
Session 1532

THE FRESHMAN PROGRAMMING COURSE: A NEW DIRECTION

William H. Jermann
The University of Memphis

INTRODUCTION

For decades typical Electrical Engineering curricula have
included a freshman-level course in computer programming. In
earlier days, this course included segments related to operating
a card punching machine as well as detailed coverage of the
FORTRAN programming Language. Now the course frequently involves
use of a more modern programming language such as c or c++
operating under a system that supports integrated developmental
environments [1], [2].

Typical engineering freshmen may already be highly computer
literate. Not only may they be competent internet surfers, but
they frequently enter college experienced in using many software
packages, and may even have developed significant skills in
program writing. A traditional freshman-level course in computer
programming may no longer be appropriate.

An introductory course that emphasizes program modularity
and code reusability may have sound educational benefits. The
concept of code reusability not only relates to developing
subprograms that can be used subsequently, but incorporates use
of previously written code that may have been developed in a
different programming language. Course material that emphasizes
these concepts may introduce both sound problem solving
techniques and principles applicable to engineering design.

WHERE WE ARE AND HOW WE GOT HERE

The University of Memphis is a somewhat traditional academic
institution. Rather than being just a major network node
connected to student nodes on the network, we still have classes
for real-time students, and still view education rather than
information interchange as our primary mission.

Yet, the onset of the information age has not completely
passed us by. The introductory freshman-level course in
electrical engineering at one time concentrated on types
of engineering jobs with an introduction to the
engineering profession. Now it includes searching the
internet for information, turning in assignments both on floppy

$iiii?’} 1996 ASEE Annual Conference Proceedings
‘O,.,llyc:.

P
age 1.462.1

disks and via electronic mail, using the Schematics version of
Pspice both as a CAD tool and for network analysis, and even
developing and running a few C programs.

In this course students develop skills that can yield both
steady-state and transient solutions to complicated network
configurations. Yet, it is doubtful that they have much
understanding of network principles, and surely could not write a
set of state equations whose solution yields the dynamic response
of a network. If information retrieval were the objective of this
course, students would not need to take subsequent courses in
mathematics or circuit theory. Clearly information retrieval is
not our primary objective.

During the second semester, freshmen take a course in
computer programming called: ELECTRICAL ENGINEERING COMPUTATION.
Students refer to this course as C or C programming, which is a
more accurate title. A few words related to the historical
development of this course are appropriate.

At one time, engineering students were formally given
instructions on how to use a slide rule. Academic credit was
generally not awarded for these seminars. Shortly after
computers became popular tools in engineering curricula, FORTRAN
or derivations of FORTRAN were taught to engineering students in
courses bearing academic credit hours. The courses emphasized
syntax and semantics. Since awarding credit for a “skill
course” is not appropriate, the titles of these courses
frequently involved words such as ~lproblem solving.!! AS courses
evolved, some were taught independently of programming languages,
using FLOW CHARTING and subsequently PSEUDO code. In many
electrical engineering curricula, FORTRAN was replaced by Pascal,
a language intended for teaching programming concepts. In order
to be more in line with industry, many universities now teach C
or C++ during freshman year.

To this date, many in the academic world still associate
computer programming with code generation, and therefore consider
it a skill. This is why our freshman programming course is
called ELECTRICAL ENGINEERING COMPUTATION . Yet r it is
questionable as to how much electrical engineering computation
can be done by students who have taken no substantive courses in
electrical engineering.

THE FRESHMAN PROGRAMMING COURSE

At one time, we taught a course in FORTRAN programming to
freshmen. Our dean mandated that programming be incorporated
into a l l subsequent engineering courses. But times have
changed. ABET still requires computer usage across the entire
curriculum. But this does not necessarily mean that
traditional programming language need be taught. In addition t:
a variety of word processing, spreadsheet, and data base
packages, the following packages are available to our students.

{tizi~ 1996 ASEE Annual Conference Proceedings
‘..,,yTy%,?

