Sessi on 1532

THE FRESHMAN PROGRAMMING COURSE: A NEW DIRECTION

William H Jermann
The University of Menphis

INTRODUCTION

For decades typical Electrical Engineering curricula have
included a freshman-1level course in conputer programmng. In
earlier days, this course included segnents related to operating
a card punching machine as well as detailed coverage of the
FORTRAN programm ng Language. Now the course frequently invol ves
use of a nore nodern programm ng | anguage such as ¢ or c++
operating under a systemthat supports integrated devel opnenta
envi ronments [1], [2].

Typi cal engineering freshnen may al ready be highly conputer
literate. Not only may they be conpetent internet surfers, put
they frequently enter college experienced in using many software
packages, and may even have developed significant skills in
program witing. A traditional freshman-level course in conputer
progranm ng may no |onger be appropriate.

An introductory course that enphasizes program_ nodularity
and code reusability may have sound educational genefits. The

concept of code reusability not only relates to devel oping
subprograns that can be used subsequently, but incorporates yse
of previously witten code that may have been developed in a
different programm ng |anguage. Course material that enphasizes
t hese concepts may introduce both sound probl em sol ving
t echni ques and principles applicable to engineering design.

WHERE WE ARE AND HOW WE GOT HERE

The University of Menphis is a somewhat traditional academc

institution. Rather than being just a major network node
connected to student nodes on the network, we still have classes
for real-tinme students, and still view education rather than

information interchange as our primary mssion

Yet, the onset of the information age has not conpletely

passed us by. The introductory freshman-1|evel course in

el ectri cal engineering at one time concentrated on types
of engi neering jobs wth an i ntroduction to t he
engi neering profession. Now it I ncl udes sear ching t he

I nt ernet for information, turning in assignments both on floppy

{:«E»’; 1996 ASEE Annual Conference Proceedings
kon =g

<!

T'291'T abed

disks and via electronic mail, wusing the Schematics version of
Pspice both as a CAD tool and for network analysis, and even
devel oping and running a few C prograns.

In this course students develop skills that can yield poth
steady-state and transient solutions to conplicated network
configurations. Yet, it is doubtful that they have nuch
understanding of network principles, and surel couP/d not wite a
set of state equations whose sol ution yields t%e dynam c response
of a network. If information retrieval were the objective of this
course, students would not need to take subsequent courses in
mat hematics or circuit theory. Cdearly information retrieval is
not our prinmary objective.

During the second senester, freshnen take a course in
computer programmng called: ELECTRI CAL ENG NEERI NG COVPUTATI ON.
Students refer to this course as C or C progranmmng, which is a

nore accurate title. A few words related to the historical
devel opment of this course are appropriate.

_ At one tine, engineering students were formally given
Instructions on how to use a slide rule. Academic credit was
generally not awarded for these _seninars. Shortly after

conmputers became popular tools in engineering curricula, ™ F N
ormglerivations oprp(RTRAN were taught to engineering st uder%?sTRfA\n
courses bearing acadenic credit hours. The courses enphasized
syntax and semantics. ~Since awarding credit for a “skill
cour se” IS not appropriate, the titles of these cour ses
frequently involved words such as "problem solving." As courses
evolved, some were taught independently of programm ng |anguages,

using FLOW CHARTI NG and subsequently PSEUDO code. In many
electrical engineering curricula, FORTRAN was replaced by Pascal,
a language intended for teaching programm ng concepts. In order

to be more in line with industry, many universities now teach C
or C++ during freshman year.

To this date, nmany in the academic world still associate
conputer programmng wth code generation, and therefore consider
it a skill. This is why our freshman programmng course is
cal |l ed ELECTRI CAL ENG NEERING ~ COVPUTATI : Yet it is

questionable as to how much el ectrical engineering conputation
can be done by students who have taken no substantive courses iIn

el ectrical engineering.

THE FRESHVAN PROGRAMM NG COURSE

At one time, we taught a course in FORTRAN progranming to

freshnen. Qur dean mandated that progranm ng be incorporated
into all subsequent engi neering courses. But times have
changed. ABET still requires conputer usage across the entire
curricul um But this does not necessarily nmean that a
traditional progranmm ng |anguage need be taught. Inaddition to
a variety of word processing, spreadsheet, and data base
packages, the follow ng packages are available to our students.

