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Introduction

First year calculus is a hard course for the freshmen students and is sometimes considered as a
weed out class by the students. However, as Malcom and Triesman1 convincingly argue, the
calculus course is the pump for all other classes and should not be treated as a filter. In addition,
the time varying/hidden cognitive abilities of beginning college students require proper nurturing
to come to fruition, especially through cooperative learning and guided instruction (Malcom and
Triesman1; Wankat and Oreovicz2; Felder and Brent3). The two emerging crucial considerations
are: (1) calculus must be learned as a foundation for all modern science and engineering, and (2)
it is not that the students lack ability, it is that their talents are quite different than earlier
generations and, consequently, misplaced priorities interfere with the didactic presentation.
While the first commitment is the strategic goal, the second one requires formulation of action
items to achieve the goal.

Curriculum Change and Instructional Methods

Universities all over the country have embarked on various plans for better teaching of calculus.
These may be grouped into three categories: (1) introduction of innovative instructional
methods/aids, (2) reordering and in general minor additions and deletions of topics to serve a
wider class of students, and (3) integration of mathematics, physics and chemistry with focus on
a particular field such as engineering. Categories 2 and 3 deal with alteration of the syllabus
whereas category 1 focuses mainly on instructional methods.

Barrow and Fulling4 and SimCalc (http://www.simcalc.umassd.edu/simcalc/curriculum)
curriculum are two good examples for category 2 content modification. Barrow and Fulling
argue for introducing vectors and line integrals in the first calculus course along with the
derivatives. Simcalc curriculum supports accumulation and integrals before rates and derivatives.
The IMPEC (Integrated Mathematics, Physics, Engineering and Chemistry) curriculum (Felder
et al.5) points out the compartmentalized nature of the science, mathematics, and engineering
courses. In this regard Townsend et al.6 have also noted the impracticality of introducing
Engineering/Science word problems and explaining them in a short period. In the IMPEC
curriculum elements of engineering design and operations are brought into the first year and
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integrated with the calculus and science courses. While the IMPEC curriculum focuses on
multidisciplinary integration (with emphasis on engineering), the overall course contents with the
main sections (non IMPEC) of chemistry, physics, and calculus are preserved.

In category 1, the content is not altered but various instructional methods/aids are used. These
include: word problems which require students to identify the variables and express them in
algebraic symbols, identify the process rules (constraints) in the problem and write them in terms
of the symbols, solve the problem and interpret the results; interactive mathematical packages
capable of animation to display results as conditions are altered; mathematical writing
(http://www.fandm.edy/departments/mathematics) emphasizing clear explanations, uncluttered
expositions on the page, and well organized presentation; tutorials involving a significant
number of drill problems with help on demand for students working in peer groups or on an
individual basis so that mistakes are fixed without any delay. A component that should be added
to the above list is a well-conceived set of hands-on experiments. It is well known that what you
remember the most is what you have learned by doing. While that statement is readily accepted,
the time constraint combined with the multidisciplinary nature of experiments (mini projects) is
often cited for not carrying it out as part of calculus class. At Virginia Tech, the Emerging
Scholars Program (ESP) includes all of the aforementioned components as part of the calculus
curriculum.

The Emerging Scholars Program (ESP)

Although the concept of Supplemental Instruction as an enhancer of student success dates back
over 90 years to John Dewey, the model for the current Emerging Scholars Programs (ESP) in
the Mathematics Department of Virginia Tech dates from Uri Treisman’s collaborative
workshops with underachieving minorities at Berkeley in the 1980’s. The value of such
programs at Berkeley, Texas, California-Davis, Wisconsin, and (since fall 1996) Virginia Tech
in increasing the rate of student success in such traditionally difficult courses as freshman
calculus has been widely documented. The goals of the Virginia Tech ESP project (as stated in
the final report on the 1996-97 pilot project) are as follows:

• To increase the number of students who succeed in the engineering calculus sequence
• To increase the understanding of mathematical concepts and knowledge of mathematical

skills
• To provide enrichment opportunities for academically successful math students, by bringing

together faculty, undergraduate teaching assistants and calculus students in a supportive
learning environment.

• To provide a framework for learning and academic success within a rigorous and challenging
calculus sequence.