P
age 1.462.2

LabView
Matlab
Mead
DADiSP/32
Tk-solver
Orcad
Pspice

Some of these are used extensively in required courses. In
addition, several other packages are used in electrical
engineering electives. And this is just the tip of the iceberg
concerning what is available and what will be available in the
near future.

It certainly appears that both educational objectives and
ABET criteria can be satisfied without teaching a general purpose
programming language such as BASIC, FORTRAN, Pascal, C, c++, or
Ada. Should a general purpose programming language be taught?
Is it still necessary to have a freshman programming course?

We do not have an answer to this question. We teach a
first-year course in C. The decision to do this was based
primarily on observations of local employment trends. Although
educational objectives are our primary goal, we feel we must also
be concerned about employment opportunities for our graduating
seniors. Our decisions regarding the freshman programming course
are based on the following opinions.

1. A programming language should not be taught in a
freshman course unless it is used in subsequent courses.

2. A college-level programming course should be
considerably different from a high-school course.

3. In an electrical engineering course, software concepts
should not be completely isolated from hardware concepts.

4. Only those who are highly competent in the subject
matter should teach the course. In addition, the instructor
should have demonstrated teaching competence.

5. ONLY STANDARD PROGRAMMING LANGUAGE should be used. No
implementation-specific programming statements are accepted.
This means no C++ statements in C programs. Violation of this
principle results in code that is not transportable. Later
in the curriculum students are taught how to incorporate non-
standard modules into a program.

6. Engineering applications consist of any programming
tasks performed by engineers. These include just about
everything except the traditional examples frequently given in
textbooks with “engineering applications. “ (such as the
dynamics of a bouncing ball.)

7. Computer programming is bona fide subject matter. A

{tixii~ 1996 ASEE Annual Conference Proceedings
‘..+,lllll~’j

P
age 1.462.3

freshman level course should be of comparable difficulty with
traditional courses such as physics, chemistry, and calculus.
Successful activities in this course will enhance both problem
solving and design skills. Misguided activities can be a serious
detriment to the development of good problem solving or design
skills.

8. Human beings learn through redundancy. Not all
fundamental concepts will be mastered in the first course. In
order to learn through redundancy, fundamental concepts must be
introduced early. In many textbooks, topics such as development
of user-defined subprograms, pointers, data structures, and
abstract data types are not covered until later chapters. This
precludes the possibility of really learning these concepts in
the course.

9. Course content in programming courses has changed
significantly and will continue to change. Furthermore, no two
competent and experienced teachers will ever agree on the
specifics of the course content. But the specifics are not as
important as the general educational objectives.

10. DO NOT let the freshman programming course be a
NEGATIVE educational experience. Do not have students writing
code to model systems they do not understand or design software
to perform tasks that have not been well defined. These types of
activities violate fundamental principles of problem solving and
design.

Consider the following example of how some of the above
ideas can be incorporated into the beginning of an introductory
college level course. After introducing the organization of a
computer as a CPU connected to memory by a data bus and an
address bus, it is appropriate to discuss the types of
information stored in memory. These consist of INSTRUCTIONS
and DATA . Although there are many types of data, three
of the most fundamental types are pointers (addresses
or address identifiers) , character codes, and integers.
Shortly after this introduction, students are ready to
compile, link and run a C program, and to obtain printouts of
both source code and program output. This can be done using
an integrated developmental environment or by using command
lines. We encourage students to run the first program in more
than one environment, such as Windows, Unix, and VMS. A
typical first program looks something like the following:

#include <stdio.h>
int main(void)

{ printf(’’hello world\n”);
return O;

}
College students generally do not get excited about the

above program. They may have even run the same program back in
primary or elementary school. Yet the program involves a numb e r
of concepts that can be introduced or reinforced. These include:

?@k$ 1996 ASEE Annual Conference Proceedings
‘.%,plq?.

P
age 1.462.4

Function definitions and declarations
Introduction to a system function that requires

dozens of supporting functions
Function argument lists
Initialization of an abstract data type. (A

character array terminated with a zero byte)
Transmission of a pointer value to a function
Development of a user-defined function (main)
Use of a function that accepts a variable number

of arguments

The above concepts can be illustrated using the following
example.

