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The Education Sector Revolution: The Automation of Education 
 

Abstract 

 
The education sector is about to undergo a revolution in which automation of instruction delivery 
using Intelligent Tutoring Systems (ITSs) will vastly improve accessibility to learning at a 
fraction of what that education costs today. This will be achieved while obtaining better student 
outcomes, and a more individualized learning experience as compared to traditional learning 
using human teachers in classroom settings. In this paper, we will present a review of the current 
state of ITSs along with the characteristics of a new more innovative ITS. The potential and 
consequences of this new learning paradigm will also be explored. 
 
Automation and Revolutions 

 
During the past 200 years a number of revolutions have taken place in the three main sectors of 
the world economy: the agricultural, industrial, and service sectors. The main traits of these 
revolutions have been a push towards automation that has caused a quantum leap in productivity, 
and a corresponding vast reduction in the need for human labor. The agricultural revolution for 
example resulted in an increase in cereal equivalent production from 1,000 kg per worker per 
year to 500,000 kg per worker per year using motorized and input intensive farming1. The 
industrial revolution started with the introduction of the steam engine and is ongoing today with 
advances such as automated factories and industrial robots. Several sub-sectors of the service 
sector are also undergoing their own revolutions2. For example the financial sector’s use of 
money counting machines, Automated Teller Machines (ATMs) and internet banking are all 
aspects of the automation revolution that this sub-sector is undergoing. 
 
Most sectors of the economy are moving at various rates towards more automation with the goal 
of reducing costs and increasing efficiency, quality, and reliability. Revolutions generally happen 
in 3 stages; the stage before the revolution, the stage during the revolution and the stage after the 
revolution. The stages can be discerned by plotting the employment data as the percentage of 
total workers employed in a given sector versus time (Figure 1). In the pre revolution stage, the 
percent of workers employed in the sector under investigation is stable and the curve is flat. 
During the revolution, the employment curve slopes downwards, as fewer workers are needed to 
perform the same functions. Finally post revolution, after the new technology matures in terms of 
development and implementation, the downwards slope of the percentage of workers employed 
in the sector decreases as new advances in automation technology bring evolutionary rather than 
revolutionary improvements in productivity. Looking at the percentage of the United States 
workforce that is employed in the agricultural sector (Figure 1), we can see that the agricultural 
revolution entered its post revolution stage in the US around the 1980s. The data for the 
manufacturing sector shows a downwards trend in the percentage of workers employed in this 
sector that starts around the 1960s. This is due to a number of causes including higher 
automation, a shift towards a service economy, and outsourcing of manufacturing jobs out of the 
US. The employment data for school and higher education teachers, on the other hand, shows a 
flat curve around 3% of the total workforce as would be expected in the pre revolution stage.  
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Figure 1. United States employment data3-6. 

 
There are three main requirements for automation in any field to be viable: the availability of a 
technological solution that can replace human labor, the need for a large number of similar items, 
and a lower cost for automation as compared to manual methods at a similar or superior quality. 
Today, computer based Intelligent Tutoring Systems (ITSs) provide the required technological 
solution for instruction delivery automation at a fraction of the cost of traditional education.  
With more than 70 million students enrolled in primary, secondary and higher education in the 
US in 20105, and many times that number worldwide, the cost of developing and delivering high 
quality ITSs can be spread out over a very large population of education services customers. 
 
Existing Automated Online Learning Systems 

 
Online courses where 80% or more of the content is delivered over the internet7 can be classified 
in terms of the degree of automation, which is inversely proportional to the degree of 
involvement of a human teacher in the education process8. Instructor delivered online courses are 
0 to 29% automated, and are similar to a traditional course except for the fact that most of the 
instructor’s activities including lecturing, answering questions and giving assignments and 
exams happen over the internet instead of face to face in a classroom8. Partially automated online 
courses have 30 to 79% of their content automated, while fully automated courses with more 
than 80% automation can be delivered with little or no involvement from a human teacher8. 
 
Fully automated online courses currently fall into two main categories: Massive Open Online 
Courses (MOOCs); such as EdX9, coursera10, and Udacity11, and Intelligent Tutoring Systems 
(ITSs); such as ALEKS12, Carnegie Leaning’s Cognitive Tutor13, AutoTutor14, and ANDES15. 
Table 1 provides a contrast between the characteristics of MOOCs and ITSs. MOOCs provide a 
venue for course designers to seamlessly develop and publish their courses. In ITSs, on the other 
hand, course development and course publishing are decoupled. Some ITSs have tools to 
facilitate the authoring of course content, but the publishing of these courses is usually handled 
by separate Learning Management Systems (LMSs). MOOC websites provide course credit for 
their enrolled students. ITSs, since they are customarily used as learning aids for an online or 
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traditional course, simply report student performance to their LMSs but do not generally provide 
course credit. 
 
Table 1. Comparison between the characteristics of MOOCs and ITSs. 

MOOCs ITSs 

Seamless course development & publishing Course publishing done externally 

Integrated course credit Course credit granted externally 

Summative assessment Formative assessment 

Linear course navigation ITS course navigation 

 
The assessments in most MOOCs are summative in nature, meaning they occur at the end of the 
learning activity and have no effect on the learning activity. ITSs use formative assessments, 
where the assessment is woven into the fabric of the course and student performance in the 
assessment activities affect how and when content is delivered. For example the ITS can skip a 
section, go over a section again, or go over more solved examples, all based on the result of the 
formative assessments. Summative assessment is sometimes called “assessment of learning”, 
while formative assessment is called “assessment for learning.”16 Studies in computer16, and 
classroom17 based learning have shown that formative assessment improves student 
achievement. 
 