• To offer interactive experiences for mathematically talented students which can serve as a
mechanism for retaining departmental majors.

The Emerging Scholars Program Class
 
 The two courses in the first year engineering/math/physical science calculus sequence are the
three credit Math 1205 differential calculus and Math 1206 integral calculus courses.
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Approximately 50% of enrolled students are required to take the one credit ESP class
supplementing each of these lecture classes (See the next section for selection process). The ESP
class meets twice a week for seventy-five minutes at a time. Each ESP class is a group problem-
solving class in which the students work together in small groups on problem sets that the ESP
teachers put together. The final grade for the one-credit ESP course of A or F (and occasionally,
C in marginal cases) is based on attendance and active participation. Each section has about 40
students in it and is taught by a faculty member or experienced graduate teaching assistant. In
addition, each section has three undergraduate teaching assistants. Within this structure there is
certain amount of variation, e.g. using overheads for student presentations, working in pairs, trios
or larger groups, and the like. There is a strong dialogue between the three-credit teacher of Math
1205 and the one-credit ESP teacher. The problems that the one-credit class work on are
designed to help the students enhance the concepts, supplement the experience, correct the
difficulties, etc. that the students have in the three-hour class. Although the class is not designed
to be remedial, the weak backgrounds in basic algebra and trigonometry skills exhibited by many
of the students are addressed in the context of solving calculus problems. An indirect benefit
from its structure is that it imparts discipline and good study habits at a critical period in an
adolescent’s life. It should be emphasized that the lecture sections of Math 1205/1206 which
have attached ESP classes and those which do not both use the same syllabus and are
administered the same common final examination.

Student Selection

 For each student entering Virginia Tech, a mathematics readiness score is derived from a
regression model which includes high school GPA, math SAT score, and whether the student has
had calculus in high school. The score has been an excellent predictor of student success in the
beginning mathematics sequences. All students enrolling in the Math 1205/1206 sequence who
fall below a fixed threshold in mathematics readiness score are required to take the
supplementary ESP course. For fall Semester 1998 there are seventeen sections of Math 1205
with ESP sections and seventeen sections of 1205 which do not have ESP classes. Many of the
students in the ESP sections would have previously started in a presently defunct precalculus
course. The students were dispirited to be in there, were getting behind in their math courses
which were prerequisites for engineering courses, and did not understand why they needed yet
another precalculus course, since they felt they had had the material in high school. Statistics
showed strongly that the precalculus class was very ineffective, since only a small percentage of
the students who started in it finished the engineering calculus sequence.
 
Performance

 The first year that the ESP program was implemented in Math 1205 on a large scale was fall
1997, so the following statistics are from the 1997-98 school year.  At the outset, the difference
between the two groups of students (non-ESP and ESP) was considerable: almost 19 points in
the mean math readiness score and almost 60 points in the mean math SAT score. Such gaps
would ordinarily translate to differences in mean course grades of about a letter (B versus C,
e.g.) and in mean common final exam scores of several correct answers (out of 17 questions in
all). Indeed, with a failure rate in MA 1205 exceeding 15% and in Math 1206 exceeding 20% in
years prior to 1997, and with all predicted at-risk students in ESP sections, it might be expected
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that the failure rate in the ESP sections would exceed 25% and 30% respectively. Here’s what
actually happened:
 

Math
Readiness
Mean

Math
SAT
Mean

1205
Mean
Grade

1205 Exam
Mean #
Correct

1205 Grade
of F
percent

Non-ESP 87.7 653.3 2.7 9.3 4.6%
ESP 68.8 594.6 2.4 7.8 6.5%

As would be expected the non-ESP students outperformed the ESP students in both categories.
However, the actual differences in 1205 course grades (B- versus C+) and common exam results
(1.5 correct responses) clearly indicate that the ESP approach is quantitatively beneficial for
student outcomes.

