The Development of Manufacturing Case Studies

William L. White, Diane M. Schuch-Miller, Marie D. Lee
Lawrence Technological University/Wayne State University/Wayne State University

In manufacturing engineering education, there is a need for problem-solving projects that reflect real issues to supplement or replace drill and practice problems. Authentic activities offer an opportunity to apply new knowledge and skills to manufacturing engineering problems, test theories, and draw conclusions in a safe environment with the help of their peers and mentors. Case studies add relevance and real world context to manufacturing engineering education. At Greenfield Coalition, two case studies were developed on the basis of real issues faced by the Focus:HOPE Center for Advanced Technologies (CAT), a tier-one supplier to the automotive industry. The first involves determining why some, but not all, batches of aluminum manifold castings discolor during machining. The second study involves stabilizing bore dimensions for a pulley used in the manufacture of diesel engines. Both studies require the student teams to brainstorm potential causes, generate solutions and select the best method for elimination of the problem. The final deliverable for each case is a report similar to one that might be presented to management. By employing case studies in manufacturing engineering education, students learn to apply skills and techniques to new situations just as they would have to perform on the job.

A need for problem-solving and higher level thinking

In manufacturing engineering education, there is a need for problem-solving projects that reflect real issues to supplement or replace drill and practice problems. Traditionally, problems arise when students are asked to apply the theory they have learned from a book or in the classroom to a relevant, real-world example. Students, familiar with a lecture-style class and comfortable with examination questions directly related to the information presented in class, are much less comfortable in situations requiring the application of the theory they have learned to new and unexplored examples. Furthermore, traditional lecture-style classes do not effectively promote retention and transfer to other contexts. The result is that students are not exposed to nor required to use higher levels of thinking for many years, yet engineering problems almost always require higher levels of thinking.

Industry recognizes and acknowledges these deficiencies in their recent graduate employees. Automotive manufacturers often hire graduates only to immediately place them into training programs, up to two years in length, to help them develop the skills necessary to work in teams and solve engineering problems that exist in a manufacturing environment. Considering competition and lean manufacturing practices, it is necessary to develop these teamwork and problem-solving skills prior to entering the workforce.

Educational response

Benjamin Bloom and a team of educational psychologists developed what became known as Bloom’s Taxonomy (Bloom, 1956). It categorizes six levels of abstraction. They included:

1. Knowledge
2. Comprehension
3. Application
4. Analysis
5. Synthesis
6. Evaluation

Engineering educators seem to effectively satisfy the first three levels. However, analysis, synthesis, and evaluation are the crux of what engineers, technologists, and technicians do; yet evidence suggests it is the weakest portion of engineering educational programming. Students need authentic activities which offer an opportunity to apply new knowledge and skills to manufacturing engineering problems, test theories, and draw conclusions in a safe environment with the help of their peers and mentors. Some schools of engineering collaborate with local industry to provide just this sort of reality-based examples as a context for learning. Others have extensive cooperative education programs that give the student exposure to manufacturing problems in a technical setting.

The reality-based approach adopted by the Greenfield Coalition (GC) addresses the last three levels of Bloom’s taxonomy: analysis, synthesis and evaluation. By taking the philosophy and pedagogy of problem-based learning but utilizing a real situation from manufacturing rather than a textbook problem void of variables present in the natural contextual environment, students must gather all the data from numerous sources, organize it in a meaningful way, and determine possible solutions given the constraints ever present in the real world. This is exemplified in the manufacturing case studies described below.

Case studies

Case studies are ideal for illustrating complex concepts, especially common in engineering. Horton (2000) suggests the use of case studies as an excellent way for learners to practice judgment skills necessary in real life situations that are not as simple as textbook problems. As instructional strategies are concerned, engaging critical thinking skills through case studies is among a recommended set of activities (Bonk & Reynolds, 1998).