Course navigation in MOOCs is typically linear, which means that a student is simply taken from 
one course section to the next one in a linear fashion that starts with the first course topic and 
ends with the last one. Hence with MOOCs, every student that takes the course experiences the 
course similarly. Every ITS on the other hand uses its own unique intelligent tutoring approach 
for course navigation that bases its course navigation decisions mainly on the results of the 
course’s formative assessments. Hence in ITS delivered courses, each student might experience 
the course differently depending on their assessment results. 
 
The Future of ITSs 

 
An easy way of improving online automated courses is by combining the capabilities of MOOCs 
and ITSs. Hence MOOCs enhanced with ITSs can provide seamless course development, 
publishing, and credit granting; while using formative assessment and ITS based non-linear 
course navigation. There are also a number of innovations that can be used to further improve 
future ITSs: 
 
1) Integrated Virtual Reality 

 
Interactive Virtual Reality (VR) visualization and simulation capabilities are sometimes referred 
to as the “gamification” of learning18. VR based learning can be classified in terms of the 
hardware used into PC based systems and systems that use specialized hardware including 
custom setups that mimic real world setups, haptic devices, and stereo projection. VR learning 
systems can also be classified based on the number of learners that participate in the simulation 
into single user systems, and multiple user systems where multiple users collaborate in the 
context of a single VR simulation (Figure 2). Table 2 gives some examples of applications where 
the various categories of VR based learning have been used. Currently, the systems that use 
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specialized hardware are too expensive to be implemented on a large scale for the general 
population of learners. As PCs become more powerful, with advanced displays that can handle 
stereo projection, and with the development of cheap general purpose haptic devices, it will 
become practical to run some of the VR simulations that currently require specialized hardware 
on inexpensive PCs. 
 
Table 2. Examples of applications of the various categories of VR based learning. 

  Specialized hardware PC based 

Multiple users 
• Flight simulators 

• Ship operation19 

• Defense20 

• Defense & law enforcement25-27 

• Medical25,26 

• Facility operation26, 28 

Single user 
• Welding21-23 

• Medical24 

• Defense20 

• Manufacturing28-31 

• Maintenance28 

• Science labs32,33 

 

 
Figure 2. Multi-user PC based VR training environment for the operation of a wind tunnel 

showing the control room (left) and the electronics room (right)28. 
 

 
Figure 3. Physics based simulation of experiments in a virtual physics lab showing a horizontal 

mass-spring system (left), and a two mass rope-pulley system (right)33. 
 
PC based systems can use custom made VR engines, or gaming VR engines. Although VR 
capabilities can be used in conjunction with some of the ITSs such as AutoTutor and MOOCs 
such as EdX, integrating these capabilities requires a lot of development work and specialized 
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knowledge. Gaming VR engines, such the one used by one group to simulate gear trains34, 
generally lack accurate physics modeling engines. This is due to the fact that they usually make 
simplifying assumptions in order to reduce the computational cost of complex simulations. 
Those simplifying assumptions may cause violation of contact or joint constraints, and violation 
of conservation of energy and/or momentum principles. For game players those violations may 
not be perceptible35, but for engineering and science students those violations can result in 
students learning incorrect concepts. Some gaming36 and custom33,37 VR engines use first 
principle physics to model physical interactions and are thus more suitable for the simulation of 
dynamic effects in virtual science labs (Figure 3). Incorporating logic and complex simulations 
into a VR environment can require the use of a custom VR engine since a gaming engine might 
not be equipped to handle these requirements (Figure 4). 
 

 
Figure 4. VR simulations performed using a custom VR engine. Simulation of a 5-axis milling 

machine that includes a fully functional controller to operate the virtual machine (left). 
Simulation of the controls of a welding machine (right). 

 
2) Combining Courses into Curriculums 
 
Some ITSs organize a course into a set of interconnected ontology nodes, where each node 
represents a given course topic. Each node is made from one or more knowledge objects38,39 
(KOs) or Sharable Content Objects40 (SCOs). KOs and SCOs are defined as “The lowest level of 
granularity of a learning resource”40 (Figure 5). Each course node can be followed by a formative 
assessment to gauge student understanding in a process called Intelligent Formative 
Assessment41 (IFA). Nodes that contain knowledge that is needed to understand the content in a 
given node are upstream of that node on the ontology tree. The ontology tree is used by the ITS 
to determine which node the student needs to see next, and to determine which node that is 
upstream of the current node needs to be reviewed in case of an assessment failure of the current 
node that cannot be remedied by viewing the current node again41. The ontology tree can also be 
used to combine different courses into curriculums by integrating their ontologies. This allows an 
ITS to deliver an entire curriculum seamlessly. This can also allow the ITS’s remedial actions to 
cross course boundaries. For example, a failure in a Chemistry ontology node could trigger a 
reassessment of a related Algebra ontology node. Finally this will allow the ITS to ensure that 
the student has learned all the pre-required topics, even those from other course, before going 
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over a curriculum node. For example before the delivery of an engineering curriculum topic 
about internal combustion engine dynamics, the system can take the student to prerequisite topics 
from courses in algebra and physics. In this case the curriculum is not delivered as successive 
courses; rather topics from different courses can be seamlessly woven together during curriculum 
delivery. This ensures the shortest time span between the time at which the student takes a given 
topic and the time at which he/she covers its prerequisite topic(s). 
 

 
Figure 5. Knowledge object from an online centrifugal pump maintenance course. The 

hierarchical list on the left has the headings of other knowledge objects that constitute the course. 
 
3) Setting Learning Goals 
 
A common problem with traditional learning is that it tends to teach all students the same thing, 
in the same way, at the same pace, at the same sequence, at the same time42. This focus on mass 
produced uniform learning hinders learning when students are forced to learn in a way, at a pace, 
at a sequence, or in a time they are uncomfortable with. Mass produced uniform learning also 
produces a lot of inefficiencies since students often learn topics they are not interested in 
learning, or that they do not need based on their career goals, or that they already know but are 
forced to relearn anyway with the rest of the class. 
 
