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The Military Tank – An Example for Rigid Body Kinematics 
 

 

Abstract 
 

Rigid body kinematics in an undergraduate dynamics course is typically a challenging area 

for undergraduate students to master.  Much of this difficulty stems from the inability to “see” or 

physically comprehend the motion of multiple rigid bodies.  Couple this rigid body motion with 

the context of reference frames, and the students “sight” and understanding of the motion 

becomes even more clouded.  Numerous examples and demonstrations exist to aid in this 

understanding of motion and rigid body kinetics, however, the military tank is one of the best 

examples for many aspects of rigid body kinematics covered in an undergraduate dynamics 

course.  Nearly every student can picture, in his or her mind, a military tank and the motion of 

the chassis and the independent motion of the turret atop this chassis.  It is this easy vision which 

allows the military tank to become such a powerful model for student understanding of rigid 

body kinematics in an undergraduate engineering course.  The military tank is useful to show 

kinematic concepts of relative velocity, rotating reference frames, relative motion, and 

instantaneous centers of rotations.  The military tank is a single example that an instructor can 

thread through two-dimensional kinematics, as well as, three-dimensional kinematics. 

 

1. Introduction 

 

 One of the most difficult concepts for students in an undergraduate dynamics course is 

that of rigid body kinematics.  The geometry of rigid body motion, a topic most students are 

familiar with from undergraduate physics, takes on additional complexity as one introduces 

angular velocities and accelerations of rigid bodies.  Couple this with the fact that the majority of 

students in an undergraduate dynamics course just completed an undergraduate statics course 

free of motion, and the result is clouded confusion and inability to understand what is really 

happening to the rigid body.  

 Dynamics is a course best taught with demonstrations and videos of the motion of rigid 

bodies.  Unfortunately, textbook pictures require the student to imagine the motion of these rigid 

bodies from a still picture with limited depth perspective.  For new students just entering the 

engineering discipline, the ability to imagine this motion can be quite difficult depending upon 

the student’s limited engineering experience and intuition.  This topic of the “novice” college 

student has been investigated by numerous researchers, but Wankat and Oreovicz comment that 

when solving problems, students in general are not proficient at strategy, interpretation, and 

generation.
1
  It is this interpretation that a “good” model or demonstration can assist with.   

 Most engineers tend to be primarily left-brain-oriented, which is mainly involved in 

verbal analytical thinking.
2
  The right hemisphere of the brain mainly processes visual and 

perceptive thought, and its mode of processing involves intuition and leaps of insight.  Since 

engineering education is predominantly left-hemisphere oriented, fostering the student’s use of 

the right side of the brain becomes an integral part of successful learning.  Adams identified a 

perceptual block that students encounter where they have difficulty seeing various aspects or 

ramifications of a problem.
3
  It is important to get past this block because visual learning 

techniques increase the student’s comprehension and learning.
4
  Engineering educators facilitate 

such visual learning through pictures, images, and demonstrations.  Educators desire to get the 

right brain involved, thus increasing conceptual understanding and perceptive abilities.   
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The “good” model that Wankat and Oreovicz comment on for rigid body kinematics is 

the military tank (Figure 1).   Its motion of chassis, turret, and barrel is easily recognized by the 

students.  Their interpretation of the motion becomes much easier than a random linkage or 

connection of rigid bodies never seen before, that must be scrutinized to even understand the 

motion.  Through easy recognition, the military tank becomes a powerful image and 

demonstration for the visual learner.  The right hemisphere of the brain is engaged in a manner 

that increases the students understanding and education of the kinematics inherent in the motion.  

The educator needs only to tie the analytic equations of the kinematics to the already-known 

motion of the military tank. 