Case studies add relevance and real world context to manufacturing engineering education. Because case problems are typically ill-defined and can have several different and potentially correct outcomes, students have the opportunity to explore many paths and share perspectives with peers. With the guidance of peers and mentors, teams of students will make decisions based on their problem-solving investigation to determine if and when they need to abandon their current path of exploration in favor of another or if they should pursue and support their current resolution strategy.

At Greenfield Coalition (GC), two case studies are being developed, based on the real issues faced by the Focus: HOPE Center for Advanced Technologies (CAT), a tier-one supplier to the automotive industry. Both studies require the student teams to define the issue, brainstorm potential causes, generate solutions and select the best method for elimination of the problem.

The candidates (GC students) at the Focus: HOPE Center for Advanced Technologies (CAT) have a unique learning environment. They have an advantage over students enrolled in traditional
manufacturing engineering curricula because they have the daily opportunity to apply new concepts learned in the classroom to real situations on the manufacturing shop floor. This characteristic of the curricula at the Greenfield Coalition is not only unique but also provides a natural contextual environment for the application and transfer of new knowledge and skills. In terms of teaching and learning, a better environment could not be simulated, therefore, it became a critical component of the teaching and learning strategies at GC. In order to share this advantage and paradigm with other students enrolled in similar engineering programs so that they might learn from the experiences of the CAT candidates, GC had to somehow export these experiences. Presenting case studies from the CAT in an online environment seemed the obvious choice.

Case #1: The staining of an aluminum casting

The CAT at Focus: HOPE is a QS9000 certified tier one supplier to the automotive companies of Detroit. One regular customer, a supplier of engines that has a good reputation and strong sense of aesthetics, purchases throttle body intake manifolds for V-6 engines. The manifolds arrive at Focus: HOPE in the form of raw aluminum castings. The castings are inspected and then sent to the shop floor where they are machined on CNC machining centers. After the casting is machined, the “as cast” surfaces turn a dull gray color. The machined surfaces maintain a bright luster, in sharp contrast to the dull cast surfaces. Although the machined manifolds function as they should, the poor appearance is unacceptable to the customer.

The candidates have the ability to explore a set of resources online in order to investigate this case. Interviews with critical members of the manufacturing team (such as the Chief Engineer and Machine Operator) responsible for manifold production are available for review (Figure 1). Financial reports that detail scrap and rework costs are provided as well as a complete price breakdown for the part. A process map details each process the part undergoes while at the CAT. Photographs of raw parts, machined parts that show discoloration, and parts that have been saved through reworking and acid washing are given (Figure 2). In summary, all resources available to an onsite engineer are provided online for candidates to utilize during their case examination. It should be noted that candidates have access to more information than is needed to resolve this problem. However, it is their responsibility to decipher the information from various sources and eliminate the superfluous information. They must propose alternatives to resolve the problem while being careful not to reach a dead end. In terms of Bloom’s taxonomy, their assignment is to analyze, synthesize and evaluate the problem. They are to write their findings and recommendations in a manner that is clear, concise, and follows a standard writing format. Report guidelines specific for this case are online as well as WWW links for students to explore similar situations, material properties, manufacturing processes and much more, as they deem necessary. Finally, mentor notes are provided for additional assistance to the candidates. They include a series of tasks and issues related to the case and its objectives, serve as a tour guide and give necessary learner support when they need and want it.
Figure 1. Interview with key personnel
Mentor notes help to orient the learner to the items necessary for consideration in a thorough investigation of the situation. Filipczak (1996) refers to this as scaffolding or “guided discovery”, by retaining the opportunity for learners to explore while still making certain that the established objectives are attainable.

Although the instructor who helped design this case study was experienced in manufacturing problem solving, the GC recognizes that not all instructors will have the same background and level of preparedness for guiding students through this case investigation. As a result, an instructor guide provides additional information about how this problem can be addressed and resolved. Since it is possible to resolve this problem in several ways, a list of viable solutions is provided to the instructor. This list illustrates there is more than one viable solution and sets the stage for a novice instructor to give credence to creative solutions generated by candidates. In other words, allowing candidates to exercise their ability to analyze, synthesize and evaluate the problem.

