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The Potential for Computer Tutors to Assist Students Learning 
to Solve Complex Problems 

 
 
1. Introduction 
 
Engineering education includes significant attention to problem solving skills, with students 
gradually confronting problems of increasing complexity. Even within any single fundamental 
engineering science course, which addresses a limited set of concepts, students can still face 
problems that require coordinating and organizing multiple parts.  To solve, the student may 
need to decompose the problem into inter-related sub-problems, define variables of different 
types, carry out analyses of sub-problems, and finally combine and interpret the results. Such 
problems may have multiple pathways to the correct answers. 
 
There is wide recognition that learning to solve problems, in general, is promoted by timely, 
formative feedback1-6. This paper addresses the issue of providing formative feedback for 
students confronting complex problems that involve significant latitude in decomposition and 
construction of solutions. Traditionally, students solve complex problems as part of written 
homework assignments that are hand graded. In such circumstances, offering effective formative 
assessment is exceptionally challenging, requiring careful attention to solution details and rapid, 
rather than weeklong, turnaround. Furthermore, within a single problem, later work can build 
upon earlier work; hence, grading of an already completed solution often involves judging off-
path steps that may be irrelevant to the intended learning or steps that build upon prior incorrect 
work. Given the very limited effectiveness of human grading to provide feedback to students on 
complex homework problems, it is natural to inquire whether the computer can do better. 
 
The research questions this paper seeks to answer are: (1) Is it possible to provide automated, 
formative assessment of efforts to solve complex engineering problems, (2) What metrics allow 
one to judge whether the feedback indeed promotes learning, and (3) On what basis can one seek 
improvements to the formative assessment offered?  
 
We address these questions in the context of a test case: a tutor for students learning to solve 
truss problems, which are commonly studied in statics. Trusses exemplify complex problems: 
students select multiple portions of the truss, draw free body diagrams, write down appropriate 
equilibrium equations for each diagram, organize the solving of equations, and interpret results 
physically in terms of the original truss. Mastery requires clarity, systematic organization, as well 
as conceptual and mathematical competence.  Recently, computer systems have been developed 
that allow students to work on some simple statics problem more or less from start to finish, and 
provide feedback on individual steps7,8. But, such systems do not involve problems with many 
solution paths, nor do they offer data upon which to judge how much students are learning. 
 
To give feedback to a user who can pursue various pathways in problem solving, a computer 
tutor must have a model of the problem solver’s thought process.  Indeed, researchers have 
developed Intelligent Tutoring Systems9,10, including even some relevant to the mechanics of 
structures11-13. Cognitive tutors14 in particular merged the ideas of intelligent tutoring systems 
with computational models of cognitive theories of human learning, memory, and problem 
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solving15. Cognitive tutors are based on a cognitive model of a student interacting with problems 
in a domain. 
 
One approach to a cognitive tutoring system for solving problems such as trusses would (i) allow 
students to take correct as well as commonly incorrect pathways in the solution and (ii) 
recognize when a student has gone off a correct path and give guidance on how to correct errors. 
In this paper, we determine whether automated formative assessment is possible for truss 
problems following just such an approach, and we establish metrics for judging the effectiveness 
of the feedback offered. Building on observations of typical errors16-19, a computer interface was 
created where correct steps and typical errors in solving truss problems can be executed with 
wide latitude to pursue solution paths. Algorithms for correct forward steps were developed that 
are applicable to any correct solution state. To grant latitude to the solver, while retaining ability 
to interpret work, the tutor must intervene in a timely way after errors are committed. The 
student can solve unimpeded until errors are made that can interfere with future solving steps; 
feedback is then offered which enables students to correct their errors. To judge whether the 
feedback is effective, steps hypothesized to involve the same components of knowledge have 
been grouped, and data is collected on the fly of successive attempts to apply the different 
knowledge components. Statistical models are used to determine whether errors in using 
different knowledge components decrease in frequency with practice. The determined learning 
rates give insights into whether feedback is effective and can inform future improvements in the 
tutor.  The approach is tested out on data from students from two institutions. 
 
