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The Development of a Measure of Engineering Identity 

This research paper describes the recent development of items to measure post-secondary 
students’ engineering identity. Engineering identity is a particular type of role identity that 
students author during their experiences in engineering, typically in college. This paper draws 
upon a subject-related role identity framework that focuses on students self-beliefs of their 
interest, performance/competence, and recognition within engineering. First, a pilot survey of 
371 first-year engineering students was conducted at three institutions in the U.S. during the 
spring semester of 2015. An exploratory factor analysis (EFA) was performed to examine the 
underlying structure of the piloted questions about students’ engineering identity. The developed 
items were used in a subsequent study deployed in the fall semester of 2015 that measured more 
than 2500 first-year engineering students’ attitudes and beliefs at four institutions in the U.S. The 
data on engineering identity measures from this second survey were analyzed using confirmatory 
factor analysis (CFA). The results indicated that the developed measures do extract a significant 
portion of the average variance in the latent constructs and the internal consistency of the 
measures (Cronbach’s α) fell within the acceptable and better range. The development of these 
items provides new measures for engineering education researchers to more deeply explore the 
underlying self-beliefs in students’ engineering identity formation. 

Background 

Engineering identity has been shown as a significant indicator of educational and professional 
persistence in multiple quantitative and qualitative studies1–8. These prior investigations of 
engineering identity have focused on whether students consider or see themselves as an engineer 
as well as the qualities that students cite are needed to be an engineer. Other work has focused on 
the discourse students use to develop and identify as engineers in practice9–11. This discourse is 
part of the internal and external dialog that students use to author their identities as engineers. 
However, these studies have not focused on the internal states and students’ self-perceptions that 
impact how students report an engineering role identity. 

Drawing on the prior qualitative work of Gee12; Carlone13 and Johnson14; and Shanahan15, Hazari 
and colleagues16 developed a quantitative measure of physics identity. This measure has been 
used to understand students’ STEM career choices16,17. Additional work has been conducted to 
expand this original quantitative instrument to measure math and science identities18–20. The 
physics and math measures have been used in several large-scale, nationally representative 
studies to understand the impact of these identities on students’ choice of a STEM major in 
college18,19,21–23. 

These measures of students’ subject-related role identities are comprised of three constructs 
including students’ perceptions of their own: performance/competence beliefs (i.e., beliefs in 
their ability to perform well and understand concepts), interest in the subject, and feelings of 
recognition (i.e., beliefs that they are seen as a good student in the subject by peers, parents, and 
teachers) as being the type of person that can do a particular subject. In prior modeling work, 
students’ performance/competence beliefs in both math and physics were weak direct predictors 
of identifying as the type of person that can do a particular STEM subject19. When mediated by 
students’ perceptions of interest and recognition, these constructs reliably capture students’ 



perceptions of themselves and are predictively valuable for understanding career choices. This 
prior work highlights the importance of understanding students’ identity with subjects with 
which they have direct experience like math and physics for engineering choice in college; 
however, it does not directly measure students’ perceptions of their engineering identity. 
 
This work describes the development of an engineering identity instrument from this basis of 
prior instruments to measure math, science, and physics identities. To develop a new instrument 
to measure engineering identity, I drew upon the historical traditions of role identity as framed in 
psychological and sociological literature as well as the application of this theory in science 
education. The basis of role identity from prior literature is described in the next section. 
 
Theoretical Framework 
 
Role identity is the meanings that the individual attaches to the context of a social and cultural 
role. An individual has as many selves or identities as he or she has groups of people with which 
he or she interacts24. Some identities become more salient based on the particular context and 
social situation in which an individual is immersed. This framing of identity comes from social 
identity theory and symbolic interactionism. Symbolic interactionism is the meanings that 
individuals develop and rely on as a part of social interaction. In this key sociological theory, 
when a person has claimed an identity, he/she acts on the basis of that identity, and he/she 
attempts to fit their lines of action with others in that community to accomplish their goals25. 
There are different emphases in identity theory that focus on how individuals define themselves 
in relation to social structures, how individuals’ internal dynamics influence behavior, and how 
identities are maintained and manifested in face-to-face interactions24,25. My work draws on the 
work of Burke and his associates26,27 to understand how the internal dynamics and roles that 
individuals ascribe to themselves impact behavior. 
 