The student’s learning goals can range from learning an entire standard curriculum, to learning a 
single course, or even a single or multiple nodes from a single or several courses. In case the 
student chooses individual nodes from a given set of courses as his/her learning goals, the ITS 
automatically develops a custom curriculum for the student that takes him/her from his/her active 
nodes to his/her learning goals. The custom curriculum can span several courses while only 
covering the content from these courses that is needed to reach the student’s learning goals. If the 
student chooses an entire course as part of his/her learning goals, the system automatically adds 
the prerequisite nodes that link the student’s active nodes to the desired course. A standard 
curriculum by definition contains all the prerequisite nodes needed to reach its ultimate learning 
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goals. In a traditional course, all students learn the same content. Thus traditional courses are not 
well suited for individualized delivery of custom courses that are designed to address diverse 
learning objectives and ultimate career goals. Students in traditional courses and curriculums 
invariably end up learning content that they never use nor need just because it is part of a given 
required course. Students can also be forced to take an entire class to satisfy a prerequisite 
condition, while all they need from that class might be a single chapter or even a part of a 
chapter. The customization of the learning experience that is afforded by the learning goals will 
not only increase student focus, but it will also reduce the cost and time of learning by 
eliminating topics that are not related to the student’s learning objectives. The custom course or 
curriculum can be updated at any time in response to changes in the student’s learning objectives 
as the student’s goals and interests evolve. The ability of students to set their own education 
goals provides a means of individualized learning. Individualized learning was identified as a 
key to innovation in distance education by a group of experts in online learning43. 
 
4) Long Term Knowledge Retention 
 
In a study of a business consumer behavior course44 that involved repeated tests, it was found 
that most of the knowledge that students gained in the course was lost within 2 years. It is thus 
essential to find ways of improving student knowledge retention, since it is almost fruitless to 
improve learning outcomes, only to have students forget most of what they have learned within 2 
years. 
 
The expiration time of a given course node is used to calculate an expiration date for each node 
that the student learns by adding it to the node’s successful assessment date. The successful 
assessment date is the later date of either the date on which the student successfully completes 
that node’s assessment, or the date that the student successfully completes an assessment in a 
downstream node that also tests the comprehension of that given node. Since most courses and 
curriculums base their subsequent content on the comprehension of previous content, the 
assessment of subsequent or downstream content will also incorporate an assessment of previous 
or upstream content. For example, since the concept of “force” is a recurring one in any physics 
or engineering curriculum, the student will continue to be assessed in that concept as he/she is 
assessed in other related concepts while going through the curriculum. When a node’s expiration 
date is reached, the intelligence engine automatically reassesses the node to ensure that the 
student still retains its knowledge. The course designer can edit the node’s expiration time value 
and assign an expiration time other than the 2 years default based on the node’s difficulty and 
criticality. This can ensure that students retain the knowledge they have learned for the long term 
as long as they keep using the ITS website to be reassessed in the content of their nodes as they 
expire. Since node reassessment can typically be done by answering one or a few short 
assessment questions related to the node, this should not place too much burden on the students 
while they are going through the curriculum. 
 
The memory multiplier number is used to gauge how well a student retains knowledge. A value 
of 1 indicates average knowledge retention, a value of less than 1 indicates lesser than average 
and a value greater than 1 indicates higher than average knowledge retention. Every student is 
initially assigned a memory multiplier number of 1. The memory multiplier number is increased 
when a student is successful in his/her reassessment of a topic whose expiration date has been 
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reached, and is decreased in the case of a reassessment failure of the same. The memory 
multiplier number can range from 0.5 to 3. Hence a student with higher than average memory 
retention capabilities will gradually see his/her memory multiplier number increased during 
his/her usage of the ITS website, while a student with less than average memory retention 
capabilities will experience a gradual decrease of his/her memory multiplier number. The 
memory multiplier number is multiplied by each node’s expiration time to determine a new 
expiration date according to the following formula: 
 

Expiration Date = Date of Assessment + Expiration Time × Memory Multiplier 
 
This allows the active nodes of students with good memory retention capabilities to expire at a 
slower rate than the active nodes of students with less than average memory retention 
capabilities. Although some ITSs such as ALEKS12 periodically reassess students to ensure that 
already learned topics are retained, this reassessment is performed within the context of the 
delivery of the course and not as a tool for retaining knowledge for years after going over the 
course. Furthermore, the student memory capabilities do not affect the frequency of 
reassessment. The continuous process of reassessing nodes as they expire ensures that the 
learned skills that the system reports for each student are accurate not only at the point in time 
when those skills are learned, but also perpetually after that point in time. 
 
The Student Model 

 
The ITS stores a student model for every student on the MOOC website. The student model 
stores the following information: 
 
1. The student’s identifying information. 
2. The courses that the student is registered in. This includes the courses that the student is 

taking on his/her own, and the courses that the student is taking under the supervision of a 
teacher, professor, or employer. If the student is taking a course under supervision, then 
his/her identity and student model for that course is available for viewing by his/her course 
supervisor.  

3. Active nodes. Any node within any course on the website that the student has successfully 
been assessed in and whose expiration date has not been reached yet is regarded as an active 
node. 

4. Expired nodes. These are the nodes whose expiration dates have passed that the student has 
not yet been reassessed in. The system prompts the student periodically to take an assessment 
of the knowledge in these nodes to turn them back into active nodes. 

5. Dropped nodes. These are nodes whose expiration dates have passed that the student has 
chosen not to be reassessed in. 

6. The student’s learning goals. 
7. The student’s memory multiplier number. 
8. Terminal failure nodes. A terminal failure in a given node is defined as an assessment failure 

that cannot be remediated by going over the knowledge in the node again or in more detail, 
and that is not related to a lack of understanding of an upstream node41. The ITS then directs 
the student to other course nodes that are not downstream of the terminally failed node. The 
course designer is periodically alerted of the number of terminal and regular failures in each 
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course node. This information is used to help improve the course by identifying problematic 
nodes that students are having difficulties with. The course designer can then redesign these 
nodes or add more explanation to them to improve student comprehension of their topics. In 
the case where the student is taking the course under the supervision of a teacher or professor, 
the course supervisor can communicate directly with the student who has experienced a 
terminal failure to offer one-on-one help. 