 
2. Design of tutor 
 
Here we offer a brief summary of the design of the tutor used for the present study; more details 
and rationalization for design decisions are presented elsewhere20.  A tutor for problem solving 
of trusses was designed based on the tasks required and on observations of typical student errors. 
Solving truss problems involves several groups of tasks: selecting a subsystem, that is, a some 
portion of the truss, for analysis; drawing free body diagrams of selected subsystems; writing 
down equations of equilibrium for the free body diagrams; and, solving equations, interpreting 
results, and potentially using them to analyze subsequent subsystems. These groups of tasks 
share features with other problems in statics. 
 
Students commit a variety of errors in solving truss problems. One typical error is illustrated in 
Figure 1: a student has written equilibrium equations for a portion of the truss, but because the 
forces have not been drawn on the FBD, the assumed directions of the internal forces are 
uncertain. A second error is shown in Figure 2: internal forces drawn on entire bars included in 
the subsystem; they should instead be drawn only on partial bars. Further examples of errors in 
truss problem are presented elsewhere20. 
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Figure 1. Internal forces (GF and DF) are not drawn on section, but appear in equilibrium 
equations; the solutions ultimately have sign errors. 

 
 

 
Figure 2. Internal forces drawn on bars that are fully included in the subsystem. 

 
The tasks needed to be performed and the observations of student errors suggested that a tutor 
constraining user choice as follows would capture most student work (correct and incorrect) on 
truss problems: 
 

• Each subsystem can be any collection of pins, members and partial members (there can 
be multiple such subsystems analyzed) 

 
• In free body diagrams, forces can be drawn either at pins or at the free ends of partial 

members. Forces are confined to lie along x-y directions or parallel or perpendicular to 
bars.   

 
• Equations of force equilibrium along x-y, and equations of moment equilibrium about 

any joint, can be written.   
 
Finally, we have assumed that students using the tutor have learned about truss analysis through 
other means, such as lecture and textbook; thus, the tutor focuses exclusively on helping students 
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solve problems. The computer tutor should have a simple, easily learnable user interface that 
gives students reasonably wide latitude to solve truss problems with minimal distractions and 
unnecessary effort, but still make errors commonly found. 
 
Figure 3 contains a screen shot of the tutor, with a problem partially solved. The left half of the 
display contains a menu bar at the top and the problem diagram and statement.  The problem 
diagram can be toggled to display the solution diagram, where support reactions and bar forces 
that have been determined are registered by the student, as described below.   The user chooses a 
subsystem for analysis by clicking on a set of pins, members and partial members, and then 
clicking on the draw (pencil) icon from the menu bar.   The selected group of parts is added as 
another subsystem and would appear as one of the thumbnails to the right half of the display. 
Clicking on a thumbnail expands that subsystem, allowing the user to draw its FBD and write its 
associated equilibrium equations. 
 

 
Figure 3. Screen shot of full display of truss tutor. 

 
In Figure 4, we show a subsystem with a pin and the two connected partial members; a new force 
being added to a partial member.  As seen in the window labeled “Defining a force”, the user 
categorizes each force being drawn.   
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Figure 4. Screen shot of force being added to free body diagram, showing force categorization. 

 
 
Beneath the free body diagram the user can write equilibrium equations for the subsystem 
(Figure 5). When the user has written down an equation with one variable (always a linear 
equation in truss analysis), upon request the tutor can solve the equation for that variable.  This 
eliminates the need to use a calculator and also eliminates errors due to mistyping into a 
calculator.  Once a variable such as a support reaction or an internal force has been determined, 
the user needs to “register” that force in the solution diagram.  Registration serves to declare that 
a force has been determined, so it can be categorized as a determined force in a subsequent FBD. 
Registration is also an important opportunity for the student to signal the meaning of what has 
been solved. Unknown support forces can be drawn on FBD’s in any direction; the associated 
variables may turn out to be positive or negative.  But in the solution diagram the support force 
must be drawn in its actual sense and given a positive magnitude.  Likewise, when the internal 
force of a bar is registered, the user gives it a magnitude and describes it as in tension or 
compression. 
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Figure 5. Screen shot of writing equations, and choosing moment center. 
 