Case #2: Irregular dimensional tolerances on a pulley

This case involves a multi-sheaved pulley used in high-powered engines. Some of these pulleys have dimensional tolerance irregularities. All of the rough turning operations are performed on a Cincinnati Milacron CNC turning center. Finishing operations, except the counter bores, are completed in the same machine during the same machining cycle, to ensure concentricity. This is not a new job to Focus: HOPE as it been manufactured for a significant number of years, but always in small batches. Although an order is placed each month, the batch sizes vary from five to 25 pulleys. It is important to realize that while this job is not a large one, it is a consistent and reliable one. It is referred to as a “bread and butter” job and hence, the problem must be controlled, if not eliminated.

Similar to other case studies at GC, the candidate has access to a wealth of resources related to this case. Interviews with key personnel have been recorded and are accessible online. Media (video and animation) depicting the boring operation on this pulley are included (Figure 3 & 4). In addition, the process sheet, product flow diagram, holding fixture information, operator tasks and other information related to this part and the processes it undergoes at the CAT are provided.
The candidates are informed from the beginning stages, that the problem is associated with the two counter bores. Their assignment, as with the previous study, is to analyze, synthesize and evaluate the problem or problems. It is their responsibility to identify the problem, find its source or sources, report findings, and make recommendations.
Implications for engineering and technical education

The roles of the student and the faculty member are changing. It is critically important to be aware that the use of the web-enabled case studies does not occur without the leadership of an instructor. The instructor at GC plays several roles simultaneously: traditional instruction of course concepts, mentoring and coaching during the case investigation, and finally that of a supervisor challenging the recommendations from a manufacturing enterprise perspective (Schuch-Miller & Plonka, 2001). Moreover, follow-up classroom discussions, an integral component of the case design, allow learners to reflect, summarize and solidify their own learning and structure it in a way that is meaningful to them (Hidi & Anderson, 1986).

Case study documentation and support materials online allow students to obtain background information on the situation, research components involved in the case and define the problem for themselves. They can collect a history of the situation through virtual interviews as well as research the processes and machinery involved in the operations. The candidates are provided enough information to initiate a plan and formulate potential solutions. Students are expected to justify their rationale for each step taken toward a solution. The final deliverables can be in the form of written and oral reports, similar to what would be expected of them on the job.

By employing case studies in manufacturing engineering education, students learn to apply skills and techniques to new situations, just as they would have to perform on the job. Collaborating...
with other students closely resembles the team approach to taskforces that have been gathered to resolve issues on the job. The use of technology for delivery of the case study and supporting materials promotes the sharing of these case studies to educational institutions outside of Focus: HOPE and Greenfield Coalition.

For more information about Greenfield Coalition, their reality based approach to teaching and learning or the case studies discussed in this paper, access the following website: www.greenfield-coalition.org

Acknowledgment

The Greenfield Coalition is partially supported by a Grant EEC-9630951 under the Engineering Education Coalitions Program at the National Science Foundation. Focus: HOPE, our industry and academic partners have contributed valuable resources to support the development of Greenfield.

Bibliography


Biographies

William L. White is the department chairman for the Engineering Technology department at Lawrence Technological University, in Southfield, MI. He has taught at the college level since 1986. His research interests are in manufacturing, automation, robotics, numerical control and safety. He is a senior member of SME and SPE, where he is also a Mid-Michigan Section past-president.

Diane M. Schuch-Miller, Instructional Design Manager for Greenfield Coalition, has a Masters degree in Education specializing in Instructional Technology. She is well versed in web-based instruction and interface design. She continues to conduct research in the area of problem-centered instruction and collaborative learning. She has spearheaded the effort for developing case studies at Greenfield Coalition.

Marie D. Lee, Instructional Designer and Project Lead for Greenfield Coalition, has a Masters degree in Education specializing in Instructional Technology. She has over 8 years experience in technology consulting and training. She has taught communication technology courses at the college level since 1998.