For engineering students, I am interested in how they describe how they see themselves as the 
type of people that can do engineering as well as feel like engineering is “for them.” Identifying 
as an engineer matters for students’ academic and personal development28–31, retention32–34, and 
incorporation into the larger engineering community1,35,36. In their process of engineering 
identity development, students must negotiate the roles they play within the community of 
engineering as a discipline, in groups with their peers, and within the classroom. Engineering 
students must author individual identities that map to the group identity of an engineer. 
Development of an engineering identity requires legitimate participation and recognition within 
that social sphere37. Based on prior work in science education and a symbolic interactionism 
approach to understanding engineering role identity, the construct of identity, in our framework, 
is based on three measurable dimensions of students’ beliefs about their 
performance/competence, the recognition they receive from others, and their interest in 
engineering. These are not the only identities that an individual may hold, but they capture a 
students’ subject related identity within engineering. A representation of this framework can be 
found in Figure 1. 
 
Recognition plays a significant part in identity development and has more recently become a 
focus in science identity research. A student’s perception of how others view him or her is vitally 
important to how that student sees himself or herself. These recognition messages are important 



early on in students’ careers from parents and teachers38–41, but also during engineering identity 
development in college through instructors and peers. Tonso’s36,42 ethnographic studies of an 
elite engineering program provided examples of how female students who showed great skill in 
engineering but were not recognized by their peers and professors had weaker identities as 
engineers and did not feel like they belonged in engineering. 
 
Interest is also a vital component of engineering identity development. An individual’s interests 
defined as a “person’s likes, preferences, favorites, affinity toward, or attraction to a subject, 
topic, or activity43,” have a rich theoretical basis as a fundamental construct in models for human 
learning44. Vygotsky45 claimed “thought… is engendered by motivation, i.e., by our desires and 
needs, our interests and emotions.” For these reasons, interest in engineering as a subject has 
been an important part of behavioral research within engineering education46–48. Interest plays a 
key role in whether or not students want to take on the role identity as an engineer. 
 
Additionally, students’ performance/competence beliefs have also been shown to be an 
important part of identity development and engineering choice. This idea is related to students’ 
self-efficacy beliefs, which have been shown to be a significant positive predictor in engineering 
persistence49,50. Performance/competence beliefs are broader than self-efficacy, which has been 
traditionally measured as task-specific attainment51. Students’ beliefs about their ability to 
perform the practices of their discipline and understand the content of their discipline – whether 
science, math, or engineering – has an impact on their ability to see themselves as the kind of 
person who can legitimately participate in these areas52. 

 
Figure 1. Framework for students’ identification with engineering adapted from Hazari et al.16 

 
These three factors (recognition, interest, and performance/competence) comprise the identity 
measures developed in this work and are consistent with prior literature from psychology, 
sociology, science education, and engineering education. This paper describes the question 
development and provides validity evidence for these items through an exploratory pilot study of 
the factors as well as a larger, second study using confirmatory factor analysis. The results of 
this work provide an instrument to measure students’ self-reported engineering role identities 
early on in their post-secondary careers (first- and second-year students). The results of this study 



are only generalizable to the student populations that were surveyed which were students 
enrolled in an introductory engineering course. 
 