 Even more impressive are the results compiled from the Math 1206 classes the following
semester, spring 98, which show what statistics at other schools have shown, that the gap
between the ESP and non-ESP students narrows as the ESP students progress through the year of
the program. This is amazing in that typically, especially for weak students, grades go down
from Math 1205 to Math 1206. But here’s what actually happened:
 

Math
Readiness
Mean

Math
SAT
Mean

1206
Mean
Grade

1206 Exam
Mean #
Correct

1206 Grade
of F
percent

Non-ESP 86.4 665 2.39 8.93 11.7%
ESP 69.3 620 2.17 8.79 12.4%

The non-ESP students, as expected, again outperformed the ESP students in both categories, but
the difference in mean 1206 course grades between non-ESP and ESP students was 0.18 ---
about one-sixth of a letter grade. The difference in mean number of correct answers on the
common exam was 0.14 --- about one-seventh of a correct answer. This agrees with experiences
at Berkeley, UC-Davis and other schools: namely, that by the end of the second semester of
calculus, the ESP students have practically caught up with the other students. All of this is a clear
indication that the ESP approach is quantitatively beneficial for student outcomes. Preliminary
indications are that the same types of results will occur again this year. A new component that is
being added to two sections of the ESP project is a set of hands-on experiments.

Hands-on Experiments

A widely held belief is that the mathematics, physics, chemistry and engineering courses are
highly compartmentalized and integration is needed. The motivation for including a few hands-
on experiments as part of the ESP project stems from the observation (Malcom and Treisman)
“Where the relationship between a science experiment or a design problem and the mathematics
is made clear, students seem to perform better and are more highly motivated. Too often the
trend has gone in the wrong direction – not only a separation of mathematics from the hands-on
activities… but also a substitution of mathematics for hands-on experience and practical P
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understanding…”. Being truthful to the statement by Malcom and Treisman, a set of hands-on
laboratory experiments has been formulated.

It is envisaged to have a maximum of 3 experiments (3 weeks) in a 15-week semester. Currently,
a structural mechanics experiment (Beam Bending), a hydraulics experiment (flow over a weir)
and an electrical engineering experiment (RC-circuit) have been formulated. The selection of an
experiment depends on how well it can blend calculus and engineering concepts and not to have
too many mathematical ideas that fall outside the scope of the current calculus class. For
experiments related to MA1205 there should not be any analyses containing integration or
differential equations but only concepts involving the derivatives. Also, the experiment should
pertain to day-to-day life so that the beginning year students can visualize it immediately. To
present the ideas in a concrete manner, the experiment from now on will mean the Beam
Bending experiment.  Before each lab session, the students are provided with a complete set of
notes on the experiment to be performed. The ESP instructors also assign problems emphasizing
the current experiment. Each laboratory session entails the following elements.

Motivation

A faculty member presents a 5-minute clear exposition of the application of the experiment
(beam) in real life with a set of visual aids. The role of geometrical and material properties is
then introduced. With the aid of Figure 1, the question to ask is “Which beam will bend more?”

 
   
      Large diameter beam        Small diameter beam
                    

Figure 1. Role of Geometry

After receiving a response from the students, it is revealed that the large diameter beam is made
up of rubber and small diameter beam is made up of iron. At this point the role of the material
property becomes clear. Also, it should be pointed out how the material property is bundled into
a constant called “Modulus of Elasticity”. The term elasticity is defined in terms of the ability of
the beam to spring back to its original shape upon removal of the load. At this stage the students
are asked to consider a piece of chalk as a beam. How little the chalk deflects under load is
emphasized. By breaking the chalk it is pointed out how it fails without warning. Contrasting this
behavior with a rubber band, its considerable elongation without breakage under load is noted.
The results are interpreted in terms of the “brittleness” and “ductility” properties of materials.
The idea of “Area Moment of Inertia” is also introduced. Showing some dramatic failures ends
the 5-minute motivation lecture!

