrial & Manufacturing Engineering Alumni
Faculty Appreciation Award in 2013, and the Outstanding Advising Award in the College of Engineering
in 2014 for his work in undergraduate education at Penn State. He worked as a regional production en-
gineer for Universal Forest Products prior to pursuing his graduate degrees. He is currently an Associate
Professor of Industrial Engineering in the School of Engineering at Penn State Erie, The Behrend College.

©American Society for Engineering Education, 2023

The Combination Approach: Increasing Student Learning and Understanding
of Introductory Computer Science Topics

 Abstract

One of the key components to an introductory Computer Science course is the lab component.
This serves as a time for students to gain hands on experience with the concepts they are learning
in lecture that week. Typically, the way the lab time is structured is students will be given the
assignment and be allotted the entire lab period to work on their own with instructor help
available if need be.

While straightforward enough, this approach is less than ideal. With lab sizes in introductory
courses increasing the number of students who need instructor help during the lab time increases.
This approach leads to students not being able to get the attention they need as the instructor
needs to move between students quickly or even worse…students may “fall through the cracks”
as demand for help outpaces the instructor resources available. The result is students leaving lab
with knowledge gaps regarding the topic that prevent them from creating a solid foundation on
which to build their basic programming knowledge. Even worse is the fact this approach teaches
students when they are handed a programming task to dive straight to code as fast as possible
which may not be consistent with how they will work in industry.

The goal of this paper is to outline a new paradigm for structuring the lab period which teaches
students how to work with peers to solve a problem, think before they code, and build conceptual
understanding. In this approach students do a combination of group work, individual work, and
whole class work to solve the problem. This allows the instructor to better manage the students
in the class and enables them to point out common “pain points” with the material being covered
that week and show ways to optimize / speed up the code being written.

This paper discusses the effectiveness of this approach by looking at qualitative student feedback
as well as analyzing the student performance (grades) across sections of the class that had this
new, combination approach versus the normal approach to lab of giving students the lab and
having them work independently. The initial statistical analysis (difference in means, 95%
confidence level) shows a statistically significant increase in lab, homework, and overall course
grades for students that experienced the new, combination approach when compared to the
students that experienced the normal approach to the computer science lab experience.

1.0. Introduction

One of the key components to an introductory Computer Science course is the lab component. It
is here that students get hands on with the concepts being discussed that week in the
lecture. This hands-on time is especially important in introductory programming classes where
many students are getting their first exposure to programming. The challenge though is how to
structure this time effectively to ensure that students get as much out of it as possible.

In prior semesters the format for such time was to begin with a quiz on the previous week’s
material and then have students work on the lab individually. A faculty member would be
present to field questions and troubleshoot issues students may face while they are working on
their solution to the lab assignment. This proved to be problematic though as it resulted in some
significant issues as enrollments increased in entry level Computer Science classes:

1. Students would not be able to get the attention they needed
2. Students would “fall through the cracks” since there was only one faculty member in the

class

Clearly, there was room for improvement. In redesigning the lab experience for this introductory
class, there were a few goals in mind:

1. Teach students how to work with peers in Computer Science
2. Get students to think about what they were going to code before they coded it
3. Build conceptual understanding

This paper outlines the revised approach taken because of these goals and discusses the results of
this approach in an introductory programming course. The hope is this work will serve as a
template that can be applied in other schools to help improve understanding of early Computer
Science concepts.

2.0. Background

As argued by Penny et al, lab activities exist to help students understand the intangible concepts
they may be dealing with in the lecture portion of a class [1]. This is typically done by the
student completing a lab assignment / experiment where they build a small program using the
topic being discussed that week. For example, if a student is learning about loops in lecture, they
could be asked to write a program using loops to generate a multiplication table during the lab
period. Hazzan et al assert this allows students to be engaged in their learning rather than a
bystander similar to what you might see in laboratories for the natural sciences [2].