 
 
3. Judging student work and giving feedback 
 
A key capability of the tutor is to judge and give feedback on work. The tutor can do this by 
having a cognitive model for solving truss problems.  The cognition in the tutor consists of 
several elements:  

• SUBSYSTEM: An algorithm for what configurations of pins, members, and partial 
members is a legitimate subsystem. 

• FBD: Given a legitimate subsystem, and any forces defined or determined up to that 
point, an algorithm for the allowable forces that can be drawn on the pins and partial bars 
of the subsystem. The FBD of a given subsystem is not unique. For example, if an 
internal force has been determined, then one can represent that force in the FBD either as 
a determined force using the correct value, or as an unknown internal force using 
symbols consistent with the first definition. 
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• EQUILIBRIUM EQUATIONS: Given a legitimate FBD, an algorithm for the correct 
summation of forces along x and y and the correct moment about any pin in the truss. 
These summations include variables and constants, consistent with how the forces appear 
in the FBD. 

• SOLUTION REGISTRATION: Given a correctly determined support or internal force 
(from the equilibrium equations), an algorithm for the correct registration of that force in 
the solution diagram. 

 
While the student can pursue many different solution paths that can be followed by the tutor, it 
does not have algorithms for solution paths that build on earlier committed errors.  Thus, when to 
offer feedback on an error is a critical part of the tutor’s design.  On the one hand, we don’t want 
to interrupt a student who is still formulating the current portion of the solution.  On the other 
hand, we don’t want to wait so long that the student builds upon work that is as yet unjudged and 
may be incorrect.  In the latter, undesirable situation, the tutor might need to indicate that the 
built-on portion is correct in and of itself, but that it is based on incorrect solution steps. 
 
We met this challenge in the tutor by judging student work just after the completion of each of 
the major phases of the solution for each subsystem. Each task has a natural breakpoint at which 
it can be viewed as completed and thus ready to be judged: upon selection of the parts for a 
subsystem, it is judged; upon choosing the first equation to be written (e.g., ΣFx), the FBD of the 
subsystem is judged; upon typing return at the end of writing an equation, or choosing a next 
equation, the equation is judged; and, upon registering a result in the solution diagram, the 
registered result is judged. 
 
Provided the user does not make an error, the judging is invisible (but recorded) and the user can 
work without interruption.  Upon making an error, the user receives an unmistakable error 
message. The message points out what is in error, with additional information to enable the user 
to fix the error and to learn why it is in error, lessening the likelihood of repetition.  The user can 
alter the indicated part of the solution and proceed; the judging occurs at the same junctures so if 
the error is not fixed a new error message will be sent.   
 
 
4. Analysis of student work on tutor to track learning 
 
Need for decomposition into skills or Knowledge Components 
 
To investigate whether students learn while using the tutor to solve problems, we seek to 
determine if they are making fewer errors as they progressively solve more problems.  Being 
able to solve something as complex as a truss problem involves a variety of subtasks. Further, 
some subtasks are more prone to error than others, and students may improve more quickly on 
some subtasks than others, potentially depending on the feedback.  How we choose to view the 
problem as composed of subtasks is central to developing evidence as to whether learning is 
occurring. These choices constitute our model of learning to solve problems in the chosen 
subject or topic: they are the distinct chunks or Knowledge Components that the student needs to 
learn. 
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To see that recognizing distinct subtasks is necessary, consider the grading of homework 
problems that involve many steps or facets. It would clearly be ineffective to grade an entire 
problem as simply correct or incorrect. First, this would not capture the great variation within 
“incorrect” problems. Second, if we imagine that students received feedback on each problem 
and so had the opportunity to learn from each problem, we would likely not observe a steady 
improvement in their ability if the entire problem were merely deemed correct or correct. 
Instead, we would like to signal which subtasks are correct or not.  Then, if we had the resources 
to track how student performed on different types of subtasks, and students received feedback on 
separate subtasks, then we might indeed observe improvement in their ability to execute the 
different subtasks. 
 
