
1

Implementation of a Mind-Controlled Wheelchair
Garrett Stoyell, Anthony Seybolt, Thomas Griebel, Siddesh Sood, Md Abdul Baset Sarker, Abul Khondker,

Masudul Imtiaz
Department of Electrical and Computer Engineering

Clarkson University
Potsdam, NY

stoyelgm@clarkson.edu

Abstract—The application of a brain-computer interface to
control an electric wheelchair may enable individuals with
impaired motor skills to move without the need for any physical
input. The goal of this project was to develop such a wheelchair
and provide some level of independence to individuals suffering
from ALS or similar physical issues. The overall design and
implementation are presented in this paper. The integration of
the proposed system utilizes a Drive wheelchair, EMOTIV EPOC
X headset, BLE 5.0 adapter, Raspberry Pi development board,
Sabertooth 2x32 dual motor controller, LM2596 buck converter,
and a 24V battery. The construction, as well as limitations of our
final system, are discussed; alternate designs, as well as future
improvements, are explored.

I. INTRODUCTION

The aim of this study was to develop a fully automated
brain controlled smart wheelchair embedded with hands-free
control technology with the aim of assisting people with severe
physical disabilities. This research is substantial as this is
directly related to a large vulnerable population. According
to the World Health Organization, 15 percent of the world’s
population lives with some form of physical disability [1]. The
CDC estimates, in 2020, 26 percent of the US population,
i.e., one in every four adults, to have a disability. Of those,
13.7 percent are considered to have a mobility disability [2].
This muscular degeneration may cause depression, significant
decreases in motivation, and loss of independence for many
sufferers. There are a few mobility-assisting devices available
in the market, such as powered wheelchairs. However, the
control systems of these devices require significant levels of
skill, attention, and judgment from the user. Without adequate
control over the wheelchair, the risk of accidents and collisions
increases, causing damage and injury. Hence, the primary
research motivation was to give those people their autonomy
back, allowing them to move when and where they want
without requiring assistance from others.

The initial requirement of this project was to develop a
mind-controlled wheelchair utilizing the EMOTIV EPOC X
headset. The EMOTIV EPOC X headset is a cost-effective 14-
channel mobile EEG brainware device whose main purpose is
to provide professional-grade brain data which can be used
for contextual research [3]. The headset provides coverage
of the frontal, prefrontal, temporal, parietal, and occipital
lobes, which can be used for classification. A custom Drive
wheelchair was modified such that the EMOTIV headset
captures brain waves (EEG signal) from a person sitting in the
wheelchair as a means of guiding navigation. The main scope

of this project was to serve those who have had their motor
skills severely limited in some fashion. One such audience
would be those who have had their lives irreversibly impacted
by ALS, a disease that attacks motor neurons and can severely
hinder voluntary movements such as walking [4]. After the
user is trained with the system, the proposed system promotes
mobility using just brainwaves and does not require any other
physical input from the user, thus providing some level of
independence to these individuals. Ultimately, this research is
the continuation of the research published in [5] and [6].

The following section will describe how the final imple-
mentation of the wheelchair complies with the original design
requirements. Test results on the system’s basic functions and
performance will also be discussed.

II. METHODOLOGY

A. System Design Specifications and Implementation

The original concept document for the mind-controlled
wheelchair listed multiple requirements that the client wanted
the chair to adhere to. While the design does not meet all these
specific requirements, alternate designs are used to achieve the
same goals. These specifications and constraints are listed as
follows:

• The final system may only be controlled using the
EMOTIV EPOC X headset. No displays or other control
methods, such as a keyboard or joystick, may be used to
steer the chair.

• The system must receive brain waves and produce corre-
sponding navigational commands.

• A robust classification model developed through exten-
sive training must be implemented.

• The wiring of the final version of the wheelchair should
be as clean and safe as possible.

In the final implementation, the wheelchair adheres to all
of these except for the use of a classification model, though a
substitute was used to achieve similar functionality.