#include cstdio.h>
int main(void)
{ char *a = “hello world\n” , *b = “save the %s whales\n”;

printf(a) ;
printf(a+6) ;
printf(b,b) ;
printf(b+8,b+12) ;
*b = ‘L’; *(b+l) = 101;

printf(b) ;
printf(!l%c %d %d %d\nrl ,*(a+lO), *(a+lO), *(a+ll), *(a+12));
return O;

}

This program not only reinforces basic concepts, but
introduces some other concepts such as

Pointer arithmetic
Initial assignment of character pointer values

to character pointer variables
Assignment of character values to variables in

an array
Referencing variables through use of pointers
Identifying character codes used in strings

There appear to be good reasons for introducing these
concepts very early. The author has found that his freshmen
students have little difficulty using pointers to implement
complex data structures if fundamental concepts are introduced
early and often. On the other hand, he has observed very little
success when the concepts are covered near the end of the course.

MODULARITY AND CODE REUSABILITY

Many introductory textbooks discuss modular program
development very early but introduce the use of user defined
functions much later. Consequently, students are given many
assignments before they have the opportunity to incorporate
modularity in their program design. Thus they develop the habit
of ignoring modular development before they are able to develop
and use separately compiled modules. The freshman programming

$iiiiih> 1996 ASEE Annual Conference Proceedings
‘?@lllyc:.

P
age 1.462.5

course should not serve as a medium for developing poor problem
solving techniques.

After students have studied and run the “hello world”
program, they should be ready to develop and use separately
compiled modules. They have already used a function with an
argument list (printf), and have developed a user defined
function (main). Likewise, they have already been introduced to
character arrays and pointers.

Consider the following declarations and definitions, which
may be incorporated in a user developed header file.

/* File name : cp~.h */
#define cpx double

void cxadd(cpx *a, cpx *b, cpx *c); /* c = a + b */
void cxsub(cpx *a, cpx *b, cpx *c); /* c = a - b */
void cxmul(cpx *, cpx *, cpx *) ; /* c =a * b */
void cxdiv(cpx *, cpx *, cpx *) ; /* c = a/b */
void cxset(cpx *c , cpx r, cpx i) ; /*c= (r,i) */
void cxprint(cpx *) ;

The above function declarations define a set of operations
on complex numbers, where a complex number is stored as an array
of two real numbers and referenced by a pointer to the first real
number in the array. If a few new concepts are introduced, and a
little assistance is given, students can write and compile the
corresponding functions. Examples of three of these functions
are given below.

/***** Functions that operate on complex numbers.
A complex number is represented as a array
of two real numbers, and is referenced by a
pointer to the first number in the array. *****/

#include <stdio.h>
#include !’cpx.h”

void cxadd(cpx *a,cpx *b, cpx *c)
{ C[o] = a[O] + b[O]; c[l] = a[l] + b[l]; }

void cxset(cpx *a,cpx r, cpx i) /* assigns value to cpx number*/
{ *a = r; *(a+l) = i; }

void cxprint(cpx *a)
{ printf(”(%f %f)\n’’,a[O],a[l]);
}

After these modules have been compiled, a main function can
be written, compiled, and linked with the object code obtained
from the above file. An example of a main program is:

~bgi~ 1996 ASEE Annual Conference Proceedings
‘..+,~yy’..’

P
age 1.462.6

#include “cpx.h”
int main(void)
{ cpx a[2],b[2],c[2];

cxset(a,3,4); cxset(b,5,-12) ;
cxadd(a,b,c) ;
cxprint(c) ;
return O;

}

By developing subject matter in this way, students learn to
write independent program modules almost at the very beginning
of a course. If subsequent assignments require use of complex
number operations, the relationship between modular development
and code reusability is clearly illustrated. But the concept of
using previously written programs does not start with newly
written code. Consider the DEFINITION statement in the header
file cpx.h.