1 ton load
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Contents of the Procedural Manual

Each experiment has an accompanying procedural manual. It contains the following sections: (1)
Background. Examples of real world applications of the experimental object along with the
appropriate figures should be included (for a beam it can be a bridge, a massive steel tower and
so on). The technical definition of the object and a description of its operating environment
including the boundary conditions and mode of failure are provided. [A beam is supported
horizontally and subject to bending due to vertical loading. Excessive deflection is not
acceptable.] (2) Clear Objectives. Using action verbs, what the student should do is clearly
stated. Comparing theoretical quantities to their actual measurements derives maximum benefit.
Here, innovative measurements should be possible. For example, in beam deflection the slope is
evaluated by actually measuring the slope angle along the deflected beam with an “inclinometer”
(see Figure 2). The following objectives are stated. By performing this experiment, the student
should be able:
(i) to compute the derivative as the slope at a point; (ii) to approximate the derivative as an average
rate of change also known as the finite difference approximation; (iii) to calculate the differential. (3)
Calculus background. Give reference to the exact pages of the textbook in which the related calculus
concepts are covered. (4) Theory. Present the valid equation from engineering. For beam deflection,
point out that when a beam bends due to external loading it develops internal stresses within its
cross-section to reach equilibrium. Thus, a relationship between the external loading and cross-
sectional and material properties of the beam can be developed. (5) Experimental Procedure. Provide
a step by step procedure for the entire experiment. (6) Worksheet. Provide tables for entering data
and analysis. (7) Questions. Include questions and problems to extend the concepts and theory
learned through the experiment. For the beam experiment, why a hollow rod bends more than the
solid rod for the same conditions? Compute the maximum deflection for a diving board when a diver
is about to jump. Discuss the effect of end condition.

Analysis of Beam Deflection

Figures 2 and 3 show the deflected beam. A schematic of the deflected beam of Fig.2 alone is
presented as Figure 3. The various slope angles are measured with an inclinometer as are the
deflections of the beam from a baseline. The depicted variables are defined as part of Eq.(1). The
beam deflection, v at distance x from the left end denoted by v(x) is given by

v(x) =   PaLx/(2EI) - Pax2 /(2EI)    for 0 ≤ x ≤ 0.5L (1)

in which: P = load (dyne = gm.cm/sec2), a = equal distance from either end at which P is applied,
L = length of beam between the supports(cm), E = material dependent property (modulus of
elasticity, dyne/cm2), I = property of cross sectional geometry ( moment of inertia, cm4),  v =
deflection (cm).

P
age 4.511.6



Figure 3.  Slope of a curve at a point (deflected beam)

v(x4v(x2 v(x3θ1
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L

Figure 2. Deflection of Beam
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Objective 1. Derivative as the slope
Figures 3 shows the beam with the deflections v(x1), v(x2), v(x3), and v(x4) at the corresponding
points x1, x2 , x3 and x4. The derivative at point 2 is given by the slope
tan θ2 measured at x2 using an inclinometer as
(dv/dx)at 2 = tan θ2 (2)

Objective 2. Derivative as the average rate of change
The derivative is also approximated by

(dv/dx)at 1 ≅ [v(x2) – v(x1)] / (x2 – x1) = ∆v/∆x at point 1  (3)

which is the average rate of change between points 1 and 2, also known as the finite difference
approximation of the derivative.

Equation (1) is differentiated to yield

(dv/dx)x =  α + β x         for 0 ≤ x ≤ 0.5L (4a)

in which: α =  (4b)

   β = (4c)

The first derivative is differentiated to obtain the second derivative as

(d2v/dx2) =    for 0 ≤ x ≤ 0.5L (5)

The student is expected to fill in the blank boxes. Equation (5) shows that the second derivative
is a constant. The second derivative is very nearly equal to the reciprocal of the radius of the
circular arc formed by the deflected beam between its supports.  The validity of the statement
can be verified by the geometry of Fig.3 and

Sin θ1 = PaL/(2EI) (6)

in which: θ1 = angle measured at the left support. The value of θ1 obtained from Eq.(6) is
compared with its measured value. This verification serves as another means to check the
validity of the beam equation (1).

Objective 3. The Differential
Figure 4 shows the role of the differential in approximating the function difference as given
below.