 
As compared to the student transcript, the student model provides a much more effective way of 
tracking and sharing the student’s current proficiencies (Table 3). While the transcript lists the 
courses that the student has taken, the student model provides much more details by listing a 
student’s active, expired and dropped individual topics. The transcript reports the average student 
understanding for every listed course. Hence even a student who finishes a course with an A 
grade might actually have a failing proficiency level in one or more critical course topics. This in 
turn creates negative repercussions on the students’ job performance, and in downstream courses 
due to students not fully grasping some of the prerequisite knowledge. The lack of information 
about the actual student proficiency in the critical skills that he/she needs to perform their job 
sometimes necessitates a retraining of all personnel in these skills at a high cost for employers. 
The student model, on the other hand, reports the current actual student understanding of each 
listed topic. Furthermore, in order for a topic to be listed as active in the student model, the 
student must have achieved and maintained the required level of proficiency in that topic. 
 
Table 3. Comparison between the student model and the student transcript. 

Transcript Student model 

Lists the courses that student has taken Lists student's active, expired, and dropped topics 

Reports courses’ average student 
understanding 

Reports actual student understanding of each topic 

Smallest incremental addition = 1 course Smallest incremental addition = 1 topic 

Reports what student has studied at some 
point 

Reports what student knows now 

Does not measure a student's memory 
abilities 

Provides a measure of student's memory abilities 

Updated periodically Updated in real-time 

Costs money to produce and mail Free to access and share with others 

Lists student's intended degree(s) Lists student's intended educational goals 

Vague timeframe for degree completion Individual and collective goals’ timeframes 

 
In the case of the transcript, the smallest incremental addition is equal to one course, while for 
the student model, the smallest incremental addition is equal to a single topic. This helps focus 
the student’s efforts on what he/she needs to learn, and reduces wasted effort if all one really 
needs from a certain course to achieve a given learning goal is just a few topics. This can also 
help workers to respond more quickly to any new needs in their jobs that require them to acquire 
new proficiencies. Traditionally, a worker can satisfy these needs by taking a course in the 
needed field, but this usually takes an entire semester without counting the time that the worker 
might need to wait if the course is not available for registration right away. Using the student 
model, on the other hand, a worker can acquire the required new proficiencies by adding them as 
learning goals to his/her student model. The system then automatically develops a custom course 
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that starts from the worker’s active topics and covers only the topics that link the active topics to 
the new learning goals. This can allow workers to acquire the new proficiencies in days or weeks 
instead of months in the case of taking a traditional course. 
 
A student’s transcript contains information about what that student has studied at some point in 
the past, which might be very different from what the student actually knows or can remember 
now. Due to the fact that topics are reassessed when their expiration dates are reached, the 
student model, on the other hand, provides a much more accurate representation of what the 
student currently knows. An argument can be made that this periodic reassessment of learned 
topics can become burdensome specially when performed years after the student has finished the 
related curriculum while the student is employed. As mentioned before, the reassessments of a 
given node can be done using a single or a few questions that take a minute or less each to 
answer. Furthermore, each reassessment questions can test several nodes simultaneously by 
incorporating several concepts. Students are also not forced to take these reassessments and can 
simply let their nodes expire, or drop nodes whose knowledge they no longer need to be certified 
in. A similar periodic reassessment is often required of workers who perform critical functions 
although it is often not done in an automated manner. For example the knowledge of pilots about 
flight procedures is periodically reassessed in a flight simulator, and drills that are performed by 
various workers from cruise ship crews to nuclear reactor operators serve as reassessment to 
certify that workers still retain critically required knowledge. The question is why should other 
workers like engineers, doctors and pharmacists be held at a lower standard by not periodically 
reassessing their knowledge and certifying that they remain competent in the tasks that their jobs 
require? This continuous reassessment and certification will not only help workers remain 
competent, but can actually save lives and money by making sure that workers still remember the 
knowledge required to perform critical functions. For example, a civil engineer who has learned 
to design both buildings and bridges might work for years designing only buildings which might 
cause him to forget some of the knowledge he needs to design bridges over time. The employer 
of said engineer might then at some point require him to design a bridge after first having 
checked his transcript to ascertain that he has the required coursework. The problem is that the 
engineer himself might not be aware that he has lost a key competency that is related to bridge 
design which might result in a disaster. If the employer had checked the engineer’s ITS 
generated student model instead, the status of the engineer’s bridge design nodes would have 
been apparent, and had those nodes been expired or dropped disaster could have been averted. 
 
While the transcript does not provide any information about a student’s memory retention 
abilities, after a few years of using the ITS website, the student model can provide a measure of 
whether the student’s knowledge retention is above or below average. Another advantage of the 
student model is that it is updated in real time as soon as the student finishes a given topic, while 
the transcript is only updated periodically, usually at the end of every semester. It can cost tens 
of dollars to produce and mail each student transcript, while a student model can be accessed at 
any time by the student or anyone designated by him/her for free. In terms of educational goals, 
the transcript usually lists the student’s intended major(s), minor(s), and degree(s). The student 
model, on the other hand, provides a much more detailed picture of the student’s educational 
goals by providing a list of the topics he/she ultimately wants to learn and all the topics he/she 
will need to learn to reach these goals. This can allow a worker’s employer to focus his/her 
efforts on exactly what they need to learn to perform well in their intended position. Finally, by 
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stating the student is for example in his second or Sophomore year, a transcript only supplies 
vague information about the timeframe for the student to complete his/her degree. The student 
model, on the other hand can provide a much more accurate time frame in terms of average 
required person-hours to complete each of the student’s learning goals individually, as well as 
the average time needed to complete all the of student’s chosen learning goals. 
 