Thus, our goal is to sensibly designate the different subtasks or distinct skills that must be 
mastered to ultimately solve such problems. Of course, we also want the clarity of being able to 
characterize each attempt to use a skill as unambiguously correct or correct. We hope the 
frequency at which those attempts are correct increases with practice. How then should we 
divide up the overall task? Critical to that division is its granularity – how small are the actions 
that are deemed to reflect individual skills and how many different skills are recognized among 
the different actions of the same general type. 
 
To illustrate issues of granularity and variation, consider the task of drawing a free body 
diagram: in trusses we typically draw an FBD of the whole truss, of a joint, or of a section. One 
might deem the drawing of an FBD of an already chosen portion of the truss as a single skill. 
However, an FBD is typically composed of many forces. Say we treated an FBD as wrong if any 
force in it is wrong: since drawing different types of forces may incur more or fewer errors, 
treating any incorrect force as the same error may fail to capture inherent differences in the ease 
of learning to represent different types of forces. An alternative approach would be to view the 
drawing and labeling of different types of forces – applied forces, support reaction forces, and 
internal forces – as distinct skills. By contrast, all reaction forces associated with pin supports 
will be treated as reflecting the same skill in our current model for learning. There is, of course, 
no single correct model, and empirical evidence as described below can be gathered to compare 
different models.  
 
Initial KC Model for Truss Tutor 
 
The collection of Knowledge Components and their association with specific student actions is 
referred to as the KC Model. Many different KC models are possible; in this section we describe 
the initial KC model chosen for the tutor described here; more details have been presented 
elsewhere20. Each KC corresponds to an action that falls into one of the three phases of the 
solution process: (i) selecting a subsystem, (ii) drawing a free body diagram, and (iii) registering 
a result derived from an equation of equilibrium in the solution diagram. 
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Selecting a subsystem 
 
Legitimate subsystems are either the entire truss, or a portion of the truss consisting of pins, 
connected members, and partial members. Distinct KCs correspond to defining these types of 
subsystems: 
 

• whole truss as subsystem 
• joint as subsystem 
• section as subsystem 

 
Drawing a FBD 
 
The user can draw various types of forces on either the pins or on the ends of partial members.  
Distinct KCs correspond to the distinct situations in which a force may be defined: 
 

• applied force 
• free pin (should have no forces) 

 
• new unknown pin support reactions (first definition at a given support) 
• new unknown roller support reaction (first definition at a given support) 
• already defined unknown support reaction (subsequent definition of support reaction 

must be consistent with first definition) 
• determined support reaction (must be consistent with value and direction determined 

earlier)  
 

• new unknown internal force (first definition for a given member) 
• already defined unknown internal force (subsequent definition of internal force must be 

consistent with first definition) 
• determined internal force (must be consistent with value and direction determined earlier) 

 
 
Note that in defining the KCs as above, we are implicitly treating all instances of defining, say, a 
new pin support as the same regardless of, for example, where the pin is located, its label, and 
whether there are also applied forces acting on the pin.  Likewise, all instances of designating a 
determined internal force are treated the same regardless of, for example, whether it was in 
tension or compression, where in the truss the member is located, and whether applied forces act 
on connected pins.  One could have a KC model with more granularity by choosing to have 
distinct KCs corresponding to those different instances. It is empirical question as to whether 
such a finer grained model captures learning better. If, at a given instant in a student’s learning 
process, the likelihood of making an error were to be significantly different for the different 
instances, then they ought to be tracked as distinct KCs. 
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Registering Results 
 
Upon solving an equation of equilibrium, the user registers those results in the solution diagram. 
Distinct KCs correspond to: 
 

• Registering a support reaction 
• Registering an internal force 

 
Students have experience in writing equations of equilibrium based on a completed FBD from 
earlier topics in statics; the tutor was not viewed as likely to produce meaningful improvement in 
writing equilibrium equations. Students do receive feedback on their equations of equilibrium, 
which enable them to correct those equations.  However, other than pointing to the site of an 
equation error, the tutor does not provide explanatory feedback. Furthermore, it is likely that 
students are sloppy writing equations because they get feedback so quickly.  Indeed, while 
different types of contributions to equations of equilibrium are tracked, errors of different types 
were not found to decrease systematically with practice. Thus, the KC Model presented here 
focuses on facets of solving truss problems other than writing equations of equilibrium. 
 
