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The essence of scientific and engineering thinking & tools to promote it 
 
Abstract 
 
This article is an attempt to contribute to the discourse on the essence of scientific and 
engineering thinking by presenting a cognitive framework that is aligned with views from 
epistemology, cognitive and neurosciences, and supported by empirical data from 
computational sciences. By merging and synthesizing relevant concepts from these fields, we 
present a theoretical framework that links scientific and engineering thinking to our typical 
fundamental cognitive functions, which could then be promoted at early grades. To examine 
our viewpoint, we designed a multi-year quasi-experimental study involving use of 
computational tools and teacher professional development to support scientific and 
engineering practices for grades 7 through 12. A mixed-methods analysis of qualitative and 
quantitative data on teaching and learning from more than 300 teachers in 13 urban and 2 
suburban secondary schools reveals consistent improvements to student engagement and 
achievement, thereby lending support both to our cognitive framework and computational 
tools we are suggesting for promoting scientific and engineering practices at K-12.  
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1. Introduction 
 
There are yet to be any content standards for teacher professional development and student 
learning outcomes in engineering, however, recent national reports24-28 have helped built 
some momentum for standardization in engineering education. A few states such as 
Massachusetts have taken bold steps to make engineering education accessible to all K-12 
students.41 While the number of teachers willing and able to deliver engineering instruction 
cannot currently sustain a standards-based engineering instruction nationwide, there are 
reasons to be optimistic because content standards in other STEM fields, particularly science 
and technology, have started promoting engineering practices for students. While engineering 
has long appeared as an add-on or an after-thought issue in STEM content education at K-12, 
many are now aware that it can provide context and tools for mathematics and science 
practices. A national framework27 has recently attempted to embody science and engineering 
education by promoting science and engineering practices and crosscutting concepts to 
deepen understanding of content as well as cognitive processes that permeate the fields of 
both science and engineering. These recommended practices are listed below.27 

1. Asking questions (for science) and defining problems (for engineering) 

2. Developing and using models 

3. Planning and carrying out investigations 

4. Analyzing and interpreting data 

5. Using mathematics and computational thinking 

6. Constructing explanations (for science) and designing solutions (for engineering) 

7. Engaging in argument from evidence 

8. Obtaining, evaluating, and communicating information 

 
Clearly, one of the principals of science and engineering education is to cultivate students’ 
scientific and engineering habits of mind.10,20 We often call these scientific thinking (ST) and 
engineering thinking (ET) skills.10, 20, 27, 32 The above list indicates that there is indeed a great 
deal of similarities between the practices of scientists and engineers. Other than #1 and #6, 



they are basically the same. In particular, both include construction of modeling as well as 
use of simulation tools to test scientific theories and predict outcomes of engineering designs.  
 
While the national framework has been informed by learning theories that students learn 
better if they are engaged in activities closely resembling the way scientists and engineers 
think and work, implementing constructivist ST and ET activities in the classroom remains a 
challenge in K-12 education. There are several problems, including teacher professional 
development and curricular materials. However, equally important are some philosophical 
issues. For example, constructivist and unguided learning works only when learners have 
sufficiently high prior knowledge to provide “internal” guidance.15 Accordingly, if we 
continue to define ST as thinking by a scientist during problem solving and ET as thinking by 
engineers during design and testing, then the above practices will continue to pose challenges 
for novices (students) because of the prerequisite content knowledge needed to engage in the 
same thinking processes as experts, not to mention the cost of providing students an 
environment to conduct scientific inquiry and engineering design.  
 
There are several questions, then, that need to be asked here. Are there ways through which 
and tools by which we can teach young students scientific and engineering habits of mind 
without prerequisite knowledge in these areas? The above practices may be appropriate for 
high school seniors or college freshmen, but narrowing them down to a more fundamental set 
of cognitive competencies is necessary for the K-12 level. By linking ST and ET skill sets to 
ordinary thinking10,38 we may be able to make STEM education more accessible. In the 
sections below, we will first briefly revisit currently recognized ST/ET skill sets. Then, we 
will present a theoretical framework to link these skill sets to our typical cognitive functions 
by merging relevant concepts and theories from various fields. A quick review of the 
literature reveals a broad set of cognitive characteristics of ST/ET that will be further 
generalized via our framework. We will then present a case study to examine our theoretical 
framework through a set of science and engineering practices, which will be supported by a 
professional development program for secondary school teachers as well as use of modeling 
tools to offer student activities that arguably resemble ways scientists and engineers think and 
work. Details of this case study were presented in earlier publications,43-48 but their relevance 
to cognitive skills is a new undertaking. We hope that our synthesizing effort in this article of 
concepts from various fields will contribute further to the discourse on how to infuse 
engineering instruction24 through existing K-12 content standards.27  
 
2. Brief background on scientific and engineering thinking 
 
Scientific thinking has been historically referred to as the thought process involved during 
scientific inquiry. Today, cognitive psychologists use imaging techniques to explore the parts 
and functions of the brain that show electrical activity during action by scientists within the 
laboratory environment. The latest studies in the literature describe scientific thinking (ST) to 
involve thinking about the content of sciences as well as a set of processes that permeate the 
field of science. These processes are listed in Table 1.10-11 

 
Table 1: Cognitive processes involved in ST as listed by Dunbar & Klahr10 and Giere.11 

1. Problem solving  
 
6. Reasoning à 

6a. Deductive Reasoning 
2. Design and modeling 6b. Inductive Reasoning 
3. Hypothesis testing 6c. Abductive Reasoning 
4. Concept formation 6d. Casual Reasoning 
5. Conceptual change 6e. Analogical Reasoning 



The processes involved in practices of engineers and scientists are actually similar and can be 
considered of having three spheres of activity, namely: a) investigation and empirical inquiry, 
b) construction of a model (e.g., a scientific concept/theory or an engineering design) using 
reasoning, and creative thinking, and c) evaluation of the model’s validity (science) or 
fitness/usefulness (engineering).27 Furthermore, both scientific investigations and engineering 
designs undergo an iterative and cyclical process involving formation of a model based on 
existing knowledge, testing, and re-modeling until satisfactory results are obtained. The need 
for constant change requires an engineer to have all the problem solving and critical thinking 
skills listed above. However, while most of the cognitive processes involved in scientific 
investigation can be found in engineering design process, their relative use and importance 
differ. First of all, science may not be driven by immediate needs or practical applications 
like engineering. Though this distinction is blurring these days, major scientific investigations 
continue to be curiosity-driven. Secondly, while forming, validating or modifying a theory 
may be considered success in science, in engineering success is measured by how human 
needs or desires are being addressed.20 Another difference is that while science attempts to 
generalize findings to come up with single, coherent and comprehensive theories to explain a 
wide range of natural phenomena, there is no such a systematic inductive effort in 
engineering as it rather deals with deductive application of scientific theories to various 
conditions and constraints. Engineering thinking may also heavily use analogical reasoning to 
identify and validate a particular design or solution by example for its practical purposes.32 
Additionally, engineering habits of mind may involve skills such as spatial thinking or 
systems thinking that are geared at manipulation of geometrical designs20 but in this article, 
we are rather interested in the essence of S&E thinking so we may be able to promote it at 
early grades in K-12.  
 