1) Navigational Control System: First, the brainwave from
the EPOC X headset is the only input used to control the
chair. Previously-installed control methods are removed from
the chair, and the user can stop the chair or steer it left, right,
or forward using only mental commands sent through the
headset. To achieve directional behavior, we created a script,
navigationScript.py that executes on a Raspberry Pi 4 and
converts directional commands received from the classification



2

module of the project into motor control signals. The signals
are sent to a Sabertooth 2x32 motor driver [7] via a UART
connection, which will output voltages to each wheelchair
motor to produce the desired movement [8].

2) Brainwave Classification: The wheelchair can also
translate brain waves into navigational commands. Originally,
this was going to be achieved using the classification model.
But, because it was not reasonably possible to read data
directly from the headset without needing to use EMOTIV’s
software, the classification model was forgone in favor of using
the EMOTIV Cortex API [3] since it serves the same basic
function. In the system, a desktop with the EPOC X headset’s
USB 3.0 Bluetooth receiver inserted and EMOTIV software
installed runs the trainNew.py classification script. This script
uses EMOTIV’s libraries to convert headset signals into a
new classified directional command every half-second interval.
Directional commands are sent to the Raspberry Pi using a
UDP (User Datagram Protocol) server connection.

3) Clean and Safe Wiring: The last major system re-
quirement was also met in that wiring is both clean and
safe. As shown in the top-level system design in Figure 1,
there is minimal wiring involved to make the chair function.
Communications between the headset and the desktop and
between the desktop and the Raspberry Pi are entirely wireless.
Additionally, only one physical signal (being the Raspberry
Pi’s UART Tx signal) is being sent between the Pi and the
Sabertooth since the Pi does not need to receive feedback from
the Sabertooth [9]. Thus, all that remains of wiring on the chair
are the 24V power connections to the Sabertooth main power
input, the 5V power connections to the Raspberry Pi, and the
motor connections to the Sabertooth. The 24V connection to
the main power input allows the motors to receive voltages
ranging from -24V to 24V from the Sabertooth depending on
the motor control values outputted by navigationScript.py. To
ensure the Pi receives the 5V 3A required for it to operate, an
LM2596 buck converter capable of providing 3A is tuned to
output 5V.

To ensure all electrical components are safe, all exposed
solder points and wirings have been covered using heat shrink
wraps and protective cases for the Raspberry Pi and LM2596
buck converter. These protective cases have proven to be
effective in protecting and cooling the two components.

B. Additional System Capabilities

While not outlined in the design specifications, certain
features and behaviors exist in the system to enhance the user
experience and benefit system performance.

1) Rotational and Turning Movements: For example, nav-
igationScript.py uses a boolean variable called isMovingFor-
ward to toggle wheelchair movement between two states: for-
ward movement and stationary. If the wheelchair command is
detected as “push”, the chair will continuously move forward
and can make forward left or forward right movements if “left”
or “right” commands are received, respectively. If “pull” is
received, the system will stop all movement. If “left” or “right”
are received in this stopped state, the wheelchair will rotate
left or right, respectively. By introducing the isMovingForward

Fig. 1. Top-Level System Design

variable, the wheelchair can perform six types of wheelchair
movements under the limitation of four commands, which
gives the chair more maneuverability.

2) Steady Movement Changes: The wheelchair also has the
ability to ease directional changes into each other. Because the
system only has “push” and “pull” commands corresponding
to moving at a hard-coded speed and stopping, there are no
commands to adjust the speed of the chair. As such, abruptly
stopping the chair after moving could be dangerous to the user.
Thus, in the time between receiving directional commands, the
chair will steadily ramp up or ramp down its original speed to
the new one. Thus, the user will have a smoother experience
while operating the chair.

3) The Mode of Commands Over a Half-Second Interval:
The EMOTIV software outputs new directional commands at
approximately 18 samples per second, which is a number that
was derived from observations during testing. If the training
for the mental commands is weak, it is possible that multiple
directions may be sent to the chair and individually processed
within the span of a second. Since this would cause the chair to
have shaky movements, it was decided that the most frequent
command detected by the headset over a period of time would
reduce the likelihood of undesired chair movement and give
the user a smoother experience. In the final build, a half-second
interval was chosen since it gives the user a reasonable reaction
time.