Tracking Opportunities to Exercise Knowledge Components 
 
The tutor records each new instance in which the user undertakes an action corresponding to one 
of the KCs. Each opportunity to exercise the KC is deemed either correct or incorrect.  Any 
fixing of an incorrect step in response to feedback is not counted as a new opportunity to 
exercise the KC. Note that the tutor is quite distinct from most existing tutors in that there is no 
pre-defined set of questions or specific steps.  The student charts his or her own solution 
pathway, which could involve analyzing, for example, an entire truss followed by joints in an 
order selected by the student. The tutor extracts on the fly the sequence of KCs attempted, which 
can be different for each student. 
 
5. Analysis 
 
To analyze the progression of learning quantitatively, we have adopted the terminology, 
methodologies, and tools from the PSLC (Pittsburgh Science of Learning Center) Datashop21.  
Data corresponding to the sequence of KC opportunities for each student are extracted from the 
files the student saves using the tutor; these data are imported into Datashop. Among the various 
outputs from Datashop pertinent to our study is the learning curve: the percentage of students 
that err in applying a particular KC is plotted as a function of the opportunity (first, second, 
third) to use that KC. From such data, which is typically noisy, one seeks to determine if there is 
some evidence of a pattern. 
 
Hence, the Datashop tools also fit a statistical model to the sequence of opportunities to apply a 
KC. For our learning model in which each action is dependent on a single KC, the statistical 
model predicts error fraction as follows: 

 
ln[(1- eij)/eij] = θi + aj + bj Tj 
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In this equation, eij is the probability of an incorrect answer by the ith student on opportunity Tj 
for using the jth KC. Note that eij can range from 0 to 1, and Tj takes on values of 1, 2, 3, and so 
forth, for the first, second, and third opportunity. This logistic regression model22 for measuring 
the progressive mastery of a skill with practice has been widely used and generalized. 
 
Fitting this model to data for a group of students yields a student-specific, overall initial skill 
level θi, which is independent of the KC. The fit also produces coefficients aj and bj, both KC-
dependent, but student-independent.  The coefficient aj, the intercept, corresponds to the initial 
probability of correctly applying the KC. The coefficient bj, referred to as the slope, corresponds 
to the rate at which errors in using the jth KC decrease with successive opportunities to practice 
it. Thus, values for bj are one measure of the tutor’s effectiveness. In particular, more effective 
error messages or hints should lead to higher slopes. 
 
 
6. Samples 
 
The tutor described here is appropriate for students in virtually all statics courses. Because the 
tutor is intended to substitute for completing paper and pencil homework, use of the tutor fits 
into the rhythm of statics courses generally. Thus, the target population for a tutor such as this 
corresponds to most students who might take a statics course. 
 
Because we wanted to capture how a tutor can give feedback on complex problem solving in the 
context of real engineering courses, the study was conducted within the scope of regularly 
scheduled statics courses. The tutor was used in lieu of solving paper and pencil homework 
problems in two distinct educational environments. Data was collected for all students and 
information on their completion of problems was returned to the instructor for the purposes of a 
assigning a grade on the homework assignment. When students first registered to receive the 
software, they were asked if they consented to have their data used for research; only data from 
those who consented were included in the analysis. 
 