3. Relevant literature 
 
Confidence in our understanding of how the mind works has been hindered by the fact that it 
involves a delicate, inaccessible, and complicated organ, the brain. Yet, technology has 
recently broken some of the barriers to understanding its functions. Neuroscientists use 
imaging techniques to understand brain mechanisms that take part in receiving, storing, 
retrieving, and processing information. Cognitive psychologists use similar techniques to 
study where in the brain particular perceptual and cognitive processes occur. At the same 
time, cognitive and computer scientists form theories and models of the mind to study how 
computation may be generating thinking. In this section, we briefly review and synthesize 
basic concepts in these contemporary areas as well as those suggested centuries ago by 
epistemologists.13  
 
Neurosciences view (storage and retrieval of information): The latest neuroscience studies 
indicate that information is stored into the memory in the form of a specific (distributed) 
pattern of neurons placed on a pathway and fired together.6,12,31 The number and strength of 
neural pathways improve the storage and retrieval of information. A memory or a newly 
learned concept can be a combination of previously formed memories, each of which might 
also involve a vast network of concepts and details mapped onto the brain’s neural network in 
a hierarchical way, as illustrated in Fig. 1. We need to note that while this simple illustration 
has been argued by computational scientists as a way of representing information’s natural 
tendency for optimized storage and retrieval by any device,43,48 it has been found to match 
descriptions by neuroscientists as to how information is being stored and retrieved by our 
biological brains.6,12,21,31 Accordingly, when new information arrives, it lights up all related 
cues, neurons and pathways in a distributive process as illustrated by top-down arrows, where 



a new concept is broken (scattered) up 
deductively into related pieces. With the same 
token, retrieving a memory is a reassembly 
(gathering) of its original pattern of neurons 
and pathways in an associative process which 
is somehow similar to the bottom-up inductive 
action in Fig. 1. 
 
The key to storing a concept more 
permanently into the memory is, then, to link 
it to previously stored basic and retrievable 
concepts. And, the more links to associated 
concepts, the higher the chances of recalling 
this concept when needed later. Furthermore, 
cognitive retrieval practices attempted at 
different times, various settings and contexts is 
good because every time the recall is 
attempted it establishes more links that will 
help the remembering and learning. Exposure 
to new concepts, then, through links to multiple views from different fields of study is an 
effective retrieval strategy recommended by cognitive psychologists.6 Retrieval is often 
regarded as an act of creative re-imagination and what is retrieved is probably not the original 
pattern but one with some holes or extra bits.6,21,31  
 
Similar to the distributive (top-down) process of storage, the brain attempts to interpret (i.e., 
think deductively about) every new concept and information that it encounters in terms of 
previously registered models ─ objects, faces, scenarios, etc. As it grows, the relationships 
among registered information eventually lead to interplay of various combinations and 
scenarios of existing models that eventually end up clustering, in an associative (bottom-up) 
fashion, related details into conclusions, generalizations, and more inclusive models of 
information.5,23 The details our brain registers and stores, and the hierarchical connections it 
establishes between them, along with inferences, generalizations and conclusions, build over 
time like a pyramid-like structure in Fig. 1 that we have come to call mind.36 We often use 
software analogy to distinguish it from the underlying structure of brain. 
 
Cognitive sciences view (computational processing of information): A recent book, How We 
Make Decisions, by Read Montague22 gives much credit to Alan Turing,39 a computer 
scientist and mathematician, for laying down the foundations of computational theory of 
mind. Turing provided an insight that there should be a distinction between the patterns of 
computations running on a device and the device parts. Accordingly, while the distributed 
structure of neurons and their connections (i.e., hardware/brain) influence cognitive 
processing (i.e., software/mind), the relationship between mind and brain is not a one-to-one 
relationship. Our mind consists of a hierarchy of many levels and connection patterns of 
information constructs and, just as the case in electronic computing, these levels may range 
from basic computations to more complex functions (sequence or structure of instructions) 
and models (mental representations) of perceived reality and imaginary scenarios.22  
 
We reckon that there is an ongoing criticism of hardware and software analogy between 
brains and computers, yet today’s electronic computing devices, our cognitive view of human 
mind, and neuroscientific understanding of the brain are all converging to a point, indicating 

Figure 1: Distributive and associative storage 
and retrieval of information.48 

 Concept 

Basic concepts, details & facts 



that the same computational principles may be at work. Turing’s design of an electronic 
device to imitate the biological brain has evolved quite dramatically since its first design; 
particularly in regard to decentralization of information processing and storage. For example, 
today’s electronic computing devices process and store information in a distributed way, 
somehow similar to the distributed brain circuitry. Programmers of parallel computers know 
that management and utilization of a distributed hardware necessitates scatter and gather 
type communication functionalities in software and that is also similar to how the distributed 
neural structure stores and retrieves data as we discussed it in the previous section. 
 
Here, we are not suggesting that brain works exactly like an electronic computer. Yet, the 
growing degree of structural and functional similarities may help us better understand how 
the brain works. For example, such similarities have guided us into looking for device-
independent root causes of cognition. We argue, indeed, that one of these may be the 
invariant nature of information. This means that quantifiable information can be processed in 
only one of two ways (addition and subtraction) at the most fundamental level, regardless of 
the device that processes it, be it electronic or biological.  If so, we can infer that no matter 
how a computing device processes information structurally, the duality in basic computation 
will most likely manifest itself at higher-level device-dependent processes as well. Another 
reason for similarities may be that the design and use of electronic computing devices are 
imposed by biological computing agents that control them. As a result, the mind’s use of 
electronic computing devices should reflect how it does its own computing. This may be why 
modeling is common to both electronic and biological computing because the thinking 
process described by epistemologists centuries ago appears to be what we do today with 
computers. 
 