To implement this half-second interval, trainNew.py uses
Python’s time function to test if a half-second has passed
since the last command was sent to the Raspberry Pi. If
not, directional commands are continuously appended to a
list. If a half-second has passed, the script will determine the
most frequent command in the list, send that command to
the Raspberry Pi, and clear the list for the next interval. Then,



3

TABLE I
TABLE OF CODES USED WITHIN THIS PROJECT

Code Name Purpose
navigationScript.py Converts directional commands into mo-

tor control signals
trainNew.py Collects live directional commands from

the user and sends them to navigation-
Script.py

Fig. 2. Sample Output of trainNew.py in a Terminal

navigationScript.py uses Python’s sleep function to receive and
execute new commands every half second. All of this can be
seen in Figure 2, where a number of commands are classified
over a half-second, but only one command is received from
navigationScript.py during this time. Table I lists each of
the two codes used in the implementation of this project
and their respective purpose. The project is open-source and
can be accessed at https://github.com/gstoy7/mind controlled
wheelchair

C. Unique Design Innovations

1) UDP Server: In order to establish communication be-
tween the PC that is receiving EEG data and the Raspberry
Pi onboard the wheelchair, a UDP server was hosted on
the Raspberry Pi. UDP allows for the transfer of messages
between devices over the internet. In this case, the Raspberry
Pi received strings from the desktop PC [10]. A UDP server
was chosen over a TCP protocol because it is much faster
and more efficient [11]. This will allow the system to respond
faster to input and make the experience feel more fluid to the
user. The speed and efficiency of UDP does result in some
packet loss which will result in some lost transmissions, but
this is believed to be unimportant for this design. [12]

2) Cortex API: Cortex is EMOTIV’s API for integration
of the EMOTIV EPOC X Headset with custom applications.
The basis around Cortex is training profiles that can be used
to train and store mental actions using the EPOC X [13].
This was used by the group as an achievable alternative to
building a new classification model for EEG signals. The
Cortex API provided a simple solution to this problem and
allowed easy integration of the EPOC X Headset into the
necessary applications. Using the API, the group developed
an application for training mental commands and a live mode
app which used the trained profile to decipher incoming mental
commands. An example profile is shown in Figure 3. The more
spread out each command is trained in the graphic, the more

unique they are, meaning the API will not misclassify them
for each other as often. Both applications were run on the
computer because Cortex integration on the Raspberry Pi was
still in beta and proved unreliable.

D. Design Limitations

1) EMOTIV EPOC X Weaknesses: All things considered,
the EMOTIV EPOC X headset along with its necessary
software was one of the major limitation weaknesses of our
project. We found that the headset had prominent consistency
issues, as it produced imprecise and unreliable commands.
Throughout the project, we tried several different methods
of training the headset to differentiate the mental commands;
however, it was very difficult to get the commands to any
degree of reliability. In the end, we found that associating a
directional command with a physical action helped increase
the degree of consistency. For example, we found that if a
user were to clench their teeth, the headset would be more
capable of identifying the action. This admittedly is not an
ideal solution since this project’s target is users with some
level of physical disability.

Another limitation of using the EMOTIV headset for this
project was that it essentially anchored us to the laboratory
location due to its necessary software not being able to
work on a Raspberry Pi. EMOTIV’s online documentation
suggested that the applications were able to be downloaded
to a Raspberry Pi, but we found that not to be the case after
multiple failed attempts to install the software. Due to this, we
had to keep the wheelchair’s UDP server in close proximity to
our desktop client being used to send navigation commands.

2) UDP Server Weaknesses: Our UDP server implemen-
tation also came with one prominent drawback, being the
IP address refreshing on a regular basis. We attempted on
several different occasions to assign our Raspberry Pi a static
IP address, but were unable to do so. As such, the IP address
of our server refreshes regularly, and because of this, the user
needs to update the IP addresses in ‘navigationScript.py’ and
‘trainNew.py’ whenever a new IP is automatically generated.