Prior engineering education research has clearly shown that inductive teaching styles in lectures
and lab sessions show the students the importance and application of the subject matter by
showing the students particular examples while challenging them to keep building concept by
concept to solve complex challenges [3] [4]. These inductive teaching methods typically use a
scaffolded approach to lecture and lab teaching methods where inquiry learning, problem-based
learning, and project based learning are utilized. This scaffolded approach utilized in inductive
teaching is more student centered than the traditional deductive approach where topic
generalities and mathematical proofs are covered in the class followed by homework outside of

the classroom [4] [5]. Utilizing this inductive teaching approach with a scaffolded approach,
utilizing multiple, active learning focused teaching methods, mastery of the concepts is now part
of the learning process as students actively work through problems or projects [5].

It has also been shown in engineering education research that student satisfaction, self-efficacy,
and motivation are all significant parts of overall student perception of their learning
environment and thus affects their learning of their subject material being taught. Students gain
satisfaction in lecture and lab periods in many different manners, some of which include
achieving through actively working through problems and projects while receiving guidance and
positive reinforcement for their work by their instructor. In addition, being able to interact freely
and comfortably with their instructor helps drive student satisfaction with their courses [6] [7].
Helping the students through active learning lecture and lab sessions can help students build
strong belief in their capabilities as they work through the challenges of solving the problem or
completing the project. The hands on, positive reinforcement given to them by their instructors
during these activities can help to increase self-efficacy, which is known to influence the amount
of effort students will put into their classes [8] [9]. By increasing student satisfaction with their
classroom or lab experience and building up student self-efficacy beliefs, instructors an
ultimately improve student motivation and the will to work harder in the classroom or laboratory
[10].

The problem though is how labs can be poorly administered resulting in situations where
instructors are monopolized and the time devolves into a study hall type session where the
assignment is more like a homework (deductive approach) rather than an active practice session
(inductive approach) [11]. Lab time needs to be used in such a way that benefits the
student. They need to be growing their skills as programmers so they are ready to take on the
more complex challenges that lay ahead. Additionally, one other main step in the process
students need to spend time on from the very beginning as noted by Proulx et al is program
design [12]. Students need to be able to build solutions that are well thought out and not just
something that works.

Clearly there is room for improvement in the lab space. What seeks to be a way of helping
students gain practical experience and be involved in their learning can become a study hall type
environment with no clear benefit if it is not carried out with these active learning and inductive
pedagogical methods put into place. Moreover, this can lead to a missed opportunity at the
Computer Science 1 (CS 1) / Computer Science 2 (CS 2) level to begin having them think about
program design.

3.0. Implementation

Given the goals outlined in the introduction, the introductory Computer Science course lab was
restructured. In this restructuring the lab was broken into two key components:

1. Algorithm Generation
2. Implementation

3.1 Algorithm Generation

After the weekly quiz, the first ten minutes of the lab period is dedicated to algorithm
generation. Students begin by working in small groups to develop a series of steps to solve the
programming assignment. This is done in English with the students writing a set of steps to
solve the problem instead of pseudocode or a flowchart as these topics are not taught in the
introductory course. Each student is expected to submit either a picture or PDF copy of this as
part of their lab submission. The algorithm is graded based on the student’s attempt rather than
correctness and is worth two points out of the twenty the lab is worth in total.

After the ten minutes have elapsed, the whole class works with the instructor on the chalk / white
board to come up with a class algorithm to solve the problem. The instructor will point out areas
where the students may have steps missing, out of order, or may need to break given information
down further to capture all the necessary details of the problem. Once the class algorithm has
been determined, the focus shifts to implementation.

3.2 Implementation

At the beginning of the implementation phase, the instructor will ask the students to work on a
subset of the steps from the algorithm. Depending on the work involved with those steps, the
students will get somewhere between ten and fifteen minutes to complete this portion of the
implementation. At the end of this time, the instructor will use a computer that is connected to
the lab’s projector to walk through the steps the students just worked on with their input as to
what they did to accomplish each step. The goal here is to give students more immediate
feedback as to whether they were on the right track as well as to assist students who struggled to
complete the steps indicated. Additionally, the instructor can use this opportunity to point out
common pain points they have seen students have with that week’s topic. Previous work has
clearly shown that instructor interaction and feedback is the main variable that significantly
impacts the student learning outcome ratings in undergraduate lectures and labs [13].