Epistemological foundation of thinking & reasoning: Epistemology played an important 
role in establishing a philosophical foundation for how we learn. There were two main views, 
namely rationalism and empiricism, about the nature and source of knowledge until the 
middle of the 18th century. Empiricism historically claimed that the mind is a blank slate and 
that it acquires propositional knowledge a posteriori upon perception and experiences by 
putting together, in a synthetic way, related pieces of information (as illustrated by bottom-up 
arrows in Fig. 1). Knowledge acquired synthetically is not warranted and it is accompanied 
by skepticism because new experiences may later change its validity. Rationalism, on the 
other hand, historically claimed that knowledge is acquired a priori through innate concepts. 
There is no room for skepticism when knowledge is acquired in an analytic way (as 
illustrated by top-down arrows in Fig. 1) from an intuition. Innate knowledge is warranted as 
truth and everything else stays within its scope – i.e., knowledge of external world can be 
derived from it by means of deductive (analytic) reasoning. Immanuel Kant argued against 
both views and created a bridge to lay the foundations of modern philosophy — and the 
scientific method.13,17 In applying mathematical, logical, and physical constructs to the study 
of nature, he considered that knowledge developed a posteriori through synthesis could 
become knowledge a priori later for analysis. Furthermore, according to him, a 
priori cognition of the scientist continues to evolve over the course of science's progress.33 
The epistemological methodology Kant established two centuries ago is none but today’s 
deductive (top-down) and inductive (bottom-up) cycle of scientific thinking11,17 and 
engineering practice27 as we have illustrated in Fig. 1.  
 
Role of modeling in scientific & engineering research: One of the tools that have benefited 
scientific research and engineering practice has been modeling.27-28 Its virtue comes from 
simplification of reality by eliminating the details and drawing attention to what is being 



studied. As such, it enables the researcher and engineer to grasp important facts surrounding 
a topic before going into the underlying details. Furthermore, modeling supports the process 
articulated by Kant, by which a prior concept/theory/design (a model) is analyzed deductively 
first and then synthesized inductively – after testing, sorting, and updating – to either validate 
or change the original concept/theory/design. This process of often called conceptual 
change.40 In recent years, computational modeling has been very effective in conducting 
scientific research and engineering design because it speeds up the model building and testing 
of different scenarios through simulations that provide quick feedback to 
researchers/engineers in order improve the initial model. The role of computational modeling 
and simulation tools in scientific and industrial research was proven beyond doubt when its 
predictions matched behaviour of physical models in high-stake cases (e.g., safety of cars and 
planes, emissions from engines, and approaching storms). Its use was uniquely justified when 
a study was impossible to do experimentally because of its size (too big such as the universe 
or too small such as subatomic systems), environmental conditions (too hot or dangerous) or 
cost. Science and engineering done computationally eventually demonstrated to be generating 
insight, just like experimental and theoretical research and this ultimately led to the 
recognition of computation as a third pillar of doing research.28 
 
In practice, the scientific method has often been taught as a one-way linear process – a myth 
perpetuated to this day by many textbooks and curricular resources1,30 – even though, as we 
stated before, the iterative and cyclical (dual) aspect of acquiring knowledge was documented 
more than two centuries ago by Immanuel Kant in The Critique of Pure Reason.13 This may 
have several cultural, historical, and economical reasons. Culturally, we do not like frequent 
change as it might disturb our mental stability. Historically and economically once proven or 
validated, a hypothesis or an observation was revisited at a slow pace, sometimes spanning 
generations, because of both limited resources (time, money, equipment, etc.) and the 
overwhelming number of other questions begging for an answer or proof. Recently, however, 
growing resources and the fast pace of technology have boosted the pace of progress by 
facilitating re-examination of previously reached conclusions at a much faster pace, thereby 
enabling us now to teach students a better understanding of the scientific method (thinking) 
by using a new viewpoint that could add to the discourse and lead to significant impact on 
both science and engineering education.  
 
4. Cognitive essence of scientific and engineering thinking  
 
Our framework is based on Kant’s epistemological method,13 Turing’s computational theory 
of mind,39 and Hebb’s neuropsychological view12 of storage and retrieval that “neurons that 
fire together wire together.” All have been around for a long time. We argue that all 
quantifiable (distinct) things, such as matter and information, behave computationally.22,48 
They either quantitatively unite (i.e., addition) or separate (i.e., subtraction) in a computable 
process by which all heterogeneous stuff behaves.43,46,48 Distinct packets of matter (e.g., an 
electron, a neuron, an atom, an apple, and a planet, etc.) or information (e.g., a concept, a 
scientific theory, an engineering design, an assumption, a word, a sentence, and a book, etc.) 
embody and conceal their internal details ─ much like a model or an abstract representation. 
Furthermore, as shown in Fig.1, models either break down deductively into smaller parts (sub 
models) or unite inductively to form bigger models as a result of a trial and error process 
driven by external constraints and/or a collective behavior of parts based on relationships and 
rules of engagement among them ─ much like a simulation. Researchers have come to call 
this mechanism “modeling and simulation” in the context of information processing, but it is 
commonly applicable to natural dynamism of all discrete forms.48 



Accordingly, processing of information constructs by any computing device, be it electronic 
or biological, would involve basic device-independent computations (addition and 
subtraction) at the fundamental level as well as modeling-and-simulation type inductive-and-
deductive processing at a higher level. Our brain’s inclination, then, to: a) think in inductive 
and deductive terms as proposed two centuries ago by Kant, b) process information in an 
associative/distributive fashion as a computational device as described by cognitive 
scientists, and c) store and retrieve memories and concepts in a scatter/gather fashion by a 
distributed neural network as proposed by 
neuroscientists, may all be a manifestation of a 
basic duality engrained in the fabric of matter and 
information. Figure 2 illustrates application of this 
simplistic framework to ST/ET in terms of typical 
fundamental cognitive processes. At its core lays a 
duality in the quantifiable nature of sensory 
information. Built upon that are corresponding 
distributed and associative processing in which 
incoming information is stored, retrieved, and 
computed by a computational mind. The iterative 
and cyclical dynamics of distributive/associative 
processes had been visually shown before in Fig. 
1. We expect the dichotomy at the core to carry 
itself up to higher-level cognitive processes, such 
as deductive reasoning as a form of distributive 
processing of information and inductive reasoning 
as a form of associative processing of information. 
Since cognitive researchers have demonstrated how information processing could lead to 
cognitive inferences and generalizations (i.e., inductive reasoning),14,18,36 here we are not 
concerned about the details of ‘computation to cognition’ process but rather how fundamental 
computation leads to duality in reasoning.  
 