 

 
Figure 1. Example of Toy Military Tank (with attached body-fixed coordinate systems) 

 

2. The Military Tank Example – Rigid Body Planar (2D) Kinematics 

 

  The military tank’s usefulness first becomes apparent when introducing angular velocity 

and rotation about a fixed axis.  Describing angular velocity as a spin rate about a spin axis, 

students can easily picture the turret motion on the tank chassis and thus understand the vector 

relation (magnitude and directionality) of angular velocity.  Figure 1 illustrates angular velocity 

using the military tank.  
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Figure 2. Angular velocity (spin rate about a spin axis) illustrated using the military tank 

  By marking a point on the barrel (i.e. the end of the barrel), the motion of point P can 

further be illustrated (Figure 2).  It is easy to show that the velocity of point P (the end of the 

barrel) is the cross product of the angular velocity and the position vector from the point of 

rotation out to P, OPP rv / .  
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Figure 3. Motion of Point P (Velocity) 

  Similarly, the acceleration of point P can be illustrated in terms of its normal and 

tangential components (Figure 3).  The total acceleration of point P expressed in vector form is

 OPOPP rra //   .  The tank illustrates these concepts better than other generic rigid 

bodies because the barrel extends out to a point (point P) that the students easily identify its 

location away from the rotation point (axis) and the angular motion associated with this point 

due to the turret rotation.  Again, it is this familiarity with the military tank motion, which aids 

the synthesis of understanding of these aspects of rigid body kinematics. 
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Figure 4. Motion of Point P (Acceleration) 

  With the students’ thorough understanding of angular velocity and rotation about a fixed 

axis, the military tank shows even more value illustrating rotating reference frames and the 

concepts of relative motion.  For planar motion, the military tank can be thought of as two 

distinct reference frames – the chassis reference frame and the turret/barrel reference frame. 

Students can relate to these two distinct reference frames because they already know the 

independent motion of the turret with respect to the chassis.  If the chassis (reference frame N) 

remains fixed to the ground and does not rotate but the turret (reference frame T) is free to rotate, 

the relative motion of two points, P and Q on the turret can be discussed (Figure 4).   By fixing 

the chassis of the tank to the ground, we can establish a fixed inertial point, O, and establish a 

Newtonian (inertial) reference frame, N.   
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  Point Q is fixed to the turret in reference frame T, at the location of the turret rotation 

point.  Point P, the bullet in the barrel, is also fixed to the turret in reference frame T, at the 

location of the tank round prior to firing.  The turret rotates at a rate of Ȧ in a counter-clockwise 

direction.  Given the position of point Q with respect to fixed inertial point O, rQ/O and the 

relative position of point P with respect to point Q, rP/Q and using relative motion equations, one 

can find the position of point P with respect to fixed inertial point O, rP/O.  Differentiating this 

relative position with respect to the Newtonian reference frame results in the relative velocity 

equation for two points fixed in the same reference frame: QPQP rvv /  . Differentiating 

again with respect to the Newtonian reference frame results in the relative acceleration equation 

for two points fixed in the same reference frame:  QPQPQP rraa //   .  

Conceptually, this can be difficult for the student to understand, but using a familiar example 

with motion that is easily visualized, the student’s understanding is easier and faster. 

 

  The military tank example can be extended to include relative motion on a rotating 

reference frame.  Now the bullet that was initially fixed in the reference frame of the turret is 

fired from the tank and is free to move down the rotating barrel (Figure 5).    
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Figure 5. Two Points Fixed on a Rotating Reference Frame
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  Using the equation for the position of point P with respect to fixed inertial point O, rP/O, 

and differentiating with respect to the Newtonian reference frame, the result is the most general 

form of the relative velocity equation for two points in the same reference frame:  

 

     QPQP

T

QP rvvv //      

 

Differentiating again with respect to the Newtonian reference frame results in the relative 

acceleration equation for two points in the same reference frame:  

 

   
   QPQP

T

QPQP

T

QP rvraaa //// 2      

 

Again, while this most general form of the relative acceleration equation is conceptually difficult 

for many students, the fact that they understand the bullet moving down the barrel as it is fired 

while the turret is rotating assists in understanding the kinematic concept of relative motion in a 

rotating reference frame.  By threading the military tank model through consecutive topics that 

build upon one another, the overall student learning of rigid body kinematics is increased 

 