Development of Engineering Identity Measures 
 
Based on my prior research on STEM identities that impact engineering career choice as well as 
the theoretical framework of subject-related role identities as described in the previous section, I 
developed items to measure engineering identity for early post-secondary students. The items for 
these measures capture three constructs of identity: students’ feeling of recognition by others; 
students’ interest in the subject; and students’ beliefs about their performance/competence in the 
subject area. In prior studies with late secondary and early post-secondary students, participants 
did not distinguish between performance beliefs (e.g., believing that they can do well in a 
particular subject) and competence beliefs (e.g., believing that they can understand a particular 
subject)16,53; therefore, performance/competence beliefs are measured as a single subconstruct, 
consistent with prior literature. These items measuring engineering identity are listed in Table 1. 
These self-reported items were measured by asking students to rate “To what extent do you 
agree or disagree with the following statements:” on an anchored scale from 0 – “strongly 
disagree” to 6 – “strongly agree.” A seven point scale was chosen because the items are bipolar 
items (i.e., conceptually range from negative infinity to infinity)54. Additionally, the choice of an 
anchored scale rather than a Likert scale allowed for a more interpretable distance between each 
numeric response and made the assumption of continuous scales associated with maximum 
likelihood factor analysis more valid55,56. For example, the distance between a response of 1 and 
2 on an anchored scale between 0 and 6 is clearer than the distance between a response of 
“somewhat agree” and “agree.” Each student response on a Likert scale may be a different 
interpretation of distance, and thus, these scales should be treated as ordinal data. There may still 
be some issues of interpretation of distance with anchored scales, but the ambiguity is reduced 
by providing interval headings for each response. 
 
Additionally, item development was not a direct translation from prior measures of physics and 
math identity. I added additional items based on pilot interviews with first-year engineering 
students conducted in the spring semester of 2015. These items were added to more richly 
capture aspects of engineering identity from student’s own words as well include a minimum of 
three items per scale (preferably four) to ensure adequate specification of constructs57. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Items developed to measure engineering identity. 
Construct Question Statement 

Recognition 

Q8Eng_d My parents see me as an engineer. 
Q8Eng_e My instructors see me as an engineer. 
Q8Eng_f My peers see me as an engineer. 
Q8Eng_g I have had experiences in which I was recognized as an engineer. 

Interest 
Q8Eng_h I am interested in learning more about engineering. 
Q8Eng_i I enjoy learning engineering. 
Q8Eng_j I find fulfillment in doing engineering. 

Performance/ 
Competence 

Q8Eng_k I am confident that I can understand engineering in class. 
Q8Eng_l I am confident that I can understand engineering outside of class. 
Q8Eng_m I can do well on exams in engineering. 
Q8Eng_n I understand concepts I have studied in engineering. 
Q8Eng_o Others ask me for help in this subject. 
Q8Eng_p I can overcome setbacks in engineering. 

 
Exploratory Factor Analysis 
 
Pilot Data 
Pilot data to gather validity evidence for the newly developed engineering identity items were 
collected from three institutions across the U.S. In the spring semester of 2015, students in 
second-semester first-year engineering courses were surveyed electronically. A total of 371 
students responded with valid responses. Valid responses were determined using a filter question 
on the survey to exclude students with non-discriminant responses. This sample size is large 
enough for factor analysis using the rule of thumb of at least ten students per item58. 
 
Methods 
The R programming language statistical software system was employed to examine the 
engineering identity constructs11. First, a correlation matrix was created to ensure that items 
theorized to measure a single latent construct were significantly correlated. Second, a maximum 
likelihood exploratory factor analysis was conducted to examine how well the items on 
developed to measure engineering identity loaded on the theorized constructs. If the resulting 
factors aligned with the framework, then the data also supports the construct validity of the 
constructs in the framework of identity (recognition, interest, and performance/competence). A 
maximum likelihood factor analysis allows for explicit testing of factor loadings and correlation 
among factors59. However, if the assumption of multivariate normality is severely violated, then 
this model-fitting procedure can produce inaccurate results60. The skew and kurtosis were 
evaluated for each item to ensure that the assumptions of multivariate normality were not 
severely violated (absolute value of skewness of 2.0 or higher and kurtosis of 7.0 or higher60,61). 
 