45, 1996 ASEE Annual Conference Proceedings
REIES

*, -
ey W ot
“ring 10®

2291’1 abed

LabVi ew
Matlab
Mead
DADiSP/32
Tk-solver
O cad

Pspice

Some of these are used extensively in required courses. In
addi ti on, several other packages are used in electrical
engineering electives. And this is just the tip of the jceberg
concerning what is available and what will be available in the
near future.

itcertainly aBpears t hat both educational objectives and
ABET criteria can be satisfied w thout teaching a general purpose
programm ng | anguage such as BASIC, FORTRAN, Pascal, c c++, or
Ada. Shoul d a general purpose progranm ng | anguage be taught?
Is it still necessary to have afreshman progranm ng course?

W do not have an answer to this question. W teach a
first-year course in C The decision to do this was based
primarily on observations of |ocal enploynment trends. Al t hough
educational objectives are our primary goal, we feel we nust also
be concerned about enployment opportunities for our graduating
seniors. Qur decisions regarding the freshman progranmm ng course
are based on the follow ng opinions.

1. A programm ng |anguage should not be taught in a
freshman course wunless it is used in subsequent courses.

2 A college-level progr anm ng course shoul d be
considerably different from a high-school course.

3. In an electrical engineering course, software concepts
shoul d not be conpletely isolated from hardware concepts.

4, Only those who are highly conpetent in the subject
matter should teach the course. In addition, the instructor
shoul d have denonstrated teaching conpetence.

B. ONLY STANDARD PROGRAMM NG LANGUAGE shoul d be used. No
i npl enentation-specific progranming statements are accepted.
This means no C++ statenments in C programs. Violation of this
principle results in code that Is not transportable. Lat er
In the curriculum students are taught how to incorporate non-
standard nodules into a program

6. Engi neering applications consist of any progranm ng
tasks performed by engineers. These include just about
everything except the traditional exanples frequently given in
t ext books with “engi neering applications. " (such as t he

dynamics of a bouncing ball.)

7. Conputer programmng is bona fide subject mtter. A

s
._']E;t 1996 ASEE Annua Conference Proceedings

%,
oy W
“Ang vo°

€291’ T abed

freshman |evel course should be of conﬁarabl e difficulty with
traditional courses such as physics, chemstry, and calculus.

Successful activities in this course will enhance both problem
solving and design skills. M sguided activities can be a serious
dEjtlrli ment to the devel opment of good problemsolving or design
skills.

8. Human beings learn through redundancy. Not al |
fundamental concepts will be mastered in the first course. In
order to learn through redundancy, fundanental concepts nust be
introduced early. In many textbooks, topics such as devel opnent
of user-defined subprograns, pointers, data structures, and
abstract data types are not covered until l|ater chapters. This
precludes the possibility of really |earning these concepts in
t he course.

9. Course content in programmng courses has changed
significantly and wll continue to chan?e. Furthernore, no two
conpetent and experienced teachers will ever agree on the
specifics of the course content. But the specifics are not as
I nportant as the general educational objectives.

10. DO NOT let the freshman programm ng course be a
NEGATI VE educational experience. Do not have students writing
code to nodel systens they do not understand or design software
to perform tasks that have not been well defined. These types of
gct_l vities violate fundamental principles of problemsolving and
esi gn.

Consider the followng exanple of how some of the above
ideas can be incorporated into the beginning of an introductory
college level course. After introduci n% the organi zation of a
conputer as a CPU connected to nmenory by a data bus and an

addr ess bus, it is appropriate to discuss the types of
information stored in nenory. These consi st of | NSTRUCTI ONS
and DATA. Although there are many types of dat a, three
of t he nost fundanental types are poi nters (addresses
or address identifiers) , character codes, and I ntegers.
Shortly after this introduction, students are ready to
conpi | e, link and run a C program and to obtain printouts of
both source code and program out put. This can be done using
an integrated devel opnental environment or by using command
lines. W encourage students to run the first programin nore
than one environnent, such as Wndows, Unix, and VM5 A

typical first program|ooks sonething like the follow ng:

#include <stdio.h>
int main(void)
printf("hello world\n"):;
return G

Col | ege student s} generally do not get excited about the
above program They may have even run the same program back in
primary or elenentary school. Yet the programinvolves a nunber
of concepts that can be introduced or reinforced. These include:

oo
“IAB* 1996 asee Annual Conference Proceedings
;c"'.E vﬂa‘;

v'29t'T abed

Function definitions and decl arations

I ntroduction to a system function that requires
dozens of supFQrt|ng functions

Function argunent |ists

Initialization of an abstract data type. (A
character array termnated with a zero byte)