#define cpx double

Suppose this statement is changed to

#define cpx float

Then the computer representation of a complex number is the same
as the FORTRAN representation of a complex data type. This opens
the door to linking compiled C programs with FORTRAN developed
object libraries. A hugh amount of scientific oriented software
has been developed in FORTRAN.

Our students write C programs that use FORTRAN libraries.
This is currently done in a subsequent course called Matrix
Computer Methods in Electrical Engineering. But most of the
concepts are introduced in the first programming course, and
reinforced in the subsequent course. By using subprograms in the
extensive IMSL FORTRAN library, students are able easily solve a
variety of complex problems. A FORTRAN library is a compiled set
of code designed for FORTRAN users. It certainly does not have
to be written in FORTRAN. It appears that much of the IMSL
FORTRAN library that we use was developed in C [3].

The following example illustrates using the the IMSL
subroutine EVLRG in a C program to find the eigenvalues of a 5 by
5 matrix. Recall that arguments in a FORTRAN array are
transmitted by reference, and that two-dimensional arrays are
stored “columnwise” rather than “rowWise.”

#include “cpx.h”
#include “match”
#define D double *
#define F float *
/** Example illustrating use of the IMSL FORTRAN subprogram,

subroutine evlrg(n, a,ldm,evec)

that finds eigenvalues of n by n matrix a with leading dimension

{axk+ 1996 ASEE Annual Conference Proceedings
‘..+,plylLj.

P
age 1.462.7

ldm, and stores them in complex vector evec **/

int main(void)
{ void evlrg(int *n, float * fa, int * rowdim, float * ans) ;

double a[lO][lO]; int i,j,ten=lO;
float fa[lO][lO], fv[20];
Cpx X[2];
i = 5; /** find eigenvalues for a 5 x 5 matrix **/

matread(i,i, (D)a,lO) ; matprint(i,i, (D)a,lO);
ctofor(i,i, (D)a,lO, (F)fa,lO) ;
evlrg(&i, (F)fa,&ten, (F)fv) ;
for(j=O ;jc2*i;j+=2) /** print complex eigenvalues **/

{ x[O] = fv[j]; X[l] = fv[j+l];
cxprint(x) ;

}
return O;

}

In the above example, the function CTOFOR is used to convert
a C 2-dimensional array to a FORTRAN 2-dimensional array.
Declarations for this function and other supporting functions are
given below.

/** file is called mat~.h **\
#define CASTC double
#define CASTF float

void cput(int i, int j, CASTC x, double * a,int coldim) ;
CASTC cget(int i, int j, CASTC *a, int coldim) ;
void forput(int i, int j, CASTF x, CASTF *a, int rowdim) ;
CASTF forget(int i, int j, CASTF *a,int rowdim) ;
void Ctofor(int m, int n, CASTC * c, int coldimc, CASTF *f,

int rowdimf) ;
void fortoc(int m, int n, CASTF *f, int rowdimf, CASTC *c,

int coldimc) ;
void matread(int m, int n, CASTC *c, int coldimc) ;
void matprint(int m, int n, CASTC *c, int coldimc) ;
void Complexfortoc(int m, int n, CASTF *f, int rowf, CASTC *c,

int COIC) ;
void complexctofor(int m, int n, CASTC *c, int COIC, CASTF *f,

int rowf) ;

Code that implements these functions is given below.

#include <stdio.h>
#define CASTC double
#define CASTF float
#include IImatc.hl’

void cput(int i, int j, CASTC x, CASTC * a,int coldim)
/** puts x in position a[i-l] [j-1] in a 2-dim array

whose second dimension is coldim ***/
{ a[coldim*(i-1) + (j-l)] = x; }

<tiX@ 1996 ASEE Annual Conference Proceedings
‘?+,RyR’j.