A promax (non-orthogonal or oblique) rotation was employed since the theory naturally permits 
inter-correlation between the constructs (i.e., the factors were not expected to be orthogonal). 
Because recognition, interest, and performance/competence capture different aspects of 
engineering role identity, I expected the factors to be related to one another. For social science 
research, an oblique rotation is a more realistic representation of measured pehnomena62. 
Restricting rotations to uncorrelated factors can result in inaccurate or misleading results. 



 

Exploratory factor analysis is based on the common factor model63. This model postulates that 
each measured variable in a battery of measured variables is a linear function of one or more 
common factors and one unique factor. Common factors are unobservable latent variables that 
influence more than one measured variable in a battery and are presumed to account for the 
correlations among the measured variables (i.e., two measured variables are assumed to be 
correlated because they are influenced by one or more of the same common factors). This 
approach examines the common factor structure in the data without a priori assumptions about 
how the factors are constructed. 
 
Both a scree plot and parallel analysis were used to determine the number of factors to extract in 
the exploratory factor analysis. A scree plot visually shows the descending values of the 
eigenvalues of the correlation matrix which is examined to identify the last substantial drop in 
the magnitude of the eigenvalues based on the number of factors. This method is subjective and 
sometimes does not result in a clear drop in the eigenvalues on the plot making interpretation 
difficult64. Based on recommendations by Fabrigar and colleagues62 parallel analysis was also 
used. Parallel analysis compares the eigenvalues obtained from sample data to eigenvalues one 
would expect to obtain from completely random data to determine the number of expected 
factors. 
 
Results 
An examination of a correlation matrix shows that items in each theorized subconstruct are 
significantly correlated. Items across constructs were also correlated with coefficients in the 
range of 0.3 to 0.4 emphasizing the need for an oblique rotation (i.e., a rotation that allows the 
constructs to be related to one another. This approach is also consistent with the theoretical 
framework that recognition, interest, and performance/competence are related to overall subject- 
related role identity). Skewness of items ranged from -0.76 to -1.6 indicating non-normal 
distributions, but still within the assumptions of maximum likelihood factor analysis. Kurtosis 
ranged from 2.33 to 5.9 also indicating non-normal distributions, but still within the assumptions 
of maximum likelihood factor analysis60. To determine the number of factors, a scree plot and 
parallel analysis were used. Both indicated that three factors were the optimal number for this 
analysis. 
 
An exploratory factor analysis of three factors was conducted on the pilot data. The factor 
loadings and uniqueness values for each item are shown in Table 2. Tabachnick and Fidell65 cite 
0.32 as a good rule of thumb for the minimum loading of an item, which equates to 
approximately 10% overlapping variance with the other items in that factor. All of them items 
have factor loadings much higher than 0.32 with the minimum loading with a value of 0.52. Two 
of the items, Q8Eng_o, “Others ask me for help in this subject,” and Q8Eng_p, “I can overcome 
setbacks in engineering,” had some cross-loading across constructs. These loadings are below 
the cutoff of 0.32 and are less than double the main loading; therefore, these items were not 
eliminated from the analysis. Uniqueness gives the proportion of the common variance of the 
variable not associated with the factors. It is equal to: (1 – communality), where communality is 
the proportion of variation in that variable explained by the factors. Communality is calculated 
as the sum of the squared item loadings. Item communalities, ideally, should be 0.8 or greater 
(meaning that 80% of the variance is explained by the number of factors for each item). In social 
science communalities often range from 0.4 to 0.766. All of the items except for Q8Eng_g, “I 



have had experiences in which I was recognized as an engineer,” fall within that range indicating 
that this item may not be a good indicator of the latent factor or may be poorly written. All items 
were used in the full-scale deployment of the survey in order to test the validity and reliability of 
the items further. 
 