The differential dv = (dv/dx)at point 1dx and v(x2) ≅ v(x1) + dv (7)

whereas the actual difference in deflections is given by
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∆v = v(x2) - v(x1) OR v(x2) = v(x1) + ∆v (8)

Figure 4. Approximation of Function Difference by the Differential

The Experiment

Place a slender cylindrical rod between two supports. Apply equal loads, P at equal distance, “a”
from the supports of the rod (at its extremities) as shown in Figure 2.  The beam will deflect
upwardly as shown in Figs. 2 and 3. Note down the rod (beam) length between the supports L,
load distance a, magnitude of load P, moment of inertia I, and modulus of elasticity E in Table 1.
Measure the deflections v(x) at various points x and note them down in Table 2 (To conserve
space only three rows are provided).  Use the inclinometer to measure the slope angles θ, at
various points x. Evaluate tan θ = dv/dx at the same points. Also, use the finite difference
approximation, Eq.(3), to obtain ∆v/∆x .  Compute the differential v′(x) ∆x at various points and
enter them in Table 2.

Table 1. Properties of Beam

L(cm) = I(cm4) = πd4/4

d (cm) = E(dyne/cm2) =

P*(dyne) =
cm/sec2

α =

a(cm) = β(1/cm) =

1dyne = 1gm cm/sec2 = 10-5 Kg m/sec2 =
10-5 Newton

x∆

x
dx

dv ∆

0x xx0 ∆+

dx

dv
Approximate Point 

Actual Point 

y

x

v(x)y =

Known Point 

Tangent Line 

1 
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Person

L

Diving Board Swimming Pool

v(x)

Table 2 - Deflection  Data and Analysis*

Measured Computed
1 2 3 4 5 6 7 8

x θ v(x)exp

theorv(x)
x

v(x)x)v(x
dx

dv

expexp

∆
−∆+

≅
θtan

dx

dv =
Theordx

dv

x
Theor

∆+

≈∆+

dx

dv
v(x)

x)v(x

exp

0

4

8

* Table abbreviated

Sample Questions

1. Compare the v2 values from Eq.(7) with that of Eq.(8). Note that the application of Eq.(7)
does not require the exact equation (Eq.1)for deflection.

2. Comment on the differences between dv and ∆v.
3. Given a diving board of length, L, modulus of elasticity, E and area moment of inertia, I, and the

equation below, compute the maximum deflection of the board when a person weighing P is

about to jump.  Here, ( )x3L
6EI

Px
v(x)

2

−=   for 0 ≤ x ≤ L

Students’ Response

The engineering students seem to be quite enthusiastic about the lab experiment because of its
strong engineering content and the depth with which the problem has been presented. They also
appreciate the exposure to the various material properties and geometrical properties and their
role in deciding the outcome, namely, the deflection. They like getting their hands dirty and seem
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genuinely interested in taking the readings to the maximum eye ball accuracy possible. Their
faces brighten up the minute they see that their measured and computed values agree quite
nicely. They have greater appreciation for the engineering equations and, more importantly, the
role of calculus which makes it all possible. The minor calculating difficulties include the
following. They have a little trouble to treat some symbols as constants. They are inconsistent in
treating the accuracy of data. Because of the smallness of the numbers, the CGS system of units
are used; however, it leads to minor mistakes in unit conversion in filling out Table 1. It should
also be noted that at Virginia Tech, the engineering students take their physics classes only
during their sophomore year. Therefore, unless they remember their high school physics well,
these minor difficulties are bound to happen.

Discussion

While the hands-on experiments are only a minor component in the overall structure of the ESP
project, it is felt that it fills an important void in the way courses are taught. It is also learned that
it is not the complexity of the analysis that matters but it is the combination of material and
geometrical properties, instrumentation, innovative measurements, exposition of real world
problems, and major calamities due to the failure of an important engineering element that
matters. Most of all, it is the recognition that without mathematics none of the sciences and
engineering will exist. For this experiment, it gives students a physical grounding in the most
important —yet forgotten— result of differential calculus: the approximation of the change in
functional value by its derivative.  Even though the presentation in this paper is focused on the
beam deflection problem, the weir flow and the RC circuit problems are of equal interest and
provide a broader view of engineering. Also, all three problems lend themselves for an integral
analysis covered in MA1206 which is also part of the ESP project. It is the writers’ view (also
pointed out by Townsend et al.) that unless sufficient time is available as afforded by the ESP
project, it is very hard to treat good engineering problems in depth. But the success rate
established by the ESP project clearly attests to the fact that it is not the difficulty of the course
content (as demonstrated by the poor performance of the students under the remedial precalculus
class) but the right support structure that is needed.
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