Many of the cognitive elements listed in Table 1 fit into our framework. First, we know that 
both inductive and abductive reasoning involve making inferences via synthesis (associative 
processing) of information and observations. Inferences reached through inductive reasoning 
are more valid, though still not certain, than those reached through abductive reasoning 
because it involves a more complete set of information and observations than those used in 
abductive reasoning.10 There are many examples of inductive reasoning in science, including 
discoveries of a certain bacterium as the cause of many ulcers37 as well as of an orbital model 
about the motion of planets based on astronomical observations. Abductive reasoning is often 
referred to as “inference to the best explanation,” or “inference in the face of some 
unknowns.” While scientists use it as an educated guess until further data becomes available 
to transform it into a hypothesis, it is key to improving optimization, trade-offs, and creativity 
of industrial and engineering designs because incomplete data set and uncertainty are 
regarded as encouraging motivation among engineers to find an optimum solution under 
available circumstances.29 

  
Conceptual change, a major element in Table 1, goes to the heart of scientific progress and 
engineering design. In science, it is a form of learning,40 as we introduced it earlier in the 
context of epistemological method and modeling. In engineering, it is the same as the 
deductive/inductive dual process by which a design model is iteratively formed, tested, and 
modified. As a simplification of reality, the act of modeling is accomplished through 

Figure 2. The essence of thinking in terms 
of our typical cognitive processes. 



inductive reasoning by highlighting only important facts and generalizations surrounding a 
topic without going into the underlying details. Dunbar & Klahr10 have reported conceptual 
change by observing scientists during action. While it may take long periods of time to 
witness conceptual change in sciences, changes made to design models of an engine, or 
airplane are good examples of conceptual change and the processes involved in it. Ideally, 
scientists and engineers start with a model (concept, theory, or design) based on the current 
research, facts, and information. They predict, through analytic (deductive) thinking, 
situations and scenarios where the model would apply to, followed by a series of tests to 
examine the model’s predictions against observed phenomena or desired specifications. If 
results do not match, they then break down the model into its parts (sub models) to identify 
what needs to be tweaked. They retest the revised model through additional what-if scenarios 
by changing relevant parameters and characteristics of the sub models. By putting together 
new findings and relationships inductively among sub models, the initial model gets revised. 
This cycle of modeling, testing, what-if scenarios, synthesis, decision-making, and re-
modeling is repeated iteratively in a cycle of deductive and inductive reasoning as resources 
permit until there is confidence in the revised model’s validity (science) and performance 
(engineering).27  
 
Formation of a hypothesis, a concept, or a design model – another element in Table 1 – also 
necessitates synthesis (associative processing) of information. Since it needs all relevant 
information to be searched, retrieved, and linked, the action of information storage/retrieval is 
as important as processing. In fact, as mentioned earlier neuroscientists argue that the act of 
retrieval is no different than the act of thinking because retrieval is an effortful process of re-
building a neural pattern.6,21,31 The processes of searching, sorting, and relating new concepts 
to the old ones by the brain circuitry is essential to link relevant pieces of information before 
they can be: a) synthesized to generate new concepts/designs or b) analyzed to initiate testing 
to improve existing concepts/designs. In return, processes of searching, sorting, and relating 
involve building or using mental models to correlate concepts and variables. These processes 
are often referred to as causal and analogical reasoning, and while they are listed as distinct 
elements in Table 1, they are actually intertwined with and dependent on the other elements 
that we have already discussed. Causal reasoning is about building cause and effect 
relationships between variables of interest. Analogical reasoning is about forming analogies 
between variables, and it is often used in solving a problem by forming an analogy to a 
known case. Both scientists and engineers use causal and analogical reasoning.10,29 In 
science, of course, causal reasoning plays a central role in relating findings that are often 
unexpected or accidentally discovered. A large portion of findings in science have been of the 
unexpected type, which involved scientists’ use of causal model-building, analogical 
reasoning and problem solving to discover and verify the relationship. As such, analysis of 
major discoveries in the history of science has revealed that analogical reasoning is a key 
ingredient of scientific discovery.38 Analogical reasoning is also important for engineers. 
They often argue their choice of optimum design solutions by using precedents or by starting 
off from a design used in another application. 
 
Deductive reasoning is the process of analyzing existing knowledge to draw conclusions, 
make predictions, or discover situations that it applies to.11 This kind of distributive 
processing of information is like breaking down or pulling apart a generalization (a whole) to 
its constituencies (parts). It is how science evolves from generations to generations because 
we often start from a theory that has already been formed but may need re-examination 
because of changing conditions or new facts.17 For sciences, deductive reasoning is as 
important as inductive reasoning but for engineering it is used even more heavily than 



inductive/abductive reasoning because engineering examines how known scientific concepts 
and engineering designs can be applied to various circumstances and solutions of practical 
problems.20,29  
 
Finally, problem solving has been defined in recent literature as a search within two related 
spaces: conceptual (abstract/general) and experiment (empirical/particular) space. According 
to Klahr & Dunbar,16 each space consists of all the possible states of its kind and all the 
operations that a problem solver can use to get from one state to another. Furthermore, each 
of dual spaces constraint searches in the other. So, this, again, would be like the dynamics 
illustrated in Figure 1, because Klahr and Dunbar found in their problem-solving research 
that participants moved between conceptual (abstract) and empirical spaces (details).16 
Description of problem solving in this fashion again reinforces our view that the iterative and 
cyclical dynamics of associative (e.g., inductive) and distributive (e.g., deductive) processing 
is a foundation of all cognitive elements and their derivatives.  
 