The three-factor model accounts for 71% of the variance in the items measured. The fit of the 
maximum likelihood factor analysis was conducted using the root mean square error of 
approximation (RMSEA) fit measure and Tuck Lewis Index (TLI). For RMESA values less than 
0.01, 0.05, and 0.08 indicate excellent, good, and moderate fit respectively67, and for TLI values 
greater than 0.90 indicate good fit68. The RMSEA for this model is 0.062 with the 90% 
confidence intervals of 0.046 to 0.077, and the TLI is 0.973 both indicating good fit. 
 
Table 2. Results of exploratory factor analysis on engineering identity constructs. 

Statement Factor 1 – 
Recognition 

Factor 2- 
Interest 

Factor 3 –  
Performance/ 
Competence 

Uniqueness 

My parents see me as an engineer. 0.75   0.44 

My instructors see me as an engineer. 0.88   0.25 

My peers see me as an engineer. 0.93   0.19 

I have had experiences in which I was 
recognized as an engineer. 0.63   0.63 

I am interested in learning more about 
engineering.  0.87  0.23 

I enjoy learning engineering.  0.97  0.05 

I find fulfillment in doing engineering.  0.88  0.17 

I am confident that I can understand 
engineering in class.   0.93 0.14 

I am confident that I can understand 
engineering outside of class.   0.89 0.19 

I can do well on exams in engineering.   0.96 0.27 

I understand concepts I have studied in 
engineering.   0.86 0.19 

Others ask me for help in this subject. 0.20  0.58 0.47 

I can overcome setbacks in engineering.  0.24 0.52 0.37 



Confirmatory Factor Analysis 
 
Data 
After the pilot data were analyzed, all of the items were included in a large-scale survey 
distribution at four institutions across the U.S. in the fall semester of 2015. Students in first- 
semester first-year engineering courses were surveyed on a paper-and-pencil instrument as part 
of a larger study. We collected 2,966 valid student responses that were digitized by the research 
group and audited for accuracy. 
 
Method 
Similar to methods for examining data in exploratory factor analysis, correlations between items 
hypothesized to measure the same subconstruct were examined for statistically significant 
correlations. Additionally, the data were examined for significant deviations from normality. 
Confirmatory factor analysis, like exploratory, assumes multivariate normally distributed items. 
Because the estimation is robust, some deviations from normality are acceptable, but this 
assumption should not be severely violated (absolute value of skewness of 2.0 or higher and 
kurtosis of 7.0 or higher60,61). Finally, the internal consistency of the items was assessed using 
Cronbach’s alpha with coefficients of 0.70 considered acceptable for newly developed scales 
while values of 0.80 or higher are preferred and indicate that the items may be used 
interchangeably69. 
 
Unlike exploratory factor analysis which is a data-driven approach, in confirmatory factor 
analysis, the structure is specified by the researcher. Confirmatory factor analysis allows the 
researcher to explicitly test the hypothesis that the relationship between the observed (measured) 
variables and the underlying latent construct exists. The lavaan package in R was used to 
estimate all of the confirmatory factor analysis estimates70. The factor variance was fixed to one 
to allow the standardized estimates of each path to be estimated. Paths from the latent constructs 
to the measured variables were specified according to the theorized constructs and exploratory 
factor analysis results. Additionally, the latent factors were allowed to covary which is consistent 
with the oblique rotation in prior exploratory factor analysis and theorized structure. 
 
Once the model was specified it was tested for model fit and path significance. Several fit 
indices were used the evaluate the model based on Byrne’s suggestions71, including chi-square 
(should be non-significant at the p < 0.05 value71), Comparative Fit Index (CFI) (acceptable 
values occur above 0.972), Tucker Lewis Index (TLI) (acceptable values occur above 0.972), and 
root mean square error of approximation (RMSEA) (values less than 0.01, 0.05, and 0.08 
indicate excellent, good, and moderate fit respectively67. 
 
