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The Forest and the Trees: Using an Appropriate Level of 
Library Abstraction for Microcontroller Instruction 

 
 
1. Introduction 
 
The relentless advances seen in the microcontroller market now challenge educators with, in the 
memorable phrase of the 1960s-era cartoon character Pogo, “an insurmountable opportunity.” 
For less than $5, modern microcontrollers provide a staggering variety of peripherals coupled 
with unprecedented processing power. This complexity leads to data sheets that easily exceed 
1000 pages. Instructors face the problem of providing students ready access to microcontroller 
features without overwhelming them with the detailed knowledge that professional engineers 
often spend years acquiring. 
 
In terms of microcontroller hardware abstraction, vendor libraries typically provide a more hu-
man-readable interface to control and status registers (openUART1(BAUD_RATE_9600 | PARI-
TY_NONE…), for example), but this is of little assistance with higher-level abstractions (write a 
byte over the I2C bus, for example, which requires a series of blocking reads and writes). Many 
real-time operating system (RTOS) products do provide helpful high-level abstractions, but often 
at the price of significant complexity better covered in a later course in embedded systems. 
Open-source libraries such as Arduino1 and mbed2 provide an easy-to-use interface for all pe-
ripherals, but often obscure the underlying implementation concepts students must master. There 
is a need for a low-complexity library that provides some abstraction while exposing low-level 
details. 
  
This paper presents the design philosophy behind an open-source library3 first released in 2008 
and updated until the present, which complements a textbook4 on microcontrollers adopted by 
nine universities. This library that provides a minimalist hardware abstraction layer for the 16-bit 
family of Microchip’s microcontrollers that we believe will address the need for a better balance 
between abstraction and exposing students to underlying details. The library was created to ena-
ble educators to focus on the core concepts common to a microcontroller (such as general-
purpose I/O, timers, and serial protocols such as I2C and SPI) while simultaneously exposing 
some low-level details for students to gain a deeper understanding of the operation of a micro-
controller. Expected students outcomes resulting from use of this library include the ability to 
solve problems using a variety of on-chip peripherals (digital I/O, analog I/O), the ability to 
communicate with off-chip devices using protocols such as SPI, I2C, and serial (UART), and the 
ability to create complex designs employing multiple peripherals in a capstone design context. 
 
In addition to its pedagogical role, this library also serves a practical role in providing students 
hands-on experience using microcontroller peripherals in the course of their laboratory exercises 
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and also scales to enable students to employ multiple microcontroller peripherals in the course of 
their capstone design experience. This library has been used since late 2008, and Google Analyt-
ics numbers for the library’s website give 84,000 visits since January 2009, with approximately 
52% of these visits originating from within the United States. 

2. Background 
 
Sweller’s Cognitive Load Theory5, 6, 7 (CLT) provides a framework for understanding why stu-
dents learn (or do not learn) new concepts and problem solving strategies. CLT focuses on cogni-
tive load requirements and the limited capacity of working memory. CLT includes three forms of 
cognitive load that are additive and must remain below cognitive load limits. First, intrinsic cog-
nitive load can be thought of as the internal processing requirement that is inherent in the materi-
al being learned. Intrinsic cognitive load is static for a specific learning task, and higher for 
learning tasks with higher concept complexity. Second, extraneous cognitive load is the unneces-
sary cognitive load that has been introduced by the instructional techniques used to present mate-
rial and the presentation of nonessential, supplementary information. Extraneous cognitive load 
interferes with learning and should be minimized. Third, germane cognitive load is the produc-
tive cognitive load associated with processing information and automating tasks. Germane cogni-
tive load is modified by student characteristics (e.g., intrinsic motivation) and positive learning 
activities. 
 
For improved student learning, cognitive load theorists encourage instructional designers to fo-
cus on the reduction of extraneous cognitive load. This is particularly important in cases where 
the material or learning task has high intrinsic cognitive load. Students’ ability to acquire new 
skills and knowledge, particularly within the confines of a 3-hour, single-semester course, is 
quite limited. The goal of instructors is to present exactly what the students need to know -- no 
more, no less -- to maximize their learning. In other words, instructors need to reduce the extra-
neous cognitive load. 
 
In student’s first microcontroller course, the sheer volume of information accompanying a mi-
crocontroller, as discussed in the previous section, produces high cognitive loading. Educators 
must therefore judiciously choose what topics to cover, relying on a library to provide functional-
ity where the details distract from the core concepts in order to minimize extraneous cognitive 
load. The library chosen, then, has a significant impact on the learning environment and should 
be selected carefully. Traditional library options are discussed in the following section. 
 