Transm ssion of a pointer value to a function

Devel opment of a user-defined function 1nain)

Use of a function that accepts a variabl e nunber
of argunents

The above concepts can be illustrated using the follow ng
exanpl e

#i ncl ude <stdio.h>
i nt main(void)
{ char *a = “hello world\n" , *b = “save the % whales\n";
printf(a) ;
printf (a+6) ;
printf(b,b) :
printf(b+8,b+12) ;
b= L *(b+1) = 'o';
printf(b) ;
printf("$c %d %d $d\n" ,*(a+10), *(a+l0), *(a+ll), *(a+l2));
return Q

_ This program not only reinforces basic concepts, but
i ntroduces sone other concepts such as

Pointer arithmetic

Initial assignnent of character pointer val ues
to character pointer variables

Assi gnnment of character values to variables in
an array

Ref erenci ng variables through use of pointers

| dentifying character codes used in strings

There appear to be good reasons for introducin? t hese
concepts very early. The author has found that his freshmen
students have little difficulty using pointers to inplenent
conPIex data structures if fundanental concepts are |ntroduced
early and often. On the other hand, he has observed very little
success when the concepts are covered near the end of the course.

MODULARI TY AND CCDE REUSABI LI TY

Many I ntroductory t ext books discuss modul ar rogram
devel opnent very early but introduce the use of user A%fined
functions nuch later. Consequently, students are given many
assignments before they have the opportunity to incorporate
modul arity in their program design. Thus they develop the habit
of ignoring nodul ar devel opment before they are able to devel op
and use separately conpiled nodules. The freshman progranm ng

&

X,
-_:<E>§ 1996 ASEE Annua Conference Proceedings
"",,,’:“oc't

G'29t'T abed

course should not serve as a medium for devel opi ng poor problem
sol ving techniques.

After students have studied and run the “hello world”
program they should be ready to develop and use separately
conpi led nmodules. They have already used a function with an
argument list (printf), and have developed a user defined
function (main). Likew se, they have already been introduced to
character arrays and pointers.

Consi der the follow ng declarations and definitions, which
may be incorporated in a user devel oped header file.

/*File name . cpx.h =x/

#define cpx double

voi d cxadd(cpx *a, cpx *b, cpx *c ;; /* ¢ =a+ b *
voi d cxsub(cpx *a, cpx *b, cpx *c); /[* ¢c =a - b */
voi d cxmul(cpx *, cpx *, cpx * : [* ¢ =a * b */
voi d cxdiv(epx *, cpx *, cpx *) ; [* ¢ = alb */
voi d cxset(cpx *C , cpx r, cpx 1) ; /* ¢ = (r,i) */

voi d cxprint(cpx *) ;

The above function declarations define a set of operations
on conplex nunbers, where a conplex nunber is stored as an array
of two real nunmbers and referenced by a pointer to the first rea
nunber in the array. |If a few new concepts are introduced, and a
little assistance is given, students can wite and conpile the

corresponding functions. Exanples of three of these functions
are given bel ow

[***** Functions that operate on conplex nunbers.
A conpl ex nunber is represented as a array
of two real nunbers, and is referenced by a
pointer to the first nunmber in the array. *****/

#include <stdio.h>
#i ncl ude "cpx.h"

voi d cxadd(cpx *a,cpx *b, cpx *c)
{ o] =a[d + b[o]; c[1] = a[l] + b[1];}

voi d cxset(cpx *a,cpx ', cpx i) /* assigns value to cpx nunber*/
{ a=1r;, *(a+l) = i;

voi d cxprint(cpx *a)
{ printf("(%f %f)\n",a[0],a[l]):

}

After these nodules have been conpiled, a main function can
be witten, conpiled, and linked with the object code obtained
fromthe above file. An exanple of a main programis

#J¥H,* 1996 ASEE Annual Conference Proceedings
‘e

9'29%'T abed

#i ncl ude "cpx.h"
I nt main(voi d)
{ cpx af2],b[2],c[2]:
cxset(a,3,4):; cxset(b,5,-12) ;
cxadd(a,b,c) ;
cxprint(c) ;
return Q

}

By devel oping subject matter in this way, students learn to
write I ndependent pro%ranlnndules al rost at the very beginning
of a course. | f subsequent assignnments require use of conplex
number operations, the relationship between nodul ar devel opnent
and code reusability is clearly illustrated. But the concept of
using previously witten prograns does not start w th newly
witten code. Consider the DEFINITION statement in the header
file cpx.h.