Results 
An examination of a correlation matrix shows that items in each theorized subconstruct are 
significantly correlated. Skewness of items ranged from -0.30 to -1.5 indicating non-normal 
distributions, but still within the assumptions of maximum likelihood factor analysis. Kurtosis 
ranged from 2.09 to 4.56 also indicating non-normal distributions, but still within the 
assumptions of confirmatory factor analysis60. Construct reliability as evaluated with 
Cronbach’s alpha was 0.77 for recognition; 0.89 for interest; and 0.88 for 
performance/competence. This reliability gives a better estimate of the overall reliability of an 



item taking into account the individual reliabilities as well as standard errors. The Cronbach’s 
alpha indicated strong internal consistency or that items measured as a single factor grouped 
strongly together. Based on these ranges, the values for these items fell within the good to 
excellent range for a newly developed scale73. 
 
The results of the structure of the confirmatory factor analysis model are shown in Figure 2. The 
figure illustrates the latent factors as yellow ovals (Recognition = Rec; Interest = Int; 
Performance/Competence = PC) and the measured variables as green rectangles. The arrows 
from the latent variables to the measured variables show the model paths with the standardized 
factor loadings. The curved arrows between the latent variables display the covariances between 
the latent constructs. These paths were added into the model to allow for the inter-relationship of 
these identity constructs and are consistent with the theoretical basis of question development. 
The arrows pictured below the measurement variables indicate the error associated with each 
measured variable. This error is the portion of the variance in each measurement that does not 
covary with the latent factor71. 
 
Consistent with some of the borderline questions highlighted in the earlier exploratory factor 
analysis, questions Q8Eng_g, “I have had experiences in which I was recognized as an 
engineer,” and Q8Eng_p, “I can overcome setbacks in engineering,” were removed from the 
model based on model fit and statistical significance. The other question with cross loading, 
Q8Eng_o, “Others ask me for help in this subject,” did remain in the analysis, but had the lowest 
loading on the performance/competence factor of all the items developed. The model was tested 
with this path removed, but it did not significantly improve the fit of the model and the 
significant path of this measurement item onto the factor loading provides an additional 
dimension to the performance/competence factor. 
 
Additionally, based on modification indices, the measurement items Q8Eng_k, “I am confident 
that I can understand engineering in class,” and Q8Eng_l, “I am confident that I can understand 
engineering outside of class” were allowed to covary. Modification indices are used to respecify 
a model to improve the fit of the model implied matrix with the data implied matrix. These 
values are the amount chi-square will drop if the parameter is estimated as part of the model. The 
chi-square value of 3.84 is the value that should be exceeded at the alpha 0.05 level for one 
degree of freedom. For adding the error covariance, in this case, the modification index was the 
largest of all significant modification indices at 398. These values should be used with caution 
and only adjust the model if they are consistent with theory. In this case, the wording of 
Q8Eng_k and Q8Eng_l are very similar and these measurement items capture similar 
information about students’ competence beliefs; therefore, this modification was made and the 
resulting model better reflects the data implied matrix. 



 

 

Figure 2. Confirmatory factor analysis of the latent constructs of identity: interest (Int), 
recognition (Rec), and performance/competence (PC) beliefs for 2790 students in first-year 
engineering at four U.S. institutions during the fall semester of 2015. All paths are significant at 
the p < 0.001 level. Image generated using the semPlot package in R74,75. 
 