Sample 1 was from a statics course at a community college, in a class comprising a total of 21 
students. Of those students, 18 consented to have their data studied.  Sample 2 was from a statics 
course at a military academy, in a class comprising a total of 109 students. Of those students, 99 
consented to have their data studied. Students had received lecture on trusses, covering the 
method of joints and method of sections, and were shown the solution of example problems. 
Thereafter, students practiced solving trusses exclusively using Truss tutor (no paper and pencil 
problems). Students in sample 1 were assigned five problems using the method of joints and five 
problems using the method of sections; sample 2 students were assigned three problems using 
the method of joints and five problems using the method of sections. There is no claim that these 
two samples are broadly representative of students; nor does one expect them to be exceptional. 
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7. Results 
 
Typical learning curves are shown in Figures 6 - 8. The data points and solid lines connecting 
them (in red) are the actual error fractions.  The dotted (blue) curve is the prediction based on the 
fit of the statistical model.  These learning curves are from Sample 2; the early opportunities 
correspond to all 99 students, while a diminishing number of students might contribute to the 
error rate with successive opportunities (because different students have different solution paths 
and even solve fewer problems).      These three learning curves represent three typical 
outcomes.  For the KC depicted in Figure 6, registering an internal force, the error starts low and 
remains low.  There is little need for tutoring on this skill.  For the KC depicted in Figure 7, 
utilizing a determined support reaction in a subsequent FBD, the error is reasonably high initially 
and becomes progressively lower with practice. This suggests that practice is having a desired 
effect – getting feedback on the errors enables students to gradually make fewer errors. Finally, 
for the KC depicted in Figure 8, which pertains to one facet of writing equations of equilibrium, 
the error rate is initially high and never improves.  (The wild error rate at the end corresponds to 
a very few students making many errors.) Practice is having no observable benefit. Results for 
knowledge components associated with writing equations of equilibrium are not presented here. 
 
 

 
Figure 6. Percentage of students in error plotted as a function of opportunity (Learning curve) for 

a KC (registering an internal force) for which the error rate starts low and remains low. 
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Figure 7. Percentage of students in error plotted as a function of opportunity (Learning curve) for 

a KC (representing a determined support reaction) for which error rate is initially high, but 
decreases with practice. 

 

 
Figure 8. Percentage of students in error plotted as a function of opportunity (Learning curve) for 

a KC (combining non-variable terms in force summation) for which error rate is initially high 
and remains high. 

 
Typical learning rates with existing tutors23 correspond to slopes in the range of 0.05 to 0.15.  To 
see the rate of improvement that such slopes imply, say the probability of a student first making 
an error is 0.5. With a slope of 0.1, the error probability drops to 0.40 at the fifth opportunity and 
to 0.29 at the tenth opportunity. 
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The fit of the statistical model to the data yields the initial error rate (aj) and the slope (bj) for 
each KC.  Table 1 displays the results for the distinct KCs grouped according to the three phases 
of solution: selecting subsystems, drawing FBDs, and registering results.  Within each phase, the 
KCs have been ordered by increasing intercept (in sample 1).  The observations now described 
hold for both samples. A number of KCs with lower intercepts have quite high slopes, for 
example, section_as_subsystem, unknown_internal_consistent, and determined_support. The 
tutor is playing a valuable role if it helps students master skills, such as these, that they did not 
initially possess. Thus, high slopes are most critical in the case of low intercept KCs. By contrast, 
other skills tend have a low initial error, corresponding to high value of intercept. For a few of 
those skills, such as unknown_support_new_pin and unknown_support_new_roller, the slope is 
again high, but for other skills, the slope is low.  In any event, rapid reduction in the error rate 
with practice (high slope) is less critical if the initial skill level is relatively high.  
 
Table 1. Statistical fit of multiple Knowledge Component learning model: initial fraction correct 
(Intercept) and decrease of error fraction with practice (Slope) for different Knowledge 
Components as predicted by the fit. 
 Sample 1 Sample 2 

KC (Select Subsystem) Intercept (aj) Slope (bj) Intercept (aj) Slope (bj) 
section_as_subsystem 0.74 0.20 0.68 0.26 
joint_as_subsystem 0.94 0.00 0.93 0.01 
full_truss_as_subsystem 1.00 4.54 0.98 0.31 
     