3. Traditional Microcontroller Libraries 

3.1 Vendor libraries 
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At the lowest level of abstraction, vendors often provide a library which gives human-readable 
descriptions of the hundreds of registers and thousands of control and status bits used by a mi-
crocontroller. For example, the 21,964-line header file for Microchip’s dsPIC33EP128GP502 
microcontroller defines the zero bit in the status register as _Z. This allows use of the statement 
if (_Z) ... to execute code if the zero flag was set. This library design presents no level of 
abstraction, resulting in high extraneous cognitive loading, but provides the clearest view of the 
hardware. 
 
Vendor libraries also typically provide an additional level of abstraction; for example, the Micro-
chip PIC24H family’s library contains void putsUART1(unsigned int *buffer), which 
writes a string to a serial port. These routines often provide a good level of abstraction, but re-
quire intimate knowledge of the underlying hardware. For example, putsUART1 treats buffer as 
a collection of 16-bit (int) values when UART1 is configured for 9-bit operation, but casts buff-
er to a char* and transmits it as series of 8-bit values in 8-bit mode, a subtle point that could 
cause confusion for students, producing extraneous cognitive loading.  
 

3.2 Arduino and mbed 
 
Arduino8 and mbed9 provide a hardware-software combination: the hardware platform is accom-
panied by a rich set of libraries which gives access not only to the on-board microcontroller pe-
ripherals, but to a wide variety of common components (SD cards, Ethernet communication, 
LCD displays, etc.). These libraries provide a very high level of abstraction; for example, Ar-
duino’s tone(pin, frequency) outputs a square wave using pulse width modulation (PWM). 
The pin parameter refers to a silkscreen designation, not a physical pin on the underlying micro-
controller; frequency is in Hertz, rather than in processor clocks. This enables a wide range of 
users, from K-12 students to students from a variety of majors with little training in electrical or 
computer engineering, to create amazing designs. However, it also hides the details essential to 
microcontroller instruction: what is PWM? How is a PWM frequency specified using processor 
clocks? How are digital I/O pins selected? 
 

3.3 RTOS 
 
A number of both free and commercial real-time operating system (RTOS) products exist, sup-
porting a wide variety of microcontrollers. These products provide a middle ground in abstrac-
tion between vendor libraries and Arduino/mbed designs, providing platform-neutral methods for 
performing common tasks such as writing to a serial port. However, they also add significant 
complexity and functionality which leads to very high extraneous cognitive loading; for exam-
ple, the QNX Neutrino product10 is POSIX-certified, meaning that it provides hundreds of com-
mand-line utilities and thousands of functions. Most RTOS products provide threading, sema-
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phores, message passing, and a host of other complex features best covered in a course dedicated 
to embedded systems, rather than an introductory course in microprocessors. 
 

4. Designing Microcontroller Libraries for Education 
 
Traditional approaches fill needs defined by industry (vendor libraries, RTOS products) or aim 
for a broad audience by abstracting away essential microcontroller features (Arduino and mbed). 
The need for an educationally-focused library is clear. In contrast to the traditional approach of 
designing a library by optimizing for performance, flexibility, or features, the design of this edu-
cationally-focused library is based on criteria of: 1) a high-level language, 2) clarity, 3) simplici-
ty, 4) diagnostic error reporting, 5) detailed documentation, and 6) agility and availability. 
 

4.1 High-level language 
 
In the past, introductory computer science courses employed C or C++, the only feasible choice 
for instruction at the time. However, the modern explosion of many highly capable and expres-
sive languages resulted in a switch to higher-level languages, such as Java or Python. Likewise, 
microcontrollers now posses the power to execute some of these languages; for example, one of 
the authors has ported Python-on-a-chip to the Microchip PIC2411. Likewise, the Java ME em-
bedded platform supports several ARM processors12. In addition, many traditional microproces-
sor textbooks employ assembly language13, 14. 
 
The choice of C for this library therefore represents both a selection of an appropriate level of 
abstraction to enhance student learning by reducing extraneous cognitive loading and a recogni-
tion of C’s dominant position as the only widely-supported high-level language for microcontrol-
lers. Assembly, a low-level language, exposes every detail of a microprocessor’s operation to the 
student, making it an ideal platform to expose students to the principles of microprocessor opera-
tion. Accordingly, the first half of the textbook accompanying this library15 and its second edition 
which will be available in Fall 2014 employ assembly language. However, a microcontroller 
consists of more than just the microprocessor at its core; it includes a wide variety of on-chip pe-
ripherals whose operation must be covered in an introductory course. The choice of C both for 
this library and for the second half of the textbook shifts the focus from the low-level details of 
the core processor to higher-level concepts underlying topics such as digital I/O, interrupts, and 
communications protocols such as SPI, I2C, and serial communication using UARTs. Higher-
level languages, such as Java and Python, run on a virtual machine and therefore lack a direct 
connection to the underlying hardware of on-chip peripherals, which abstracts away some of the 
essential details (interrupts, control and status register bits) of on-chip peripherals. In contrast, 
C’s ability to directly access hardware and its rich set of bit-manipulation operators makes it a 
better choice for presenting on-chip peripherals. 