The confirmatory factor analysis indicates that the data do fit the model developed. The average 
variance extracted (AVE) is the amount of variance that is captured by the construct in relation 
to the amount of variance due to measurement error76. In different terms, it is a measure of the 
error-free variance of a set of items measuring a single construct. Average variance extracted is 
used as a measure of convergent validity, which should be 0.50 or above77. For these constructs, 
the AVE was 0.61 for recognition; 0.82 for interest; and 0.64 for performance/competence. 
These results demonstrate that the items hypothesized to measure a single construct do, in fact, 
measure the intended construct and capture a large portion of the variance within each block of 
items. Discriminant validity provides evidence that measures for one latent variable are not 
overly rated to another latent variable and was established through multiple methods. The 
correlation between items of unrelated latent variables in our study is less than 0.8571. The 
overall fit indices for the measurement model were a CFI of 0.96, TLI of 0.95, and an RMSEA 
of 0.077. All of these fit indices indicate that the measurement variables accurately reflect the 
latent variables in the measurement model. The chi-square statistic (χ2 = 810; df = 40; p < 
0.001) for this model was significant, but this is not unexpected since the sample size is so 
large. For sample sizes greater than 400, the chi-square statistic is not a good indication of 
model fit78. Instead, RMSEA is a better indicator of fit and is less sensitive to changes in sample 
size. For this model, the RMSEA indicates acceptable fit of the model. 
 
The results of the confirmatory factor analysis indicated that some of the items used to measure 
engineering identity should be modified. In Table 3, are the final measurement items after 
comparing different factor analysis models and determining the model that best fits theory as 
well as the measured data. At least three questions remain for each latent variable allowing for 



adequate specification for future factor analysis or other advanced modeling. I offer these items 
as a first step in developing quantitative measures of engineering identity. 
 
Table 3. Final items to measure engineering identity. 
Construct Question Statement 

Recognition 
Q8Eng_d My parents see me as an engineer. 
Q8Eng_e My instructors see me as an engineer. 
Q8Eng_f My peers see me as an engineer. 

Interest 
Q8Eng_h I am interested in learning more about engineering. 
Q8Eng_i I enjoy learning engineering. 
Q8Eng_j I find fulfillment in doing engineering. 

Performance/ 
Competence 

Q8Eng_k I am confident that I can understand engineering in class. 
Q8Eng_l I am confident that I can understand engineering outside of class. 
Q8Eng_m I can do well on exams in engineering. 
Q8Eng_n I understand concepts I have studied in engineering. 
Q8Eng_o Others ask me for help in this subject. 

 
Discussion and Conclusions 
 
The results of these two studies provide strong validity evidence for the use of these items to 
measure the role identity constructs of recognition, interest, and performance/competence for 
early post-secondary engineering students. I have described the systematic development of items 
from prior research, literature, theory, and qualitative pilot studies. This work highlights the 
iterative nature of instrument development and the importance of balancing a variety of 
psychometric measures in determining which items accurately measure underlying latent 
constructs of identity. The pilot study allowed me to explore the structure of the data as implied 
by student responses. Once the structure was determined, a larger study provided stronger 
validity evidence of the three-factor structure used for these items. 
 
This work is a first step in creating and refining items for quantitative engineering identity 
measurement. These items can be used to understand how students see or do not see themselves 
as the type of people that can do engineering. These items were only tested with data from 
students in introductory engineering courses, and therefore, cannot be generalized to all 
engineers. While the development of these items is limited to engineering students early on in 
their engineering careers at four-year institutions, future work will seek to apply these measures 
more broadly to understand engineering role identities of students across varying types of 
institutions and demographics. The results do, however, suggest that these items measure a large 
portion of the variance in these latent factors consistent with prior studies in science and 
engineering education. 
 
Much of engineering identity research has delved deeply into the narrative that students tell or 
the discourse that these students use to develop expertise as engineers and identify with 
engineering as a profession. These approaches yield thick, rich data that takes significant effort 
to understand and analyze. The items developed to measure engineering identity are the first of 
their kind to quantitatively measure students engineering identity self-beliefs. I offer these items 
as a way to quickly assess and broadly understand students’ engineering identity development. 



These items capture an overarching picture of students’ subject-level identity within an 
engineering context but do not replace the complex and nuanced narratives that students author as 
they navigate their engineering identities. Full information about these items has been included in 
this paper to allow the engineering education community to use these items for future research on 
identity which an increasingly important topic.  
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