E. Future Improvements

Ultimately, we were able to meet all of our design specifi-
cations for the mind-controlled wheelchair project. That being
said, the findings of this project provide a strong proof of con-
cept which can be used for future improvements. For example,
the existing classification system is capable of working with
one trained user at any given time; future studies could look
to make a more representative model so that training profiles
have a higher degree of reusability. In order to realize this
idea, future research would likely need to move away from the
Cortex API and use machine learning algorithms to derive a
classification model that has the capabilities of being used with
multiple users. Other future optimizations to the system would
most likely consist of addressing the weaknesses outlined in
the previous section.



4

TABLE II
SOFTWARE TESTS AND RESULTS

Test Name Test Description Test Result
Navigational
Command Script
Logic Test

Checks the logic sequence of the
navigational Python script. This
test must verify that the naviga-
tional script produces the expected
output based on each possible di-
rectional input.

PASS

UDP Server Con-
nection Test

Check that the UDP server estab-
lished on the Raspberry Pi can send
and receive data to/from the desk-
top client.

PASS

III. TEST RESULTS

A. Software Testing

Table II details the procedures used in the testing of our
software system. All aspects of the testing which involved the
EMOTIV EPOC X headset were completed across 3 trials.
Each trial consisted of a training period, as well as a test using
EMOTIV’s built-in live mode functionality. Our tests of the
software system broke down into two phases: the navigational
script testing and the UDP server testing. In order to test
the navigational script, we utilized a counter and a while
loop in order to test every possible directional command to
ensure the voltages output across UART Tx were correct. We
were successfully able to demonstrate that our navigational
script produced the expected output based on each possible
directional output. From there, we looked to test our ability to
send and receive data across the UDP server. In order to test
this, we established the server on our Raspberry Pi, connected
to it with our desktop client and attempted to send a sequence
of commands. Ultimately, this test was successful as well as
the Pi was able to send and receive data reliably.

B. Hardware Testing

Table III details the procedures used in order to test the
components of our hardware system. We first performed a
test on our Sabertooth 2x32 dual motor driver as a means
of ensuring that it could successfully provide motor signals
to each of the two DC motors. In order to perform this test,
a series of scripted commands were sent across UART Tx
from the Raspberry Pi to the Sabertooth’s UART Rx port. We
found that the Sabertooth was able to reliably receive these
directional commands and produced the desired output. From
there, we performed electrical tests on our LM2596 Buck
Converter in order to ensure that it was providing the correct
amount of voltage to our Raspberry Pi. The buck converter
used in this project needed to be able to derive 24V of voltage
from our batteries and in turn supply our Raspberry Pi with
5V of voltage and 3A of current. In order to achieve this, we
needed to use the buck converter’s built-in potentiometer to
tune the output voltage down to 5V. We then tested the output
with a digital multimeter and found that the buck converter
was able to reliably provide our Raspberry Pi with the desired
voltage and current.

TABLE III
HARDWARE TESTS AND RESULTS

Test Name Test Description Test Result
Sabertooth
2x32 Dual
Motor Driver
Integration Test

Checks functionality of Sabertooth
2x32 dual motor driver to ensure
that it can successfully provide mo-
tor signals to each of the two DC
motors.

PASS

LM2596 Buck
Converter Unit
Test

Checks that the buck converter is
providing the Raspberry Pis with
the correct voltage/current

PASS

TABLE IV
SPECIFICATION TESTS AND RESULTS

Test Name Test Description Test Result
Full System Test Checks functionality of entire sys-

tem to ensure that wheelchair dis-
plays the desired behavior when
receiving brainwaves from the the
EMOTIV EPOC X headset

PASS

C. Specification Testing

Table IV provides a brief overview of the procedure under-
gone in order to test our final system. This final test looked to
check overall functionality of the system in order to ensure that
the wheelchair displayed the desired behavior when receiving
live commands from our EMOTIV EPOC X headset. In order
to perform this test, we had to first make sure the EMOTIV
headset was turned on and connected its desktop receiver.
From there, we plugged in the Raspberry Pi and powered on
the system. Upon startup, the Raspberry Pi would establish the
UDP server, so the next step was to connect the desktop client
and begin sending directional commands to the wheelchair.
We found that the wheelchair was able to display the desired
behavior, and ultimately, the system meets full specification.