Human Teacher vs. ITS 

 
By comparing a human teacher to the ITS (Table 4) we can more clearly see both the advantages 
and disadvantages of the ITS. In terms of the pre-requisite knowledge that the student needs to 
have before taking the course, the human teacher can only inform the student about what entire 
course(s) he/she needs to take before being ready to take the current course. The ITS, on the 
other hand, informs the student of the specific topics he/she needs to take to link his/her active 
nodes with the course’s nodes. Those nodes can be ones that the student has never taken before, 
or ones that the student has previously been assessed successfully in but subsequently failed, 
dropped, or left in an expired state. The human teacher can check whether or not the student has 
taken the pre-requisite course and scored the required grade for passing on average in the entire 
course. The ITS, on the other hand, ensures that the student has the required level of proficiency 
in every pre-requisite topic and that he/she still retains that knowledge. 
 
In terms of the individualization of learning experience, while a human teacher teaches a 
standard course to all students who are taking the course, the ITS teaches a custom course to 
each student based on his/her initial knowledge and learning goals. The Human teacher uses the 
same rate to teach the course to all students which might be too slow and boring for some and 
too fast and confusing to others. The ITS teaches every student at his/her optimal rate, and can 
even skip over sections of the course if it determines through a pre-assessment that the student 
already has the knowledge contained in those sections. 
 
The goal of the human teacher is to ensure that every student reaches the required proficiency 
level on average in the content of the entire course.  The ITS, on the other hand, can ensure that 
every student not only reaches, but also maintains the required proficiency level in every course 
topic. Furthermore, while the human teacher has a finite amount of time to devote to each 
student, the ITS can keep working indefinitely to teach and re-teach the course’s knowledge to 
each student. Although some teachers are using computer based assignments, for a traditionally 
taught class manual grading of homework and exams is still the norm. Returning manually 
graded homework and exams takes days, and the grading and preparation of these assessments 
consumes a large portion of the teacher’s effort. Assessments for an ITS taught course are 
administered automatically and evaluated instantly. For an ITS, the evaluation of these 
assessments is not for grading purposes, but rather to ensure that the student has reached the 
required level of proficiency in every topic and to determine and remedy failures. In an ITS 
administered course, the student does not receive a grade in the course as a whole or in any 
specific topic, rather the system certifies that the student has achieved and maintains the required 
proficiency level, which could be equivalent to an A, in every course topic. This is called this the 
“no skill left behind” approach41. 
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Table 4. Comparison between a human teacher and an ITS. 

Human ITS 

Can inform the student of the pre-requisite 
courses he/she needs to learn 

Can inform the student of the pre-requisite 
topics that he/she needs to learn or re-learn 

Checks that the student has taken the pre-
requisite courses and scored the required 
grade for passing 

Ensures that the student has the required 
proficiency level in the pre-requisite topics 
and that he/she still retains that knowledge 

Teaches a standard course to all students Teaches a custom course to each student 

Teaches at the same rate to all students Teaches each student at his/her optimal rate 

Seeks that every student reaches the required 
proficiency level on average in the whole 
course 

Ensures that every student reaches and 
maintains the required proficiency level in 
every course topic 

Homework and exams are returned in days Assessments are evaluated instantly 

Has a finite amount of time to devote to each 
student 

Has an infinite amount of time to devote to 
each student 

Several teachers teach a curriculum One system can teach an entire curriculum 
seamlessly 

Time to complete course = 1 semester Student chooses time to complete course  

Requires steady progress rate Can accommodate sporadic progress rate 

Same course variability due to instructor’s 
skill and focus 

No same course variability 

Costs $30 to $100 per hour Costs $10 to $50 per course per student 

Can understand and answer all natural 
language questions 

Can understand and answer some natural 
language questions 

Good ability to adapt content delivery to 
student needs 

Limited ability to adapt content delivery to 
student needs 

Can ascertain student's identity Cannot ascertain student's identity 

 
In terms of the availability of the human teacher to his/her students, the human teacher is 
available only at specific times to student while they are taking his/her course. The ITS, on the 
other hand, is available to students any time, day or night, perpetually. Additionally, while 
several teachers, that can be from different institutions, teach an entire curriculum, the ITS can 
teach an entire curriculum seamlessly. The time required to complete a standard course that is 
taught by a human teacher is typically one semester. The time required to teach an ITS delivered 
course, on the other hand, can be anything the student chooses. This ITS feature is beneficial for 
those who want to further their knowledge while being busy with other things like work or 
family, which prevent them from being able to finish a typical course in a single semester. By 
taking an ITS delivered course over a period of a year or longer, those individuals would be able 
to finish the course without putting too much strain on their professional or personal lives. On a 
related note, traditional instructor delivered courses require that all the students taking the course 
progress at the same rate within the course. This allows students to be prepared for the 
successive parts of the course when they are taught, and for the homework and exam assessments 
when they are offered. In an ITS delivered course, on the other hand, since each student takes the 
course individually and not as part of a group, students can progress through the course at any 
rate they choose. Hence a student can finish a big chunk of the course when he/she is free, and 
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can put the course aside for a few weeks or months if he/she becomes busy with other things. 
Additionally, even when the same course is being taught at the same school out of the same 
textbook, even sometimes by the same instructor, there still will be variability in the instruction 
that the students receive. This can be due to variability in the skill and focus of the instructor 
amongst other factors. For example, some instructors might skip entire sections of the course that 
they deem irrelevant, while others might include material from outside the course’s textbook that 
might relate to their own research because they deem it important. For a course delivered via an 
ITS, on the other hand, there is no same course variability for different students taking the 
course. Finally, while a human teacher costs 30 to 100 dollars per hour, the ITS is expected to 
cost no more than 10 to 50 dollars per course per student. 
 