  One additional concept in planar kinematics, the concept of instantaneous center of 

rotation (ICR) or instantaneous center of zero velocity (IC), can easily be shown with the 

military tank.  Particularly when discussing a non-slip wheel.  The tread on the tank is an 

excellent example of an instantaneous center of zero velocity.  If you take a circular shape of 

foam material (easily deformable, yet elastic) you can easily show that at the contact point at the 

ground (foam wheel / ground interface) the velocity of the contact point is zero velocity (it does 

not translate relative to the ground).  If you squish it down like a tank tread, so that a large 

portion is flat against the ground, the students can observe that a marked portion of the foam 

trend remains in contact (and zero velocity) with the ground as the tank translates over it (Figure 

8).  As you allow the foam to reform to its circular shape, that single point continues to remain in 

contact with the ground and is a point of zero velocity on the wheel.  The rigid body of the wheel 

can now be seen to rotate about this zero velocity rotation point (or axis).   
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Figure 6. Relative Motion on a Rotating Reference Frame
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Figure 7. Foam Tank Tread / Non-slip Wheel Demonstration of Instantaneous Center of Rotation 

 

3. The Military Tank Example – Rigid Body (3D) Kinematics 

 

  As the complexity of rigid body kinematics continues into three dimension, the military 

tank model continues to be valuable to the student because of the student’s ability to picture the 

motion.  If one analyzes the military tank in terms of all three dimensions, the motion of the 

chassis, turret, and barrel set the stage for excellent examples of consecutive rotations and 

relative motion in three dimensions.  While there is extensive set-up for a problem such as this, it 

is consistent with previous examples in the course and simple builds upon the two-dimensional 

representations seen earlier. 

 

  The military tank depicted in Figure 8 can be described using three reference frames, 

each with the ability to rotate: the chassis is reference frame C, the turret is reference frame T, 

the barrel is reference frame B.  Let Newtonian reference frame N, have an inertial coordinate 

system with right-handed unit vectors kji ˆ,ˆ,ˆ  and origin O.   Let the chassis have a body-fixed 

coordinate system with right-handed unit vectors 
321

ˆ,ˆ,ˆ ccc  and origin CO .  Let the gun turret 

have a body-fixed coordinate system with right-handed unit vectors 
321

ˆ,ˆ,ˆ ttt  and origin TO .  Let 

the gun barrel have a body-fixed coordinate system with right-handed unit vectors 321
ˆ,ˆ,ˆ bbb  and 

origin BO .   
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Figure 8. Relative Motion in Three Dimensions 

  While engaging the enemy tank, the chassis C, translates relative to the ground at a 

constant speed v ( 1ĉvv
CO  ) and turns with a time varying spin rate 1  with respect to the 

ground, the turret T, turns with a time varying spin rate 2  with respect to the chassis, and the 

barrel B, depresses with a time varying spin rate 3  with respect to the turret. 

 

  Let point S be along a line drawn from OT in the 3t̂ direction at the intersection of the 

chassis and turret (fixed in C and T), such that 332211/ ˆˆˆ cscscsr
COS  .  Let point Q be along a 

line drawn from OB in the 1b̂  direction at the rotation point of the barrel (fixed in T and B) such 

that 332211/
ˆˆˆ tqtqtqr SP  .  Let the tank round be modeled simply as particle P and that P is 

moving relative to Q in the 1b̂ direction, such that 1/ b̂pr QP  .  While in the gun barrel, the round, 

P, has a speed p  and acceleration p , both measured relative to the main gun barrel. 

 

  Again, the set-up and given information is extensive, but the student is synthesizing what 

they are reading with the three-dimensional motion of the military tank that they already know.  
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The student understands the problem set-up with much more clarity simply because they can 

envision the military tank in action and are only describing this motion in a kinematic sense that 

is now logical to them.   

 

  This scenario easily lends itself to an example of the addition theorem of angular 

velocity.  The addition theorem tells us we can simply add the angular velocities measured with 

respect to different reference frames to find the total angular velocity.  That is, the angular 

velocity of a rigid body B in a reference frame A can be expressed in the following form 

involving n auxiliary reference frames: 

 

    
BAAAAAAABA nnn   1211   

5
 

 

In the military tank example, to find the angular velocity of the barrel (reference frame B) with 

respect to the Newtonian reference frame N, the angular velocities of the intermediate reference 

frames (chassis C and turret T) must be considered.  Using the addition theorem the angular 

velocity of the barrel reference frame B with respect to the Newtonian reference frame N is: 

 

     
BTTCCNBN    

 

This makes sense to the student because he or she knows that the total angular velocity of the 

barrel depends upon how fast the chassis is turning on the ground plus how fast the turret is 

turning on the chassis plus how fast the barrel is depressing on the turret.  This is intuitive 

knowledge that the student knows and now understands mathematically as well. 