KC (Draw FBD) Intercept Slope Intercept Slope 
unknown_internal_consistent 0.26 0.46 0.45 0.16 
determined_support 0.51 0.32 0.64 0.30 
determined_internal 0.79 0.06 0.67 0.10 
unknown_support_new_pin 0.82 0.28 0.91 0.31 
unknown_support_new_roller 0.89 0.12 0.87 0.38 
unknown_new_internal 0.89 0.02 0.91 0.03 
applied_force 0.90 0.04 0.81 0.10 
free_pin 0.98 0.07 0.98 0.14 
     

KC (Register Result) Intercept Slope Intercept Slope 
register_support_force 0.87 0.06 0.91 0.03 
register_internal_force 0.88 0.05 0.92 0.05 
 
 
If one goes to the trouble of developing a model that distinguishes among different skills or 
knowledge components, one should expect it to be, in some sense, an improvement over a 
simpler model that treats each action by the student as an attempt to apply the same knowledge 
component. Table 2 shows the intercept and slope for the single KC model.  The rate of learning 
is extremely low (slope = 0.002). A plot of the single KC learning curve is shown in Figure 9 – it 
can be seen that the error rate has enormous fluctuations. Treating all errors committed by the 
student as equivalent, that is, assuming there is a single “truss solving” skill, leads to the 
conclusion that little or no learning is occurring. By contrast, the multiple KC model identifies 
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those steps that students find difficult, and that the practice improves their performance on those 
steps.   
 
Table 2. Statistical fit of single Knowledge Component learning model; nearly zero slope 
indicates that improvement with practice cannot be detected when actions of all types are treated 
as instances of a single “truss-solving” skill. 
 Cohort 1 Cohort 2 

Single KC Model Intercept Slope Intercept Slope 
Single KC 0.86 0.002 0.89 0.002 
 
 

 
Figure 9. Percentage of students in error plotted as a function of opportunity (Learning curve) 
when treating all actions of a student as corresponding to the same KC; significant fluctuations 

and nearly zero improvement indicate that actions are poorly explained by a single KC. 
 
We can also point to two quantitative measures suggesting that the multiple KC model is an 
improvement over the single KC model. When the datashop tools compute a fit of each statistical 
model to the data, several parameters pertaining to the goodness of fit are produced. In cross 
validation24, the data set is separated into three groups. The model is fit to each group, the results 
for the other two groups are predicted using the fit parameters, and then the root mean square 
error (RMSE) between the prediction and the actual data is determined.  In comparing two 
models, we can compare the RMSE from such three-fold cross validation. It was found that the 
RMSE of the multiple KC model is less than that of the single KC model (3.7% less for Sample 
1 and 4.0% less for Sample 2).   
 
A second means of comparing models is based on the Bayesian Information Criterion25 (BIC). 
BIC is a measure of goodness of fit of the model to the data, but with a penalty that depends on 
the number of parameters in the fit. Namely, with two models that approximate the data equally 
well, the model with the fewer parameters (the quantities θi, aj, and bj here) will have the lower 
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BIC. Datashop computes a BIC value for each model; these values may be used to compare the 
statistical fits of different models to the same data set.  To attribute meaning to BIC values for 
the different models, we appeal to a detailed study26 of the statistical significance associated with 
a difference in the BIC values for two models applied to the same data. It was found26 that 
differences in excess of 10 could be interpreted as implying a statistically significant difference 
between the two models. As seen from the BIC values reported in Table 3, the multi-KC and the 
single KC models differ significantly. 
 
Table 3. Comparison of Bayesian Information Criterion (BIC) values for a multiple KC model 
and a single KC model, which treats all actions as corresponding to the same “truss-solving” 
skill.  BIC differences in excess of 10 are treated as statistically significant. 