D. Performance Testing

Table V provides a brief overview of each of the per-
formance tests used in the optimization of the system. The

Fig. 3. The Customized Wheelchair after Motor and EMOTIV Integration



5

Test Name Test Description Test Result
Speed Ramping
Tests

Ensure that the wheelchair eases
between states instead of making
sudden speed changes.

PASS

Cortex API Reli-
ability Testing

Check the responsiveness of Cortex
API live mode when using easily
differentiable physical commands.

PASS

TABLE V
PERFORMANCE TESTS AND RESULTS

first performance based test we performed was on our ability
to ramp our speeds to provide smoother transitions between
states. For example, if a user transitioned from going forward
to a stopped state, a ramping function would slow the motors
down instead of instantly stopping the system. All things
considered, this test was successful and provided significant
improvements to the overall feeling of state transitions. The
other major performance goal we wanted to achieve was to
have a very responsive interface with the Cortex API. At an
earlier stage of the project, we had an issue with compounding
lag, where the API’s live mode was at points able to build a 5-
10 second lead on the commands being output to the Raspberry
Pi. As a means of addressing this issue, within ‘trainNew.py’,
we had to make changes in order to ensure that the system
would never fall greater than half a second behind the live
mode. Once we made these changes to the script, we found
that the system was far more responsive and ultimately met
our performance goals. The final system is shown in Figure
4.

IV. CONCLUSION

The outcome of this project was a mind-controlled
wheelchair utilizing the EMOTIV EPOC X headset. A custom
Drive wheelchair was modified such that the EMOTIV headset
captures brain waves from a person sitting in the wheelchair as
a means of guiding navigation. Future work of this project will
target to fine-tune all parameters and enable the wheelchair for
mass implementation.

REFERENCES

[1] “Disability and health.” https://www.who.int/news-room/fact-sheets/
detail/disability-and-health.

[2] CDC, “Disability impacts all of us infographic — cdc.” https://www.cdc.
gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html.

[3] “Epoc x user manual.” https://emotiv.gitbook.io/epoc-x-user-manual/.
[4] D. Murrell, “All about amyotrophic later sclerosis (als).” https://www.

medicalnewstoday.com/articles/281472l.
[5] E. Sola-Thomas, M. A. Baser Sarker, M. V. Caracciolo, O. Casciotti,

C. D. Lloyd, and M. H. Imtiaz, “Design of a low-cost, lightweight smart
wheelchair,” in 2021 IEEE Microelectronics Design Test Symposium
(MDTS), pp. 1–7, 2021.

[6] M. Caracciolo, O. Casciotti, C. Lloyd, E. Sola-Thomas, M. Weaver,
K. Bielby, M. A. B. Sarker, and M. H. Imtiaz, “Autonomous nav-
igation system from simultaneous localization and mapping,” CoRR,
vol. abs/2112.07723, 2021.

[7] “Sabertooth 2x32 manual.” https://www.dimensionengineering.com/
datasheets/Sabertooth2x32.pdf.

[8] “Raspberry pi 4 model b datasheet.” https://datasheets.raspberrypi.com/
rpi4/raspberry-pi-4-datasheet.pdf., 2019.

[9] “Uart - universal asynchronous receiver/transmitter.” https://pinout.xyz/
pinout/uart.

[10] Gus, “How to handle raspberry pi serial reading and writing.” https:
//pimylifeup.com/raspberry-pi-serial/.

[11] L. Williams, “Tcp vs udp: Key difference between tcp and udp proto-
col.” https://www.guru99.com/tcp-vs-udp-understanding-the-difference.
html/.

[12] D. Industries, “Five ways to run a program on your
raspberry pi at startup.” https://www.dexterindustries.com/howto/
run-a-program-on-your-raspberry-pi-at-startup/.

[13] “Emotiv cortex api user manual.” https://emotiv.gitbook.io/cortex-api/
bci.