#define cpx double

Suppose this statenent is changed to
#define cpx float

Then the conputer representation of a conplex nunber is the sane
as the FORTRAN representation of a conplex data té£$' Thi s opens
the door to |inking conpiled C prograns with FORTRAN devel oped
object libraries. A hugh amount of scientific oriented software
has been devel oped in FORTRAN.

Qur students wite C prograns that use FORTRAN libraries.
This is currently done in a subsequent course called Matrix
Conputer Methods in Electrical Engineering. But nost of the
concepts are introduced in the first programm ng course, and
reinforced in the subsequent course. By using subprograns in the
extensive |MSL FORTRAN l|ibrary, students are able easily solve a
variety of conplex problens. A FORTRAN library is a conpiled set
of code designed for FORTRAN users. It certainly does not have
to be witten in FORTRAN. It appears that nuch of the |MSL
FORTRAN |ibrary that we use was developed in C [3].

The followng exanple illustrates wusing the the | MSL
subroutine EVLRGin a C programto find the eigenvalues of a 5 by
5 matrix. Recall that argunments in a FORTRAN array are

transmtted by reference, and that two-dinensional arrays are
stored "columnwise" rather than “rowWse.”

#i ncl ude "cpx.h"

#i ncl ude “match”

#define D double *

#define F float *

[** Exanmple illustrating use of the |ML FORTRAN subprogram

subroutine evlrg(n, a,ldm,evec)
that finds eigenvalues of n by n matrix a wth | eading dinension

#AB,* 1096 ASEE Annual Conference Proceedings
RIEE QS

?, ¥
o, W
“ing 19

1291’1 abed

*'k/

lam, and stores themin conplex vector evec

i nt main(void) _
{ void evlrg(int *n, float * fa, int * rowdim, float * ans) ;

doubl e a[10][10]; int i,3,ten=10;
float fa[l10](10], £v([20];

Opx X 2]
I = 5; /** find eigenvalues for a 5 X 5 matri **/
matread(i,i, (D)a,10) ; matprint(i,i, (D)a,10);
ctofor(i,i, (D)a,10, (F)£fa,l0) ;
evlrg(&i, (F) fa, &ten, (F)£fv) ;

for (j=0 ;j<2*i;j+=2) [** print conpl ex eigenvalues **/
(x[Q = fv(i1; x[1] = £v[3+1];
cxprint (x) ;
return &

In the above exanple, the function CTOFOR is used to convert
a C 2-dinensional array to a FORTRAN 2-dinensional array.
Declarations for this function and other supporting functions are
gi ven bel ow.

/%% file IS called matc.h **\

#def i ne casTc doubl e
#def i ne CASTF fl oat

void cput(int i, int j, CASTC x, double * a,int coldim) ;
CASTC cget(int i, int j, CASTC *a, int coldim) ;

void forput(int i, int |, casTF X, CASTF *a, Int rowdim) ;
CASTF forget(int i, int j, CASTF *a,int rowdim) ;

voi d ctofor(int m int n, castc * ¢, int coldimc, castr *f,
I Nt rowdimf) ;

void fortoc(int m int n, CASTF *f, int rowdinf, CASTC *c,
int coldimec) ;

void matread(int m int n, CASTC *c, int coldimc) ;

void matprint(int m int n, CASTC *c, int coldimc) ;

voi d complexfortoc(int m int n, CASTF *f, int rowf, CASTC *c,
int colc) ;

voi d complexctofor(int m int n, CASTC *c, int colc, CASTF *f,
Int rowf) ;

Code that inplenents these functions is given bel ow

#i ncl ude <stdio.h>
#defi ne CASTC doubl e
#def i ne CASTF fl oat
#1 ncl ude "matc.h"

void cput(int i, int j, CASTC x, CASTC * a,int coldim)

[** puts x in position ari-1][j-1] in a 2-dimarray
whose second dinension IS coldim ***/