 

  The same three reference frames of the military tank (chassis C, turret T, and barrel B), 

along with the Newtonian reference frame N, can be used in continuation of the scenario, to 

assist in the understanding of angular acceleration (Į).  By differentiating the angular velocity 

equation above and using the addition theorem again, one can determine the angular acceleration 

of the barrel reference frame B with respect to the Newtonian reference frame N: 

 

       BTTCCNBTTCCNTCCNBN    

 

It should become apparent to the student, that there is no addition theorem for angular 

accelerations.  There are cross products of the angular velocities of the intermediate reference 

frames, as well as, the angular accelerations of the intermediate reference frames when 

determining the angular acceleration of the barrel reference frame B with respect to the 

Newtonian reference frame N. 

 

With this scenario set of the tank maneuvering and engaging an enemy target and the equations 

for angular velocity and angular acceleration above, one can conduct the kinematic analysis for 

the relative motion of point P (tank round as it moves down the barrel): 

 

   
     QP

BBN

QP

B

SQ

TTN

OS

CCN

OP rvrrvv
CC ////      
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         SQ

TTNTN

SQ

TTN

OS

CCNCN

OS

CCN

OP rrrraa
CCC ////  

 

   
      QP

BBN

QP

B

QP

BBNBN

QP

BBN
varr //// 2  

 
 

These equations are typically challenging for the student to understand, but generally become 

clearer using the military tank scenario, than using other (less imaginable) three-dimensional 

rigid body systems.  The instructor can explain each component of the equations above, talking 

through the military tank reference frames and showing the students (with the toy tank model) 

how each part of the equation has physical meaning.  

 

 Lastly, by using just the barrel of the tank (rigid body B), one can use the military tank 

scenario to determine the angular momentum of the barrel in three dimensions as it depresses 

and rotates (Figure 9).   

 

 
 

 

 

 

 

 

 

 

 
Figure 9. Angular Momentum of Barrel (Rigid Body B) in Three Dimensions 

 

Using principal axes for the barrel and approximating the barrel as a circular cylinder of known 

mass m , length L and radius R, one can determine the principal inertial matrix [ I ].  Then using 

the three given angular velocities of the chassis, turret, and barrel above (and that the rotation 

angle between the barrel B and the turret T reference frames is ș), one can determine the angular 

momentum of the barrel about its center of mass, OB: 

 

         3

22

2

22

1

2

ˆcos
12

3ˆ
12

3ˆsin
2

b
LRm

b
LRm

b
mR

H
TCCNBTTCCN

O

B

B
 





  

 

While this is certainly a more advanced topic of kinematics, the military tank scenario makes it 

easier for the student to digest and comprehend.   The student knows that the barrel rotates in 

multiple dimensions and thus, the equation above seems logical that there is angular momentum 

in all three unit vector directions.  
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4. Conclusions 

 

While this paper does not offer any experimental results or evidence that using the 

military tank as a model for rigid body kinematics earns students higher marks in dynamics or 

increases their conceptual knowledge of kinematics, it seems logical that utilizing a recognizable 

system, in terms of motion, is advantageous for the student learner.  The fact that most students 

can quickly envision the motion of a military tank as it translates across the landscape with both 

the turret and barrel traversing and elevating, respectively, increases the student’s comprehension 

in the subject of rigid body kinematics.  The military tank example, while complex in the three 

dimensional sense, can be threaded throughout the entire rigid body kinematics block starting 

with planar two dimensional motion through to three dimensional angular momentum.  This 

consistent example thread can only increase the students conceptually understanding of a 

traditionally difficult concept of rigid body kinematics. 
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