After the steps have been discussed, the instructor will then indicate the next set of steps they
would like students to work on as well as give them an allotment of time in which to complete
those steps. As before, the instructor will go over those steps when the time has elapsed. This
process repeats until all steps have been completed. Students submit the completed code as part
of their lab submission for up to eighteen points.

3.3 Applying Methodology in Other Courses

While this modified approach is used in CS 1, this approach is not used in the intermediate
Computer Science course. This approach is feasible in CS 1, but it needs work before it can be
adopted in CS 2. Given CS 2 is designed for students who now have prior experience coding it
doesn’t make as much sense for the instructor to be discussing the entire implementation, going
back to the beginning topics in CS 1. Similarly, in higher level classes it could potentially come
across as insulting to students if they are given the same level of guidance as they received in CS
1 in lab. One possible way of addressing this would be to have the students be responsible for
more of the lab on their own as they go further along in the major to the point where by their

advanced coursework they are working almost completely on their own, with minimal instructor
guidance.

4.0. Results

4.1 Quantitative Results

Quantitative data (lab, homework, quiz, and overall scores) was collected from the Normal
Treatment or Traditional Approach and from the Experimental Treatment or New Approach to
delivering the lab periods for the introductory Computer Science course. To diminish any
additional variables in the data sets, the same instructor was in place for both the Traditional
Approach and the New Approach. The data collected for the Traditional Approach was
collected in the school year prior to the New Approach data being collected. The quantitative
(grade) data was collected for all (27) students in the Traditional Approach lab sections of the
course. The quantitative (grade) data was collected for all (63) students in the New Approach
lab sections of the course. A summary of the Traditional Approach and New Approach grade
statistical data is shown in Table 1 & 2 respectively below:

Table 1: Grade Statistics (%) for the Traditional Computer Science Lab Approach

Grades: Lab Homework Quiz Overall

AVG 81.57 75.32 68.36 71.67

STDEV 17.67 19.78 11.26 14.47

Table 2: Grade Statistics (%) for the New Computer Science Lab Approach
Grades: Lab Homework Quiz Overall

AVG 92.01 85.13 64.44 83.80

STDEV 15.04 19.58 17.11 15.93

In an effort to test whether or not the new paradigm for structuring the lab period in the New
Approach had a significant effect on student learning and performance, a statistical analysis was
carried out on the grade statistics in the Traditional Approach and the New Approach. At the
95% confidence level, difference in means calculations were carried out for all four sets of grade
statistics (lab, homework, quiz, overall). The variances were assumed to be unknown and
unequal for the difference in means calculations. The following formulas (Equations 1, 2, and 3
in Table 3) were used to calculate the difference in means where the New Approach was sample
A and the Traditional Approach was sample B.

Table 3: Formulas for Difference in Means Calculations (95% Confidence Level)

 Difference Between Two Means (Unknown and Unequal Variances)

Equation 1: Degrees of Freedom

Equation 2: t value

Equation 3: Confidence Interval

The 95% confidence intervals for the difference in means between the grade statistics for the
New Approach (sample A) and the Traditional Approach (sample B) are shown in Table 4
below.

Table 4: Difference in Means Calculations (95% Confidence Level: Sample A – Sample B)

Grades: Lab Homework Quiz Overall
Upper Limit
(95%) 18.30 18.98 2.20 19.06

Lower Limit
(95%) 2.56 0.64 -10.03 5.19

Since this paper specifically addresses the lab portion of this course, it is important to mention
how each lab session is graded. Each lab session is graded out of a total of 20 points. 18 out of
the 20 points are allotted to writing the program and solving the problem that was assigned and
worked on in the lab session. 2 out of the 20 points are assigned based upon attendance. In other
words, as long a student attends the lab session and participates in the algorithm generation, the
student receives the 2 points.