P
age 24.1216.5



 

4.2 Clarity 
 
Most C libraries are optimized for size, rather than simplicity. Per the C language specification16, 
the entire contents of single source file (e.g. a translation unit) must be included when linking an 
executable. Therefore, most C libraries define one function per file, which produces the smallest-
possible executable by linking only the required functions and variables from the library; as a 
result, most C libraries consist of hundreds of files. This approach significantly impedes student 
understanding by fragmenting a concept, such as serial communication over a UART (a universal 
asynchronous receiver/transmitter), over tens of files. In contrast, this library groups all the relat-
ed functions and variables for a concept into two files (a header and a source file, as required by 
C); for example, the files pic24_uart.h/.c17 provides routines which cover all low-level aspects of 
UART communication. This choice results in executables which often contain unused functions, 
but provides students with a cohesive view of a given topic. 
 
Likewise, traditional approaches to library design often use complex, multi-statement macros to 
produce efficient executable code. This choice of optimizing for speed produces code that is of-
ten more difficult to understand; in particular, there are many unintuitive subtleties of macro us-
age18. This library, designed for clarity and readability, employs a minimum of multi-statement 
macros, while making extensive use of simple macros: #define LED1 (_LATB13) allows clear 
statements such as LED = 1, which turns an LED on. 
 

4.3 Simplicity 
 
Many libraries encourage extensive use of multi-threaded programming. Traditionally, the 
main() function performs foreground processing, while interrupt service routines (ISRs) handle 
device I/O. Even worse, traditional approaches to RTOS rely on multiple threads that interact via 
semaphores. This approach leads to complex, difficult to debug designs with subtle problems, 
including livelock, deadlock, starvation, and data corruption when shared variables are not ac-
cessed properly. Regardless of these perils, many courses expect students to successfully write 
multi-threaded programs in the form of interrupt service routines (ISRs) when interfacing with 
on-chip peripherals. 
 
A modern approach espoused by Samek19 views interrupts as events, and provides a state-
machine driven framework for processing these events using message passing to communicate 
between state machines. This text encourages the use of a cooperative multi-tasking environ-
ment, which is inherently single-threaded, for many embedded designs. It provides excellent 
low-power capabilities; when the event queue is empty, the processor can be put to sleep until an 
interrupt generates an event for the state machine(s) to process. 
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Inspired by this approach, this library employs state machines to handle interrupts in a single-
threaded manner. This significantly enhances the ability of students to both understand the inter-
rupt-driven laboratory exercises they must complete and to debug relatively complex designs, 
due to the single-threaded nature of the exercise. For example, consider a classic LED/switch I/O 
problem in which a pushbutton should toggle the LED between a blinking and off states. A tradi-
tional solution would be to sample the pushbutton in a timer interrupt, then rely on a flag shared 
with main() to instruct main() to blink the LED, since blinking requires long delays unsuitable 
for ISRs. In contrast, this library’s main() routine puts the processor in a low-power state, while 
an edge-triggered interrupt coupled with a timer interrupt provides a single-threaded approach to 
detect pushbutton events and schedule blinks using the timer. Further implementation details are 
given in the code which implements this approach.20 
 

4.4 Diagnostic capability 
 
As much as possible, a library should provide support for detecting and reporting errors in a pro-
gram. For example, most libraries provide some type of assertion statement, which halts execu-
tion if the assertion fails. The library discussed in this paper does so, reporting the failed asser-
tion, line, and file before resetting the processor. When an I/O operation fails, most libraries re-
turn an error code to the calling function; it is then the developer’s responsibility to check every 
return code to insure the calls succeeded. This gives developers flexibility to handle errors in an 
application-specific way, representing a design choice for flexibility; students, along with many 
programmers, fail to check these results then become confused by the resulting errors which later 
calls produce. In contrast, this library does not return a error code, but uses an assert statement to 
reset the processor, representing a design choice for diagnostic feedback. This provides immedi-
ate and guaranteed feedback to students, helping them to isolate the source of a bug. 
 
A unique feature lacking from many libraries but explicitly included in this library and invoked 
by default involves reporting diagnostic information on every reset; an example is given below. 
 
Reset cause: Power-on. 
Device ID = 0x00001E4D (dsPIC33EP128GP502), revision 0x00004003 (A3) 
Fast RC Osc with PLL 
../ledsw1.c, built on Jan  3 2014 at 10:35:25 

 
The reset cause helps explain unexpected resets, by reporting brown-outs (possibly due to insuf-
ficient decoupling of VDD), unhandled interrupts (typically due to a misspelled ISR name), misa-
ligned accesses, and several other sources which help pinpoint the programming error; without 
this information, students (and even experienced developers) struggle to understand the unex-
pected behavior of their program. 
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Printing out the device ID also includes a check to verify that the chip the program was compiled 
for is actually in use, printing out a prominent error message if not. Next, specifying the operat-
ing clock source (the built-in RC oscillator multiplied by a phase-locked loop, or PLL) reminds 
students of their time base. If an external crystal is expected but not present, the library will print 
a diagnostic message stating that the switch from the internal RC oscillator to the crystal failed, 
helping pinpoint another common source of student confusion. 
 