Sample Observations BIC multi-KC BIC single-KC BIC Difference 
1 9513 5762 6087 325 
2 42827 23815 26372 2557 

 
Finally we consider on what basis we should decide where to devote efforts to improve feedback. 
One can seek out in Table 1 those skills with insufficiently high intercept and insufficiently high 
slope.  Most notable is the KC determined_internal: this corresponds to the skill of using a bar 
internal force that has been already determined in a new FBD where that internal force also acts. 
One must use the correct magnitude and interpret the earlier found tension or compression to 
draw the force in the correct direction in the new FBD.  For both data sets, this KC does not have 
high intercept (0.79 and 0.67) and does not have a particularly high slope (0.09 and 0.10), at least 
not high compared to some of the other KCs. It is possible that feedback on this error can be 
altered; whether such alterations lead to improvement can be judged based on the new results for 
intercept and slope of this KC. As seen from the comparison with the single-KC model, the 
quality of the statistical fit is also strongly dependent on the choice of KCs and their assignment 
to student actions.  Thus, improvements can also be sought in alterations to the KC model.  
These will be considered in future research.  
 
 
8. Summary and conclusions 
 
Learning to solve complex problems that involve analyzing multiple inter-related parts is a 
feature of many engineering courses. Such problems may have several or many solution 
pathways to correct answers. As with any learning, formative feedback to students on their initial 
efforts can significantly increase their ability to solve such problems.  Students typically 
undertake such complex problems as part of homework, and their efforts are traditionally 
observed in the context of humans (instructors, TAs) grading those homework problems. 
Grading is usually to provide credit to the student; very little effective feedback to students 
results. Thus, we seek to determine if a computer tutor could be capable of providing feedback 
for complex problems, and how we might judge the effectiveness of that feedback. The challenge 
faced by such a computer tutor is to allow students to pursue multiple pathways to solution, and 
still be able to judge and give feedback on those efforts.   
 
The approach taken here is for the computer tutor to have a cognitive model of a student engaged 
in solving the problems of interest.  We explore this idea for a test case of trusses in statics.  
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Based on a task analysis of solving such problems, and a catalogue of student errors, a tutor for 
truss analysis was devised.  The cognitive model consists of algorithms for correct forward steps 
that are applicable at any correct solution state, and a limited number of allowed incorrect steps 
that reflect typical student errors. By giving timely feedback after errors are committed, we can 
grant latitude to the student in solving while retaining ability to interpret work. Thus, in answer 
to the first research question, we have shown in this test case that it is possible to provide 
feedback on complex problems in which students can take a variety of solution pathways.  
 
To respond to the second research question, how metrics can be devised to determine whether 
that feedback is effective, steps to solve truss problems with the tutor are hypothesized to involve 
a finite set of skills or knowledge components (KCs).  Thus, each action by the student in solving 
any problem is categorized as an attempt to exercise one of the hypothesized KCs. From the 
saved student work we extract a sequence of opportunities to exercise each KC. The feedback 
from using the tutor may be deemed effective if the percent of students that commits an error in 
applying a KC decreases with successive opportunities.  Since such learning curves (percent 
error vs. opportunity) are always noisy, we seek to determine how well a statistical model, 
derived from the power-law of learning and commonly used in other intelligent or cognitive 
tutors, fits the learning curves.  Parameters in the statistical model include, for each KC, the 
intercept (fraction of students responding correctly at first attempt) and slope (rate at which the 
fraction in error decreases). Students in regularly scheduled statics classes at two institutions 
used the tutor for a weekly assignment in lieu of pencil and paper homework. Data from students 
in these two classes who consented to have their results used for research purposes were fit to the 
statistical models. 
 
We found that the error rates for various hypothesized KCs differ significantly.  From the fit of 
the statistical model, most of the KCs either had low error rates, or if the percentage of students 
who initially erred was higher, then that percentage in error decreased markedly with successive 
opportunities to practice. Thus, for most skills, students already had the skill at the start or 
developed the skill in the course of using the tutor. Such results constitute metrics that can be 
used to judge whether feedback is effective. The benefit of distinguishing between different KCs, 
rather than simply viewing all steps as associated with a single “truss-solving” skill can be seen 
from multiple comparisons to results from a fit to the alternative single skill model. Finally, in 
answer to the third research question, the learning curves themselves and quantitative results of 
the model fit point to specific parts of the tutor where the feedback could be improved or where 
an altered breakdown into knowledge components may give clearer evidence of learning. Future 
research will be aimed at determining whether such improvements can indeed be realized. 
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