While our goal is not to fit all the ST and ET elements in Table 1 into a single framework, it 
appears that they are all using the same basic functions (storage/retrieval and computation) of 
information processing with a dichotomy at the root level. We argue that they can be 
considered as outcomes of a combination of associative/distributive processing, scatter/gather 
storage and retrieval as well as searching and sorting that are either prompted by sensory 
input or resulted from internal communication between neurons. The following section 
examines our cognitive framework in terms of learning by novices. We hypothesize that 
statistically significant evidence should support our synthesis and cross-disciplinary 
arguments to form it. 
 
5. Technological and pedagogical tools to support ST & ET education 
 
The way science and engineering is done affects how the new generations are educated. A 
large body of research indicates emergence of computational way of doing science and 
engineering.27-28 This has resulted from a cognitively effective deductive-and-inductive 
epistemological method, along with use of electronic devices to expedite its implementation 
via modeling and simulation.46 Since the recognition of computation in the 1990s as one of 
the three pillars of research, new undergraduate degree programs have been introduced in 
computational science and engineering. The authors have been at the forefront of this reform 
by developing curricula for degree programs,42 exploring pedagogical aspects of modeling 
and simulation,43,47 and developing a computational pedagogical content knowledge 
framework for teacher professional development.45 As mentioned before, a major concern has 
been learners’ lack of prerequisite knowledge but the latest tools, such as those in Table 2, 
now allow novices to quickly set up and run a model using an intuitive user interface with no 
knowledge of differential equations, scientific laws, or programming.  
 
Table 2: A typical list of user-friendly modeling and computer simulation tools 

Interactive Physics (IP): investigate physics concepts. http://www.design-simulation.com/IP. 
AgentSheets: investigate biology concepts via games & simulations. http://www.agentsheets.com. 
Geometer’s Sketchpad (GSP): model geometrical concepts. http://www.dynamicgeometry.com. 
Stella: investigate chemistry concepts via modeling of rate of change. https://www.iseesystems.com 
Project Interactivate: online courseware for exploring STEM concepts. http://www.shodor.org. 
Excel: constructs hands-on modeling & simulations using rate of change (new = old + change). 
Scratch: a menu-driven language for creating games and simulations. http://scratch.mit.edu. 
Python: An object-oriented language with simple and easy to use syntax. http://www.python.org/. 



Quasi-experimental design: Using above tools and federal support, we ran a 5-year (2003-
2008) professional development (PD) program for math and science teachers19 to investigate 
pedagogical aspects of modeling and simulation in grades 7-12. The interdisciplinary aspect 
of computational science and the need for teacher motivation/customization to implement 
new technologies and pedagogies necessitated a quasi-experimental design with mixed-
methods, involving collection and analysis of qualitative data to identify variables as well as 
to understand and triangulate the quantitative data. Our hypothesis was that there is a positive 
relationship between teacher variables (knowledge and ability) and student outcomes 
(knowledge, ability, and interest). Three independent variables (technology, pedagogy, and 
training) were considered. Multi-year PD included 80 hours of technology knowledge (TK) 
training the 1st year, 80 hours of technological content knowledge (TCK) training in the 2nd 
year, and 40 hours of technological pedagogical content knowledge (TPACK) training in the 
3rd year. Teachers received TK training in multiple tools but were offered TCK training to 
integrate their choice of tools with their content. While monetary and technology (laptops, 
smart boards, and software) support were offered, participation was voluntary. Studies of 
interdisciplinary TPACK training on teaching and learning are relatively new but have been 
well documented (see www.tpack.org). Our focus has been rather on computational 
pedagogical content knowledge (CPACK; a subset of TPACK) development45 and its 
cognitive framework.46,49 

 
A sequential mixed-methods approach7 was used to collect quantitative data (e.g., pre- and 
post-activity teacher surveys, classroom artifacts, student report cards, test scores, and 
standardized exams), followed by an enriched case study with a qualitative component (e.g., 
interviews, teacher activity logs, and classroom observations) to explore the meaning of the 
quantitative trends/findings in the first part of the study. The experiment evolved in phases as 
the program staff developed, in collaboration with participating teachers, a database of 
curricular modules, lesson plans, and related assessment instruments and rubrics with good 
psychometric properties. Currently, they are well utilized reaching 80-100 downloads per day 
by educators around the world (see http://digitalcommons.brockport.edu/cmst_institute/).  
 
More than 300 in-service math and science teachers from 15 secondary schools (grades 7-12) 
took part in initial TK training of this inititative. About half of teacher participants moved on 
to the 2nd year and about half of those moved on to the 3rd year CPACK training. A detailed 
account of the overall program, along with relavent teaching and learning data, has been 
already reported through a dozen peer-reviewed articles, including a short list cited earlier 
and two Best Papers45,47 in recent ASEE (asee.org) and SITE (site.ace.org) conferences.  
 
The Instruments: a) Grade 8 New 
York State Math Exam, b) New York 
State Regents Math and Physics 
Exams, c) High School Graduation 
Rates, and d) Likert-scaled pre-post 
activity teacher surveys. Other 
quantitative instruments were also used 
including rubrics to evaluate 
computational artifacts (such as lesson plans, curriculum modules and student projects) and 
protocols to evaluate classroom observations – these are covered in other publications.  
 
Sample: Students from 13 urban (Rochester City School District, RCSD) and 2 suburban 
(Brighton Central School Districts, BCSD) secondary schools participated in the program. 

Table 3: Typical use of modeling tools by teachers 
Grade Level 

 
Frequency of usage 

instruction special projects None 
7-8 Math 46% 46% 8% 
9-12 Math 60% 35% 5% 
7-8 Science 25% 75% 25% 
9-12 Science 54% 38% 8% 



Actual sample sizes varied from year 
to year over the five-year period of the 
initiative. One reason was the 
evolution of the State-level Math-A 
Regents exam. Others included teacher 
and student mobility, particularly 
within the urban RCSD.  
 
Data collection & analysis: The data 
was collected from school districts by 
two professional evaluators, who also 
coded open-ended responses and used 
an inductive analysis to identify major 
themes emerging from teacher activity 
logs, questionnaires, and journals. 
Here, we will only review findings 
that are related to use of modeling 
tools, student engagement and 
standardized test scores in grades 7-12 
math and science courses.  
 