The results in Table 4 show a statistically significant increase in lab, homework, and overall
course grades for students that experienced the experimental treatment or new approach when
compared to the students that experienced the normal treatment or traditional approach to the
computer science lab experience. There was no statistically significant change in quiz grades
observed between the traditional and new approach.

4.2 Qualitative Results

To get feedback directly from students regarding this new lab approach, student end of semester
evaluations were used. These evaluations are anonymous to the instructor and there is no
mechanism through which the instructor can de-anonymize the feedback. Student feedback
regarding this new approach to lab has been positive with students indicating this has helped
them understand the concepts being presented each week in the lecture. Students have also
enjoyed getting to interact with their peers during the lab period [13]. Students do still have
some misgivings about the lab component of the course, but these are not germane to the topic of
this paper.

5.0. Conclusion and Future Work

In this paper, a new combination approach for teaching lab has been discussed. This approach
has shown a statistically significant improvement in student performance on lab, homework, and
their overall grade which shows this approach does have merit. Moreover, the student feedback
on end of semester surveys shows students do in fact see the merit of this approach and feel they
have benefited from it regarding how ready they are to approach the homework for that week in
the course. In the future, it would be interesting to see if by changing to more industry standard
ways of planning code such as the use of pseudocode or flowcharts would impact the student
outcomes.

6.0 Works Cited
[1] J. P. Penny and P. J. Ashton, "Laboratory-style teaching of computer science," ACM

SIGCSE Bulletin, vol. 22, no. 1, pp. 192-196, 1990.
[2] O. Hazzan, N. Ragonis and T. Lapidot, Guide to Teaching Computer Science, Cham:

Springer, 2020.
[3] M. Prince and R. Felder, "The Many Faces of Inductive Teaching and Learning," J.

College Science and Teaching, vol. 36, no. 5, pp. 14-20, 2007.
[4] M. Prince and R. Felder, "Inductive Teaching and Learning Methods: Definitions,

Comparisons, and Research Bases," Journal of College Teaching, vol. 36, no. 5, pp. 14-20,
2007.

[5] T. Ruutman and H. Kipper, "Teaching Strategies for Direct and Indirect Instruciton in
Teaching Engineering," in Proceedings of 14th International Conference on Interactive
Collaborative Learning, Slovakia, 2011.

[6] A. Poulsen, K. Lam, S. Cisneros and T. Treust, "ARCS Model of Mtivational Design,"
November 2008. [Online]. [Accessed December 2014].

[7] S. Bjorklund, J. Parente and D. Sathianathan, "Effects of Faculty Interaction and Feedback
on Gains in Student Skills," Journal of Engieering Education, vol. 93, no. 2, pp. 153-160,
2004.

[8] P. Hsieh, J. R. Sullivan and N. S. Guerra, "A Closer Look at College Students: Self-
Efficacy and Goal Orientation," Journal of Advanced Academics, vol. 18, no. 3, pp. 454-
476, 2007.

[9] M. M. Chemers, L.-T. Hu and B. F. Garcia, "Academic Self-efficacy and First Year
College Student Performance and Adjustment," Journal of Educational Psychology, vol.
93, no. 1, pp. 55-64, 2001.

[10] S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C. Lovett and M. K. Norman, "What
Factors Motivate Students to Learn?" How Learning Works: Seven Research-Based
Principles for Smart Teaching, San Francisco, CA: Jossey-Bass, 2010, pp. 66-90.

[11] T. A. Beaubouef and J. Mason, "Why the High Attrition Rate for Computer Science
Students: Some Thoughts and Observations," ACM SIGCSE Bulletin, vol. 37, no. 2, pp.
103-106, 2005.

[12] V. K. Proulx, R. Rasala and H. Fell, " Foundations of Computer Science: What are they
and how do we teach them?," ACM SIGCSE Bulletin, vol. 28, no. SI, pp. 42-48, 1996.

[13] Schreyer Institute for Teaching Excellence, "SRTE," 2023. [Online]. Available:
srte.psu.edu. [Accessed 11 February 2023].