Although, as we have seen above, the ITS has several advantages over human teachers, the ITSs 
that are achievable with current technology suffer from a few disadvantages as compared to 
humans. Human teachers can understand and answer all natural language questions that their 
students can pose. In order to give the ITS the ability to interpret natural language, either in 
speech or typed form, an expert system with a very large number of complex rules is required 
even for limited domains of knowledge45. The task of developing an expert system to interpret 
natural language questions about a vast knowledge domain, such as an entire physics or 
chemistry course is not impossible. Rather that task is impractical since it will involve the 
development of a huge amount of interconnected rules in an effort that can be several orders of 
magnitude greater than the effort required to prepare the knowledge domain’s content. The 
human teacher is also able to adapt the way he/she presents the course to the needs of the 
student(s). However, this ability is somewhat limited in a classroom or lecture hall setting with 
tens or hundreds of students. The ITS, on the other hand, has a limited ability to adjust the way it 
presents content in response to the needs of individual students. This limitation however can be 
partially overcome by creating more complex interactions between the ITS and the student 
during assessments that include scaffolding and adjustments to the level of granularity of the 
interaction. Granularity refers to the amount of reasoning required of participants between 
opportunities to interact46. The coarsest granularity occurs in single answer questions, while a 
finer granularity can have multiple steps to reach the final answer with rules that govern the 
ITS’s response for different answer scenarios. ITS delivered step-based assessments were found 
in one study to deliver better student outcomes than the single answer assessment approach, and 
almost equivalent student outcomes as compared to human tutoring46. Finally, while a human 
teacher can ascertain the identity of the student who is taking the course, the ITS currently 
possesses no such ability. However, the identity of students taking ITS administered courses can 
be ascertained, and their proficiency can be confirmed using a proctored summative exam that 
can be administered by the ITS at a designated testing station with human supervision. 
 
Effectiveness of ITSs 
 
In numerous studies up to 2001, it was shown that students who learn solely using high quality 
online resource achieve a similar proficiency level to students in traditional classroom settings47. 
Bloom48 defined the effect size of an intervention as: 
 

Effect Size = 
alConvention

alConventionStudy AverageAverage

σ

−
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Where the AverageStudy is the average student score with the intervention, AverageConventional is the 

average student score in the traditional classroom setting, and σConventional is the standard 
deviation of the student scores in the traditional classroom setting. Bloom48 compared traditional 
classroom instruction outcomes with the outcome of one-on-one tutoring. Bloom found that the 

effect size of one-on-one tutoring was +2 σ. Some studies suggest49 that while the best computer 
based learning systems that do not have intelligence aspects produce an effect size  around +0.4 

σ, current Intelligent Tutoring Systems15,50 produce an effect size between +0.6 and +1.2 σ. A 
small study of a fully automated undergraduate machining course with linear content delivery 
(no ITS) suggests that in terms of student comprehension, using only a well designed fully 
automated online course is as effective as traditional classroom/textbook/lab instruction51. The 
effect size for future more advanced ITSs incorporating the above mentioned capabilities is 
expected to equal or even exceed the effect size of one-on-one tutoring. 
 
Bloom’s effect size however does not take into account the much smaller cost of ITS 
administered courses, nor does it take into account the fact that it requires on average less time 
from the student to go over an ITS course as compared to the total time required to travel to 
school, attend lectures, perform laboratory experiments, do homework assignments, go to office 
hours, study for exams, take exams, and other tasks that need to be performed as part of a 
traditional course. A more meaningful merit criterion was developed that takes these aspects into 
account41, where: 
 

Merit Criterion = (1 + Effect Size) / (Cost Ratio × Time Ratio) 
 

Cost Ratio = 
alConvention

Study

Cost

Cost
  Time Ratio = 

alConvention

Study

Time

Time
 

 
While the merit criterion of the base case is one, interventions with a score that is larger than one 
are better overall in terms of cost, amount of time spent by the students and effectiveness than 
the base case. In a meta-analysis study of 32 computer-based courses, the time required to finish 
the computer based course was two thirds the time required to finish a similar conventional 
classroom course without taking commute time into consideration52. The cost ratio for an ITS, 
while taking conventional classroom learning as the basis, can be as low as 1/100 or less. 
 
Expected Effect of ITSs on Employment in the Education Sector 
 
Automation in the agricultural and industrial sectors has resulted in a huge reduction in the 
number of workers required to perform agricultural and industrial related jobs. Similarly, when 
instead of teaching tens of students, a single teacher can supervise hundreds of students who are 
learning from an ITS, an order of magnitude reduction in the number of teaching jobs will result. 
Just like the Luddites revolted against industrialization, there will be an expected resistance from 
teachers to this development. At the end, just like with all the previous revolutions that took 
place in other sectors, economics will trump everything. When students and governments will 
realize that the same education offered by conventional methods can be acquired using ITSs at 
1/100 of the cost of conventional methods, this will drive an explosive growth in ITS adaptation. 
Although kindergarten and primary education students will always require a more human 
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intensive teaching, students in middle school, high school, and higher education will all benefit 
from the shift to ITSs. 
 
What this will mean for teaching jobs at all education levels is that many of these jobs will 
permanently disappear. But just like the disappearance of farm hand jobs and the jobs of riveters 
on assembly lines this will not necessarily be a bad thing. For just like some of those manual 
labor jobs became engineering, science and indeed teaching jobs, those who would have become 
teachers in the old economy might become tomorrow’s nanotechnologists, or space colonists. In 
this case the overall economy will win when people learn to race with rather than against 
automation53. Educational institutions will also have to adapt to this new learning paradigm or 
otherwise face extinction just like factories that refused to adopt automation and farms that 
insisted on relying on manual labor. 
 