Annually, we had about 50 active 
teachers in the program who each 
taught approximately 100 students in a 
school year. Modeling software tools 
were made available to all 
participating teachers. More than 
5,000 secondary school students each 
year had a chance to experience 
deductive and inductive teaching and 
learning through modeling tools. 
Annual surveys of teachers showed 
that utilization of new tools in the 
classroom was directly linked to the 
amount of teacher training and 
confidence. For example, while only 
60% of the teachers reported 
occasional use of these tools in their classrooms after one year of TK training, 78% reported 
regular use after two-years of training. Student interest and knowledge also affected the 
intensity of tool usage in the class. A typical annual survey, shown in Table 3, indicated that 
the higher the grade level the more regularly the tool usage. Modeling was a common 
practice in math classes and it did not need as many resources as science classes in order to 
simulate time-dependent dynamics of scientific phenomena. A small number of teachers each 
year reported not being able to use the tools because of scheduling conflicts or lack of access 
to computers. 
 
Teachers provided feedback on student engagement and learning, based on the baseline data 
of the classes they had taught as well as the unit tests they were giving before and after 
modeling-based teaching. Evaluators verified teacher findings through their own classroom 
observations. Figures 3-5 show some of the Likert-scaled survey responses for grades 7-12 
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student engagement and math/science comprehension after modeling-based teaching. Most 
teachers agreed that using modeling in the classroom significantly increased student 
engagement based on participation in class as well as attendance (see Fig. 3). Students in 
higher-grade levels found modeling more engaging in math classes (grades 7-8: 77% vs. 
grades 9-12: 90%) as well as science classes (grades 7-8: 75% vs. grades 9-12: 85%). 
Modeling was even found helpful to non-traditional (special education) learners – again, the 
higher the grade level the higher the engagement: math classes (grades 7-8: %76 vs. grades 9-
12: 100%) and science classes (grades 7-8: 75% vs. grades 9-12: 85%). 
 
Seventy-two percent (72%) of math and 31% of science teachers reported observed 
improvement in students’ problem solving skills. Student reaction to modeling (vs. traditional 
techniques) was found to be 97% favorable in math and 77% in science classes. 97% of math 
and 92% of science teachers agreed that use of such tools made subject-related concepts 
significantly more comprehensible (Fig. 4). While science classes utilized technology less 
due to limited access and lack of science-related modeling examples, in instances where it 
was utilized, a deeper understanding was achieved, compared to math topics (83% vs. 76%; 
see Fig. 5). 
 
Student learning data from report cards and NY State exams were found to be consistent with 
the survey data provided by teachers. For example, Tables 4 through 7 show passing rates 
(>65/100) in NY State Regents Physics/Math Exams as well as graduation rates in four urban 
(RCSD) and one suburban (BCSD) high schools with more than 30% of its math and science 
teacher workforce trained by the initiative. Student responses, except one case with a small 
sample size, from each school point out to a statistically significant (0.01 < p < 0.05) upward 
trend over the five-year study during which teachers were supported through summer and 
academic-year workshops, stipends, technology, and mentoring support. District averages are 
shown in Tables 6 and 7. RCSD passing rate average for NY State Grade 7-8 Math exam also 
improved: 10%à44%. Improvements over the baseline data were all statistically significant 
(p<0.01). No math teachers from BCSD middle school participated in the program because 
its baseline passing rate for NY Grade 8 Math was at 89%. Other known factors that may 
have affected statistics include RCSD’s district re-organization into single secondary schools, 
State’s redesign of its exams, and technological reform by these districts.44 A few control and 
target comparisons made in early phases of the project, before the control group was lost, 
consistently show favorable results. For example, a pair of teachers from the same high 
school taught properties of quadrilaterals in a math class. Class averages for the same unit 
test were 82.5 (size 24, using modeling tools) versus 49.5 (size 14, using conventional 
methods). Another study involved State’s math exam scores of groups with similar sizes (25 
students) in an annual challenge at three levels: Grade 7-8 Math: 64.0 vs. 58.6; Grade 9-10 
Math-A: 60.26 vs. 49.54; Grade 11-12 Math-B: 71.9 vs. 55.6. 
 
To circumvent curricular limitations, we offered an afterschool program through which 
participating teachers and student clubs organized a project-based annual competition. This 
program was also a way of doing an enriched case study with a qualitative component (e.g., 
interviews and observations) to explore the meaning of the quantitative trends/findings we 
learned in the student achievement data. Each year, top three team projects selected from 
school-based competitions were later submitted to a multi-school competition involving 
school districts. A rubric with good psychometric properties was developed and tested by 
computing and teaching experts. Project topics included addressing challenges of 
environmental issues and misconceptions. Projects allowed students time to progress at their 
own pace and resolve issues or concepts they wanted to address.  



One of these project-based experiences, as 
published by students themselves,50-51 
offers a testimony of how students gained 
a deeper understanding of scientific 
content through projects involving use of 
modeling and simulation. To further 
understand operational principles of 
modeling tools in Table 2, students used a 
simple rate-of-change formula, new= old 
+ change, to reproduce simulations using 
Excel. This hands-on process helped them 
realize the virtue of decomposing a 
problem because finer decomposition got 
them more accurate results. They also 
appreciated the role of programming 
because it enabled them to obtain even 
more accuracy when Excel could not 
handle large data points for even finer 
decomposition. Students eventually wrote 
simple programming loops in Python to 
create simulations with desired accuracy. 
Iterative and cyclical experimentation not 
only taught students the importance of 
abstraction (inductive reasoning) and 
decomposition (deductive reasoning) but 
also motivated them to learn programming.  
 
Our findings are consistent with a growing 
body of research that identifies computer 
simulation as an exemplar of inquiry-
guided (inductive) learning through 
students’ active and increasingly 
independent investigation of questions, 
problems and issues.3,8,34,35 In many ways 
simulation has been found to be even more effective than traditional instructional practices. 
In particular, the literature shows that simulations can be effective in: 1) developing science 
content and practice skills, and 2) promoting inquiry-based learning and conceptual change. 
There is plenty of evidence2-3,34-35,43-48 to believe that modeling and simulation carries a 
constructivist computational pedagogy whose iterative and cyclical nature mirrors Kant’s 
epistemological method represented in Fig. 1. Basically, modeling provides a general 
simplistic framework from which instructors can deductively introduce a topic without 
details, and then move deeper gradually with more content after students gain a level of 
interest to help them endure the hardships of effortful and constructive learning. Simulation, 
on the other hand, provides a dynamic medium to test the model’s predictions, break it into 
its constitutive parts to run various what-if scenarios, make changes to them if necessary, and 
put pieces of the puzzle together inductively to come up with a revised model. Anyone who 
learns in this way would be practicing the craft of scientists and engineers. 
 