P
age 1.462.8

CASTC cget(int i, int j, CASTC
{ return a[coldim*(i-1) +(j-1)]

* a ,
:}

void forput(int i, int j, CASTF x,
{ a[rowdim*(j-1) + (i-l)] = x; }

int coldim)

CASTF *a, int rowdim)

CASTF forget(int i, int j, CASTF *a,int
{ return a[rowdim*(j-1) + (i-l)] ; }

void ctofor(int m, int n, CASTC *c, int

rowdim)

coldimc, CASTF *f,

{ int i,
for

int rowdimf)
; CASTC X;

i = 1; i <= m; i++)
for (j=l; j<=n; j++)

{ x = cget(i, j,c,coldimc) ;
forput(i,j, (CASTF) x,f,rowdimf) ; }

}

void fortoc(int m, int n, CASTF *f, int rowdimf, CASTC *c,

int coldimc)
{ int i,j; CASTF x;

for(i = 1; i c=m; i++)
for(j = 1; j <= n; j++)

{ x = forget(i,j, f,rowdimf) ;
cput(i,j, (CASTC) x,c,coldimc) ; }

}

void complexfortoc(int m, int n,
CASTC *C,

{int i,j; CASTF x;
for (i=l; i<=m; i++)

CASTF *f, int rowf,
int COIC)

for(j=l; j<=n; j++)
{ x = forget(2*i - l,j,f,rowf);
cput(i,2*j - 1, (CASTC)X,C,COIC) ;
x = forget (2*i,j,f,rowf) ;
cput(i,2*j, (CASTC)X,C,COIC) ; }

}
void

{ int

}
void
{ int

}

complexctofor(int m, int
CASTF

i,j; CASTC x;
for (i=l; i<=m; i++)

for(j=l; j<=n; j++)

n, CASTC *c, int COIC,
*f, int rowf)

{ x = cget(i,2*j -l,c,coIc);
forput(2*i -l,j, (CASTF)x,f,rowf) ;
x = cget(i,2*j,c,colc) ;
forput(2*i,j, (CASTF)x, f,rowf); }

matread(int m, int n, CASTC *c, int coldimc)
i,j; float x;

printf(lf Please enter %4d numbers: \n\n’’,m*n) ;
for(i = 1; ic=m; i++)

for(j=l; j<=n; j++)
{ scanf(’’%f”, &x);

cput(i,j, (CASTC) x,c,coldimc) ; }

{tiX’&j 1996 ASEE Annual Conference Proceedings
‘.,+,RRIj.

P
age 1.462.9

void matprint(int m, int n, CASTC *c, ht Coldirnc)

{ int i,j;
printf(’’\n\n”) ;
for(i=l; ic=m; i++)

{ for(j=l; j<=n; j++)
printf(’’%8 .3f’’,cget(i, j,c,coldimc));

printf(’’\n”) ;
}

}

A more detailed discussion related to Using FORTRAN
libraries is given in reference [4].

CONCLUSIONS

We feel comfortable with the present objectives and
presentation of our freshman course in computer programming and
in use of computer material in subsequent courses that reinforces
concepts developed in the first course. We are still searching
for the ??ideal’? textbook, realizing we will never find one.

Based on observation of the recent history of computer
related courses, it is not surprising that such courses are
dynamic. But even though we anticipate significant changes in
the details of subject matter, we still feel it is worthwhile to
emphasize concepts related to modularity and code reusability.

REFERENCES

[1] N. Graham, LEARNING C, McGraw-Hill Inc., 1992.

[2] G. Bronson, C FOR ENGINEERS AND SCIENTISTS, West
Publishing Company, 1993.

[3] FORTRAN SUBROUTINES FOR MATHEMATICAL APPLICATIONS, Version
2.0, IMSL Inc., Houston TX, 1991.

[4] W. Jermann, ??using FORTRAN Libraries in C PrOgrams’?l
TIUINSACTIONS OF COMPUTERS IN EDUCATION, Autumn, 1995.

WILLIAM JERMANN is a Professor of Electrical Engineering at
the University of Memphis, Memphis TN 38152.

. ...=&e.>

‘{UQC 1996 ASEE Annual Conference Proceedings
‘..,gyQ&$.

P
age 1.462.10