According to a recent report by Moody’s Investor Service54, the success or failure of the 
providers of new open online courses will be dictated by “the breadth and nature of the career-
oriented offerings, ultimate cost to students, type of academic credit received, and value of that 
academic credit to potential employers.” The British educationalist Sybil Marshall is reported to 
have said: “Education must have an end in view, for it is not an end in itself.”55 Most students 
take courses not simply to gain interesting knowledge, but ultimately to receive credentials that 
are acceptable to potential employers. Hence one way for ITS delivered courses to gain traction, 
is by being offered by conventional institutions that will provide these credentials similarly to 
what they provide for conventionally taught courses. However, conventional institutions might 
be reluctant to take that step out of fear of losing revenues due to higher paying students in 
conventional classes shifting to low cost ITS delivered alternative courses. Alternatively ITS 
course providers that exist solely online could back up their course offerings with credentials, but 
those credentials might not be widely accepted if they are not endorsed by reputable 
conventional institutions.  

 
Conclusions 

 
ITSs can deliver not just a course, but an entire curriculum seamlessly, and can continuously 
assess student learning during course delivery to ensure that each student achieves full 
proficiency in every course topic. Furthermore, ITSs can pinpoint the root cause of any 
assessment failure of the student by tracking the cause of failure up through the ontology tree of 
the course. Finally, ITSs can ensure that students retain the knowledge that they have gained 
perpetually if they keep using the ITS system by assigning expiration dates to the learned 
knowledge that are a function of the knowledge’s difficulty, and criticality, and on the measured 
memory ability of each student. The large number of students who are required to learn the same 
content in numerous topics provides an ideal setting for developing automated ITS delivered 
courses at a very small development cost per student. ITSs can also deliver courses and virtual 
reality labs at a small fraction of the cost of traditional learning methods without the need to pay 
for human instructors, textbooks, class/lab space, lab equipment, or consumables. Furthermore, 
since computer based ITS courses are delivered over the internet, campus housing and 
transportation costs for students can be eliminated. Finally, research has shown that well 
designed ITSs can be more effective than traditional classroom instruction, and we expect future 
ITSs will be more effective even than one-on-one tutoring. All this leads us to believe that ITSs 
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will soon dominate the education field which will result in an inevitable large reduction in 
available teaching jobs. This development will help the overall world economy by opening up 
education opportunities for people worldwide that are currently too expensive to pursue. 
 
 
 
 
Bibliography 

 

1. Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture 2000. 
www.fao.org/docrep/x4400e/x4400e00.htm 

2. Collier, David A. Service Management: The Automation of Services. Prentice Hall. 1985. 
3. The United States Census Bureau. www.census.gov 
4. Gibson, C. American Demographic History Chartbook: 1790 to 2000. 2010. www.demographic chartbook.com 
5. National Center for Education Statistics. nces.ed.gov 
6. United States Department of Labor: Bureau of Labor Statists. www.bls.gov 
7. Allen, E., and Seaman, J. Going the Distance: Online Education in the United States, 2011. The Sloan 

Consortium, November 2011. See also URL http://sloanconsortium.org 
8. Wasfy, H.M., Wasfy, T.M., Peters, J.M. and Mahfouz, R.M. “Online Automated Interactive Undergraduate 

Physics Course and Lab.” The 119th Annual American Society for Engineering Education Conference & 
Exposition, San Antonio, TX, June 2012. 

9. www.edx.org 
10. www.coursera.org 
11. www.udacity.com 
12. www.aleks.com/about_aleks 
13. Ritter, S. The Research Behind the Carnegie Learning Math Series. Carnegie Learning. 

www.carnegielearning.com/whitepapers/11 
14. www.skoonline.org/home 
15. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy, D., Einstein, A., and 

Wintersgill, M. “The Andes Physics Tutoring System: Lessons Learned.” International Journal of Artificial 
Intelligence in Education, 15(3), pp. 147-204, 2005. 

16. Shute, V.J., Hansen, E., and Almond, R. “You Can’t Fatten a Hog by Weighing it – Or Can You? Evaluating an 
Assessment for Learning System Called ACED.” International Journal of Artificial Intelligence in Education. 
18(4), 2008. 

17. Black, P., and Wiliam, D. “Assessment and classroom learning.” Assessment in Education: Principles, Policy & 
Practice. 5(1), pp. 7-71, 1998. 

18. Benderly, B.L. “Bold Experiment: Universities Face New Competition as Elite Schools Offer Course 
Certificates to the Online Masses.” Prism. 22-2, pp. 28-33, October 2012. 

19. Safer, A. “A Picture is Worth a Thousand Words.” Marine Log. 117-11, pp.48-49, November 2012. 
20. www.peostri.army.mil 
21. VRTEX Virtual Reality Arc Welding Trainer. www.lincolnelectric.com/en-us/equipment/training-

equipment/Pages/vrtex.aspx 
22. www.123arc.com/en/ 
23. The Virtual Welding Trainer. www.vlearn.com/welding/index.php/en/ 
24. Forsslund, J., Sallna, E.-L., Palmerius, K.-J. “A user-centered designed FOSS implementation of bone surgery 

simulations," World Haptics Conference, pp. 391-392, World Haptics 2009 - Third Joint EuroHaptics 
conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2009.  
www.csc.kth.se/~jofo02/Forsslund_Sallnas_Palmerius_2009_World_Haptics.pdf  

25. www.jht.com/training_simulations.html 
26. www.virtualheroes.com 
27. www.wisdomtools.com 
28. Wasfy, H.M., Wasfy, T.M., Peters, J.M. and El-Mounayri, H.A. “Automated Online Process Training in a 

Virtual Environment.” The 119th Annual American Society for Engineering Education Conference & 
Exposition, San Antonio, TX, June 2012. 

P
age 23.1188.17



29. Wasfy, T.M., Wasfy, A.M., El-Mounayri, H., and Aw, D., "Virtual training environment for a 3-axis CNC 
milling machine," ASME DETC2005-84689 (Best paper award 'Applications'), 25th Computers and 
Information in Engineering (CIE) Conference, Long Beach, CA, 2005. 