 
 

Table 4: Passing rate at RCSD high schools. 
Regents 
Math-A 

Baseline data 5 years later p  
value Size Rate Size Rate 

School 1 77 5% 427 62% <0.01 
School 2 319 13% 274 61% <0.01 
School 3 441 35% 384 75% <0.01 
School 4 43 21% 262 63% <0.01 
 
Table 5: Passing rate at RCSD high schools. 
Regents 
Physics 

Baseline data 5 years later p  
value Size Rate Size Rate 

School 1 21 0% 26 22% <0.05 
School 2 240 3% 162 31% <0.01 
School 3 11 0% 6 17% <0.16 
School 4 153 16% 81 26% <0.05 
 
Table 6: Passing rate at BCSD high school. 

Regents 
Exam 

Baseline 
data 5 years later 

p  
value 

Size Rate Size Rate 
Math-A 51 51% 295 97% <0.01 
Physics 123 52% 132 77% <0.01 
Diploma 259 84% 285 95% <0.01 
 
Table 7: Average passing rate at RCSD. 
Regents 
Exam 

Baseline data 5 years later p  
value Size Rate Size Rate 

Math-A 880 23% 1347 65% <0.01 
Physics 425 7% 275 27% <0.01 
Diploma 1021 20% 1178 52% <0.01 
 



6. Conclusion  
 
We presented a viewpoint on the essence of scientific and engineering thinking based on 
distributive and associative characteristics of quantifiable information, fundamental modes 
(addition and subtraction) of computation, and scatter/gather nature of information storage 
and retrieval by a network of neurons whose communication for searching, sorting, and 
analogies is driven by distributed connectivity, richness of cues, and natural tendency to 
minimize energy usage. Accordingly, an iterative and cyclical dynamics of a set of dual 
(associative/distributive) processes appears to be the driver of cognitive processing, and 
modeling and simulation appears to be an example of such processing of information by both 
electronic and biological computing devices.22 This process is also the essence of many of the 
ST and ET elements, including formation and change of concepts/designs/models as well as 
inductive, abductive, and deductive reasoning. While these functions are no different than 
cognitive processes of ordinary thinking,38 not everyone uses them as consistently, 
frequently, and methodologically as scientists and engineers. The good news is that they can 
be improved beyond what is inherited. 
 
Use of electronic modeling and simulation tools in research and education has shown to aid 
learning because it facilitates an iterative and cyclical development of knowledge. 
Triangulated data from our work indicates that these tools offer a pedagogical experience by 
putting the learner on the driver seat through an iterative cycle of constructivism, interactivity 
and immediate assessment. Their deductive aspect helps teachers to present concepts by 
simplification of reality, which is instrumental to draw young minds into STEM. Their 
inductive aspect guides them into deeper content learning. The practice of teaching science 
and math in the context of computing offers benefits to a wide group of students. Engineering 
practices offer additional context. Tools reported in this article can be easily utilized for that.  
 
The advantages of deductive and inductive approaches to instruction have been known for 
many years, but many still use them separately and there seems to be a tension between their 
proponents. While each approach has its pros and cons, prudent educators should take 
advantage of both approaches, especially if they are trying to correct students’ preconceptions 
and misconceptions. If deductive and inductive reasoning are important skills for scientists 
and engineers, then teaching should incorporate them, especially in one setting by using 
modeling and simulation tools. We hope that this article contributes to the discourse on both 
scientific and engineering thinking and helps persuade public and young students that 
understanding and obtaining the mind of a scientist and an engineer is within their reach. 
 
Acknowledgements 
 
Support from the National Science Foundation, through grants EHR 0226962, DRL 0410509, 
DRL 0540824, DRL 0733864, DRL 1614847, and DUE 1136332, is greatly appreciated. 
 
References 
 
1. Bauer, H. H. (1992). Scientific Literacy and the Myth of the Scientific Method. Chicago, 

IL: University of Illinois Press. 
2. Bell, L. R., Gess-Newsome, J., & Luft, J. (2008). Technology in the Secondary Science 

Classroom. Washington, D.C.: National Science Teachers Association (NSTA) Press. 



3. Bell, L. R., & Smetana, L. K. (2008). Using Computer Simulations to Enhance Science 
Teaching and Learning. In R. L. Bell, J. Gess-Newsome, and J. Luft (Eds.), Technology 
in the Secondary Science Classroom (pp. 23-32). Washington, D.C.: NSTA Press. 

4. Bauer, H. H. (1992). Scientific Literacy and the Myth of the Scientific Method. Chicago, 
IL: University of Illinois Press. 

5. Bransford, J., Brown, A., & Cocking, R. (2000). How People Learn: Brain, Mind, 
Experience, and School. Washington, D.C.: National Academy Press. 

6. Brown, P. C., Roediger, H. L., & McDaniel, M. A. (2014). Make it Stick. Cambridge, 
MA: The Belknap Press of Harvard University Press. 

7. Creswell, J. W. (2012). Educational Research: Planning, Conducting and Evaluating 
Quantitative and Qualitative Research. 4th Edition. Boston, MA: Pearson Education, Inc. 

8. De Jong, T., & Van Joolingen, W. R. (1998). Scientific Discovery Learning with 
Computer Simulations of Conceptual Domains. Rev. of Edu. Research, 68 (2), 179-201. 

9. Donovan, S., & Bransford, J. D. (2005). How Students Learn. Washington, D.C.: The 
National Academies Press.  

10. Dunbar, K. N., & Klahr, D. (2012). Scientific Thinking and Reasoning. In K. J. Holyoak 
and R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (pp. 701-
718). London: Oxford University Press.  