{ afcoldim*(i-1) + (j-1)] = x; }

e,
“IAB* 1996 Asee Annual Conference Proceedings
EE)S

», §
reg, O
“arng 0%

8'291'T abed

CASTC cget(int i, int j, CASTC *a, int coldim)
{ return afcoldim*(i-1) +(J-1)1;)

void forput(int i, int j, CASTF x, CASTF *a, int rowdim)
{ a[rowdim*(j-1) + (i-1)] = x;

CASTF forget(int i, int j, CASTF *a,int rowdim)
{ return afrowdim*(j-1) + (i-1)] ;

voi d ctofor(int m int n, CASTC *c, int coldimec, CASTF *f,

I Nt rowdimf)
{ int 1, ; CASTC x _
for i =1; i <=m i++4)
for (3=1; j<=n; j++)
{ X = cget(i, j,c,coldimec) ;
forput(i,j, (CASTF) x,f,rowdinf) ; }
}

voi d fortoc(int m int n, CASTF *f, int rowdinf, CASTC =«

i nt coldimc)
int i,3j: CASTF X, _
for(i = 1; | <=m; i++)
for(j = 1; | <=n; j++) .
{ x = forget(i,j, f,rowmdinf) ;
cput(i,j, (CASTC) x,c,coldime) ; }
}

voi d complexfortoc(int m int n, casTF *f, int rowf,
_ CASTC +, int colc)
{int i,3; CASTF x;

for (i=l;i<=m;i++)
for(j=1; j<=n; j++)
X = forget(2*i - 1,3,f,rowf);
cput(i,2*j - 1, (CASTC)x,c,colc) ;
x = forget (2*i,j,f,row) ;
cput (i, 2*j, (CASTC)x,c,colc) ; }

voi d complexctofor(int m int n CASTC *c, int colc,

caSTF *f, int rowf)
{int i,3: CASTC x; _
for (i=1; i<=m; i ++)
for(j=1; j<=n; | ++)
{ X = cget(i,2*j -1,c,colc);
forput(2*i -1,j, (CASTF)x, f,rowf) ;
X = cget(i,2*j,c,colc) ;
forput(2*i,j, (CASTF)x, f£,rowf); }

}
void matread(int m int n, CASTC *c, int coldimc)
{int i,3; float x;

printf(" Please enter %d nunbers: \n\n' ', n¥n) ;

for(i = 1; i<=m; I ++)

for(j=1; j<=n; | ++)
{ scanf("$f", &);
cput(i,j, (CASTC) x,c,coldimc) ; }

.’:mﬂ;‘% 1996 ASEE Annual Conference Proceedings
%‘cﬂvﬂc‘;

6'291'T abed

void matprint(int m int n, CASTC « intcoldimc)
(int 1i,3;:
printf("\n\n") ;
for(i=1; i<=m; i ++)
{ for(j=1; j<=n; j++)
printf("%8 .3f",cget(i, j,c,coldime));
printf("\n") ;
}
}

_ A nore detailed discussion related to using FORTRAN
libraries is given in reference [4].

CONCLUSI ONS

W feel confortable wth the present objectives and
presentation of our freshman course in conputer progranm nP and
in use of conputer material in subsequent courses that reinforces
concepts developed in the first course. W are still searching
for the "ideal" textbook, realizing we will never find one.

Based on observation of the recent history of conputer
related courses, it is not surprising that such courses are
dynam c. But even though we anticipate significant changes in

the details of subject matter, we still feel it is worthwhile to
enphasi ze concepts related to nodularity and code reusability.

REFERENCES
(1] N. Gaham LEARNING C, MGawH Il Inc., 1992.

[2] G.Bronson, C FOR ENG NEERS AND SCI ENTI STS, West
Publ i shing Conpany, 1993.

[3] FORTRAN SUBROUTI NES FOR MATHEMATI CAL APPLI CATI ONS, Versi on
2.0, IMSL Inc., Houston TX, 1991.

[4] w.Jermann, "Using FORTRAN Li braries in C Programs",
TRANSACTIONS OF COVPUTERS | N EDUCATI ON, Autumm, 1995.

WLLI AM JERMANN is a Professor of Electrical Engineering at
the University of Menphis, Menphis TN 38152.

4%%» 1996 ASEE Annual Conference Proceedings

00 Y 1o

0T'29t'T abed