30. El-Mounayri, H., Aw, D., Wasfy, T.M. and Wasfy, A.M., "Virtual CNC Machining: A Comprehensive 
Approach," 35th International Conference on Computers and Industrial Engineering (ICC&IE), Turkey, June 
2005. 

31. El-Mounayri, H., Aw, D., Wasfy, T.M. and Wasfy, A.M., "A Virtual manufacturing laboratory for training and 
education," ASEE 2005 Annual Conference, Portland, OR, 2005. 

32. Wasfy, H.M., Wasfy, T.M., Peters, J.M. and Mahfouz, R.M. “Online Automated Interactive Undergraduate 
Physics Course and Lab.” The 119th Annual American Society for Engineering Education Conference & 
Exposition, San Antonio, TX, June 2012. 

33. Wasfy, H.M., Wasfy, T.M., Peters, J.M. “Flexible Multibody Dynamics Explicit Solver for Real-Time 
Simulation of an Online Virtual Dynamics Lab.” The 119th Annual American Society for Engineering 
Education Conference & Exposition, San Antonio, TX, June 2012. 

34. Chang, Y., Aziz, E-S., Esche, S.K. and Chassapis. C. “A game-based laboratory for gear design.” Computers in 

Education Journal, Vol. 3(1), pp. 21-31, 2012. 
35. Yeh T.Y., Reinman G., Patel S.J. and Faloutsos P. “Fool me twice: Exploring and exploiting error tolerance in 

physics-based animation,” Journal ACM Trans. Graph. (TOG), Vol. 29(1), 2009. 
36. Real-Time Physics Effects Library (RPEL). www.virtualheroes.com/products/real-time-physics 
37. Wasfy, T.M., Wasfy, H.M, and Peters, J.M., "Real-Time Explicit Flexible Multibody Dynamics Solver with 

Application to Virtual-Reality based E-learning", (2011). ASME DETC2011-48846, Proceedings of the ASME 
2011 International Design Engineering Technical Conferences & Computers and Information in Engineering 
Conference, Washington, DC, August 2011. 

38. Wasfy, A.M., Wasfy, T.M., El-Mounayri, H., and Aw, D., “Web-based multimedia lecture delivery system with 
text-to-speech and virtual instructors,” ASME DETC2005-84692, 25th Computers and Information in 
Engineering (CIE) Conference, Long Beach, CA, September 2005. 

39. Wasfy, T.M., “LEA: advanced environment for multimedia and virtual-reality web-based education and 
training,” DETC2006-99292, 26th Computers and Information in Engineering (CIE) Conference, ASME DETC, 
Philadelphia, PA, September 2006. 

40. Sharable Content Object Reference Model (SCORM), 2nd Edition, 2004. See also URL http:// www.adlnet.org 
41. Wasfy, H.M., Wasfy, T.M., Peters, J.M. and Mahfouz, R.M. “No Skill Left Behind: Intelligent Tutoring 

Systems Enable a New Paradigm in Learning.” The 119th Annual American Society for Engineering Education 
Conference & Exposition, San Antonio, TX, June 2012. 

42. Collins, A. and Halverson, R. “The Second Educational Revolution: Rethinking Education in the Age of 
Technology.” Journal of Computer Assisted Learning, 26, pp. 18-27, 2010. 

43. Twigg, C.A. Innovation in Online Learning: Moving Beyond No Significant Difference. The Pew Learning and 
Technology Program, 2001. 

44. Bacon, D.R. and Stewart, K.A. “How fast do students forget what they learn in consumer behavior? A 
longitudinal study.” Journal of Marketing Education, 28(3), pp. 181-192, 2006. 

45. Wasfy, H.M, Wasfy, T.M. and Noor, A.K. “An interrogative visualization environment for large-scale 
engineering simulations.” Advances in Engineering Software, Vol. 35(12), pp. 805-813, 2004. 

46. VanLehn, K. “The relative effectiveness of human tutoring, intelligent tutoring systems and other tutoring 
systems.” Educational Psychologist, 46-4, pp. 197-221, 2011. 

47. Russell, T. The No Significant Difference Phenomenon: A Comparative Research Annotated Bibliography on 
Technology for Distance Education, 5th Edition. IDECC, Montgomery, AL, 2001. 
www.nosignificantdifference.org 

48. Bloom, B.S. “The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-on-One 
Tutoring.” Educational Researcher, 13(6), pp. 4-16, 1984. 

49. Niemiec, R. and Walberg, H.J. “Comparative effects of computer-assisted instruction: A synthesis of reviews.” 
Journal of Educational Computing Research, 3, pp. 19-37, 1987. 

50. Anderson, J.A., Corbett, A.T., Koedinger, K., and Pelletier, R. “Cognitive Tutors: Lessons Learned.” The 
Journal of the Learning Sciences, 4(2), pp. 167-207, 1995. 

51. Fernandez, E., Workman-German, J., El-Mounayri, H., and Padalia, C. “Assessment of the Pedagogical Value 
of an Innovative E-Learning Environment That Uses Virtual Reality”, 2008 ASEE IL/IN conference at Rose-
Hulman Institute of Technology, April 3-5, 2008. 

P
age 23.1188.18



52. Kulik, C.C., and Kulik, J.A. “Effectiveness of computer-based instruction: An updated analysis.” Computers in 
Human Behavior, 7, pp. 75-94, 1991. 

53. Browm, A.S. “Automation Vs. Jobs.” Mechanical Engineering. 134-4, pp. 22-27, April 2012. 
54. Kolowich, S. “MOOC Host Expands.” Inside Higher Ed. Sep 19, 2012. www.insidehighered.com/news/ 

2012/09/19/coursera-doubles-university-partnerships 
55. www.quotationreference.com/quotefinder.php?strt=1&subj=Sybil+Marshall&byax=1&lr= 
 

P
age 23.1188.19