11. Giere, R. N. (1993). Cognitive Models of Science. Minneapolis: U of Minnesota Press. 
12. Hebb, D. (1949). The Organization of Behavior. New York: Wiley & Sons. 
13. Kant, I. (1787). The Critique of Pure Reason. (J. M. D. Meiklejohn, Trans.). 

eBook@Adelaide, The University of Adelaide Library, Australia.  
14. King, R. D. (2011). Rise of the robo scientists. Scientific American, 54 (1), 73-77. 
15. Kirschner, P. A., Sweller, J. & Clark, R. E. (2006). Why Minimal Guidance During 

Instruction Does Not Work. Educational Psychologist. 41 (2), 75-86. 
16. Klahr, D. & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive 

Science, 54, 1-48. 
17. Kuhn, T. (1962). The Structure of Scientific Revolutions. Chicago, IL: University of 

Chicago Press. 
18. Langley, P. (2000). Computational support of scientific discovery. International Journal 

of Human-Computer Studies, 54, 393-410. 
19. Loucks-Horsley, S., Stiles, K. E., Mundry, S., Love, N., & Hewson, P. W. (2010). 

Designing professional development for teachers of science and mathematics. Third 
Edition, Thousand Oaks, CA: Corwin Press. 

20. Lucas, B., Hanson, J., and Claxton, G. (2014). Thinking like an engineer. A report for the 
Royal Academy of Engineering, ISBN: 978-1-909327-09-2.  

21. MacDonald, M. (2008). Your Brain: The Missing Manual. Canada: O’Reilly Media. 
22. Montague, R. (2006). Your Brain Is (Almost) Perfect. New York, NY: Plume Books. 
23. Mooney, C. G. (2013). An Introduction to Dewey, Montessori, Erikson, Piaget, and 

Vygotsky. St. Paul, MN: Redleaf Press. 
24. National Academy of Engineering Report (2010). Standards for K-12 Engineering 

Education? Washington, D.C.: National Academies Press. 
25. National Academy of Engineering Report (2009). Engineering in K-12 Education. 

Washington, D.C.: National Academies Press. 
26. National Academy of Engineering Report (2014). STEM Integration in K-12 Education. 

Washington, D.C.: National Academies Press. 
27. National Research Council Report (2012). A framework for K-12 science education: 

practices, crosscutting concepts, and core ideas. Wash., D.C.: National Academies Press. 
28. National Science Foundation (NSF) Report (2006). Simulation-Based Engineering 

Science: Revolutionizing Engineering Science through Simulation. Washington, DC. 



29. O’Reilly, C. (2016). Creative engineers: Is abductive reasoning encouraged enough in 
project work? O'Reilly, Procedia CIRP, 50, 547-552. doi: 10.1016/j.procir.2016.04.155. 

30. Pedaste, M., Maeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., 
Manoli, C. C., Zacharia, Z. C. & Tsourlidaki, E. (2015). Phases of inquiry-based learning: 
Definitions and the inquiry cycle. Educational Research Review. 14, 47-61. 

31. Restak, R. (2001). The Secret Life of the Brain. New York: The Dana Press. 
32. Robinson, J. (1988). Engineering Thinking & Rhetoric (1988). J. Eng. Edu, 87(3), 227-

229. 
33. Rockmore, T. (2011). Kant and Phenomenology. Chicago: The Univ. of Chicago Press.  
34. Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The Learning Effects of 

Computer Simulations in Science Education. Computers & Education, 58 (1), 136-153. 
35. Smetana, L. K., & Bell, R. L. (2012). Computer Simulations to Support Science 

Instruction and Learning. Int. J. of Science Education, 34 (9), 1337-1370.  
36. Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to Grow a 

Mind: Statistics, Structure, and Abstraction. Science, 331, 1279-1285.  
37. Thagard, P. (1999). How scientists explain disease. Princeton, NJ: Princeton Univ. Press. 
38. Thagard, P. (2012). The Cognitive Science of Science. Cambridge, MA: The MIT Press. 
39. Turing, A.M. (1936). On Computable Numbers, with an Application to the 

Entscheidungs-problem. Proc. of the London Math. Society. 42 (2), 230–265.  
40. Vosniadou, S. (2013). International Handbook of Research on Conceptual Change. 2nd 

Edition. New York and London: Routledge. 
41. Williams, D., McCulloch, C. and Goodyear, L. (2016). Engineering for Every K-12 

Student. Report by Tufts University and Education Development Center. 
42. Yaşar, O. & Landau, R. (2003). Elements of Computational Science and Engineering 

Education. SIAM Review, 45 (4), 787-805. 
43. Yaşar, O. & Maliekal, J. (2014). Computational Pedagogy. Comp. in Sci.&Eng.,16 (3), 

78-88. 
44. Yaşar, O. & Maliekal, J., Veronesi, P. and Little, L. (2014). An Interdisciplinary 

Approach to Professional Development of Math, Science & Technology Teachers. J. 
Comp. in Math & Science Teaching, 33 (3), 349-374. 

45. Yaşar, O., Maliekal, J., Veronesi, P., Little, L. and Vattana, S. (2015). Computational 
Pedagogical Content Knowledge (CPACK). In L. Liu and D. C. Gibson (Eds), Research 
Highlights in Technology and Teacher Education. pp. 79-87. ISBN: 978-1-939797-19-3.  

46. Yaşar, O.  (2016). Cognitive Aspects of Computational Modeling & Simulation. J. 
Computational Science Education, 7 (1), 2-14. 

47. Yaşar, O., Veronesi, P., Maliekal, J., Little, L., Vattana, S., and Yeter, I. (2016). 
Computational Pedagogy: Fostering A New Method of Teaching,” Comp. in Education, 7 
(3), 51-72.  

48. Yaşar, O.  (2017). Modeling & Simulation: How Everything Seems to Form and Grow. 
Comp. in Sci. & Eng., 19 (1), 74-78. 

49. Yaşar, O., Maliekal, J., Veronesi, P. and Little, L. (2017). The essence of computational 
thinking and tools to promote it. Proceedings of the American Society for Engineering 
Education Annual Conference, Columbus, OH, June 25-28, 2017. 

50. Yaşar, P., Kashyap, S., & Roxanne, R. (2005). Mathematical and Computational Tools to 
Observe Kepler’s Laws of Motion. MSPNET, http://hub.mspnet.org/index.cfm/14566. 

51. Yaşar, P., Kashyap, S., and Taylor, C. (2006). Limitations of the Accuracy of Numerical 
Integration & Simulation Technology. MSPNET. http://hub.mspnet.org/index.cfm/14568. 