Finally, printing the time, date, and source file being run provides a quick sanity check: did the 
student actually flash the chip with the correct program, or did they accidentally program it with 
the last lab assignment? Did the student remember to recompile after editing? If so, the time and 
date should be within a minute or so of the current time. This information helps catch additional 
mistakes commonly made in the laboratory. 
 

4.5 Expressive documentation 
 
Traditional documentation generators, such as doxygen, javadoc, or Sphinx with the autodoc ex-
tension, transform structured comments into a hyperlinked application programming interface 
(API) reference; the homepage21 of this library provides an example of doxygen’s output. While 
this is a powerful, expressive tool which helps keep documentation synchronized with changes to 
the code by embedded the documentation into the source code as comments, this class of tool 
focuses solely on API documentation and lacks the ability to produce beautiful documentation of 
the implementation of a specific function. This ability is critical for educational use, particularly 
when explaining the operation of example code. 
 
The literate programming paradigm introduced by Knuth22 and implemented in the WEB (for the 
Pascal language) and CWEB23 (for C) applications provides this needed ability, albeit with sev-
eral significant drawbacks making it unsuitable for this library. First, CWEB’s input is not source 
code, but a document containing fragments of code mixed with troff/nroff and CWEB markup, 
making it difficult to read. CWEB then transforms this input into source code, stripping out 
much of the markup and formatting, producing source code that cannot be understood apart from 
referring to the CWEB document it came from. While many other literate programming packag-
es exist, most share the same weakness: they take a document as input and produce source code 
as output, producing relatively difficult to read code that cannot be directly edited, because it will 
be overwritten by the next document to code transformation. 
 
Examples demonstrating concepts from the library therefore employ a novel new system which 
supports most of the concepts behind literate programming, termed CodeChat.24 This system 
takes source code as input and produces an HTML document as output, relying on structured 
comments to guide the transformation. This helps keep documentation synchronized with chang-
es to the code. The use of reStructuredText (ReST) for structured comments makes the source 
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code readable to those with no knowledge of ReST; for example, the word *italics* would be 
rendered in an italic font using ReST.  
 

4.6 Agility and availability 
 
Finally, the design of this library has followed several common software engineering techniques 
to make it easier to develop and easier to share. First, all code is publicly available under a per-
missive open-source license using the Mercurial distributed version control system hosted by 
Bitbucket, providing a social coding platform which encourages collaboration and disseminates 
code readily. Second, a single invocation of scons, a build system, builds the libraries across 
many devices and clock configurations, builds the bootloader for many devices, and builds the 
documentation, making it relatively safe to test additions and verify contributions. 
 

5. Conclusions and future work 
 
Design of a library based on educationally-focused criteria, such as clarity and simplicity, pro-
duces a surprisingly unique result, particularly when compared to traditional library offerings. 
Commercially-available libraries are typically designed for rapid execution, flexibility, and a 
plethora of features. In contrast, this approaches helps produce a student-centric library to de-
signed to maximize learning by reducing extraneous cognitive loading though abstracting unnec-
essary complexity, providing a readable and well-documented code base, focusing on modern 
single-threaded techniques, and providing unique and powerful debug capability. 
 
The most important next step consists of measuring the impact of these design choices on student 
learning, then using the results gained to further refine the library. We are currently designing a 
survey to gauge student perceptions of the library, and a pairwise comparison of students who 
used a traditional library and students who used our educational library. Through those assess-
ments have not been completed, we anticipate positive results based on anecdotal evidence from 
instructors and students.  
 
In particular, instructors report that by using the library, students have demonstrated several im-
portant outcomes: the ability to solve relatively complex problems, such as generating an analog 
waveform from a DAC, communicating over the I2C bus with a peripheral, and generating vari-
ous frequencies using a ISR-driven timer during a single 3-hour lab session in a test-like practi-
cum environment, where students may not work with others and are only given the problem at 
the beginning of the lab session. Senior capstone teams have both used the library in a number of 
complex designs and have used their familiarity with a library to employ microcontrollers and 
their libraries not taught in the classroom. 
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Students are capable of creating amazing designs with the proper instructional support from edu-
cators. A library designed for pedagogical use provides instructors with the ability to explain 
fundamental concepts behind microcontroller operation while challenging their students with la-
boratory exercises which explore the many communication protocols and capabilities of a mod-
ern microcontroller. 
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