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The Sequential Nature of Engineering Problem Solving 

 

Iron Range Engineering (IRE) is an innovative, problem-based-learning (PBL) program in 

Virginia, Minnesota.  Part of its innovation comes from the program’s strong emphasis on 

developing metacognitive skills necessary for students to become self-directed learners of the 

knowledge and skills required for professional engineers.  Students in the IRE program learn 

about skills they need to direct their own learning and to solve problems.  In our NSF IUSE 

project, we have been investigating the cognitive processes involved in engineering problem 

solving, focusing specifically on the role of metacognition.  To this end, we have collected data 

from interviews of students, alumni, and employers; in addition, we have collected think-aloud 

data from students as they solve open-ended design problems.   

 

The think-aloud data were gathered using verbal protocol analysis.  We recorded students’ 

utterances as they solved two engineering design problems: a pre problem at the beginning of 

their engineering program and a post problem at the end.  We identified categories of utterances, 

some metacognitive and some non-metacognitive, and measured the frequency of those utterance 

categories.  However, because problem solving does not reside in a single utterance nor in the 

frequency of utterances but rather in the sequence of the utterance categories, we examined the 

sequences of students’ utterances as they solved the two problems.   

 

This poster will address the sequential nature of the cognitive processes revealed in students’ 

utterances as they solved engineering design problems and identify the role that metacognition 

plays in that sequencing.  We hypothesized that as students acquired greater engineering 

knowledge and were exposed to greater use of metacognitive thinking and strategies that focused 

on that knowledge across their education at IRE, the sequencing of their utterances would 

indicate the following differences from the pre to the post problem:   

   

(1)  greater sustained use of engineering knowledge when solving the post problem;  

(2)  increased metacognitive monitoring occurring before and after the use of engineering 

knowledge on the post problem; 

(3)  greater elaboration of solutions on the post problem;    

(4)  increased metacognitive monitoring before and after providing solutions on the post 

problem;  

(5)  greater use of metacognitive knowledge of strategies on the post problem.    

We begin with a brief discussion on metacognition and methods of measuring metacognition. 

What is Metacognition? 

Metacognition can be defined as “knowledge of one’s knowledge, processes, and cognitive and 

affective states; and the ability to consciously and deliberately monitor and regulate one’s 

knowledge, processes, and cognitive and affective states” [1, p. 3]. This definition, as well as 

others [e.g., 2-8], identify both declarative and procedural components of metacognition (see 

Figure 1).  Included in metacognitive declarative knowledge is one’s knowledge or beliefs about: 

(1) his/her cognitive and affective states and those of others; (2) a task and its demands; and (3) 

strategies for completing the task and how and when to use those strategies [9, 10]. 

Metacognitive procedural knowledge consists of one’s monitoring and control of his or her 

cognitions [9, 11, 12].  Metacognitive monitoring consists of processes that involve a person’s 



ability to: (1) identify the task at hand, (2) check on the current progress on the task, (3) evaluate 

that progress, and (4) predict whether the task will be successfully completed [1, 3].  

Metacognitive control refers to processes that involve a person’s ability to:  (1) allocate cognitive 

resources to the task at hand, (2) determine and direct the steps toward task completion, (3) set 

the intensity of the work, and (4) set the speed of the work on the task [1, 3].  The double-headed 

arrows shown in Figure 1 indicate that information processing at lower levels of the model is 

influenced by higher levels and vice versa.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Model of engineering metacognition and categorization scheme for coding verbal 

utterances.  
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How is Metacognition Measured? 

Metacognition is measured by two categories of approaches:  Off-line measures are those that 

collect data either before or after learning and on-line or real-times measures collect data during 

learning.  The debate regarding which measures provide the best information about how well 

people can self-direct their learning [13, 14] is understandable considering the complexities of 

the metacognition construct (i.e., consisting of declarative and procedural components) as well as 

a valid concern about whether the measures actually portray the psychological processes 

involved.     

Off-line measures of metacognition include interviews or questionnaires.  On-line measures, on 

the other hand, are obtained primarily through real-time think-aloud protocols or accuracy 

ratings.  A think-aloud protocol involves a person verbalizing while solving a problem.  The 

verbalizations are recorded, then they are transcribed and divided into units that can be coded via 

a coding scheme that is based on a priori theoretical assumptions about the processing involved 

in the task at hand.  Both the frequency of the coded verbalizations and the sequence of the 

coded verbalizations can be used as measures of metacognition.  

Metacognitive declarative knowledge is more likely to be validly measured by off-line measures.  

[15].  Metacognitive declarative knowledge reflects stable knowledge and beliefs about oneself 

as a problem solver and stable traits that one has about performing specific cognitive skills.  A 

person’s stable knowledge, beliefs, and traits, although potentially influencing one’s cognitive 

activity, can be retrieved at any time, are resistant to change, and can be independent of 

cognition during actual problem solving.  For example, perceiving oneself to be a good 

mathematics problem solver despite getting all the problems incorrect on a mathematics test.  In 

contrast, metacognitive procedural knowledge, that is, monitoring and control of thinking, is 

more likely to be validly measured by on-line measures such as think-alouds [13, 16].  Think-

aloud protocols have been used for over 100 years in psychological research [17] and have been 

used extensively in writing research [18].  In addition, think-alouds have been used to some 

extent in engineering problem solving [19-24]; however, think-alouds have shortcomings.  The 

validity of think-alouds depends greatly on the coding scheme and the procedure for using the 

scheme [16].  In addition, they are time consuming to analyze, cannot tap into highly 

automatized cognitive or metacognitive processes, and may provide incomplete information 

when research participants fall silent.       

We acknowledge the shortcomings of think-alouds and, in our research processes, took steps to 

lessen them.  For example, we provided a verbal prompt to encourage additional verbalizations 

when students were silent for 5 seconds.  We also worked from theoretically and empirically 

grounded coding schemes and maintained high levels of interrater agreement during our 

categorization procedure.     

Study Participants and Methods 

Study participants were students in their junior and senior years at IRE. At the time our data were 

collected, IRE was a two-year, ABET-accredited engineering program, and students completed 

pre-engineering courses at other community colleges or universities.  Currently, IRE offers a 

four-year engineering program at the same location, Mesabi Community College.  Students 

graduate with a B.S. in Engineering, and most have a specialization in either mechanical 

engineering or electrical engineering, although other specializations are available.  The two-year, 



junior/senior program is non-traditional, in that students take few traditional courses; rather, 

students work in teams every semester to solve real-world problems presented by local industry 

partners.  All work is supervised and mentored by faculty as well as industry mentors.  Direct 

instruction in self-directed learning is included throughout the program. 

All students read and signed an approved IRB Human Subjects consent form.  They were 

selected from two cohorts of IRE students, one beginning the program in January of 2015 and 

one beginning August of 2015.  After attrition and the random selection process for the think-

alouds, we had a total of 12 students who participated in pre- and post-think-aloud protocols. 

One of these 12 students produced a transcript that was too short to use for data analysis, so we 

ended up with 11 students.  The pre think-aloud was administered in the first month of the junior 

year, and the post think-aloud was administered in the last month of the senior year.      

Students were asked to verbalize their thoughts while solving the two engineering design 

problems.  The think-aloud process was not familiar to the students; therefore, immediately 

before reading the first design problem, students were given a short warm-up problem to 

introduce them to thinking aloud and make them comfortable with verbalizing their thoughts.  

For both the pre think-aloud and post think-aloud design problems, students were encouraged to 

verbalize all thoughts as they read and worked through the problems.  If they fell silent for more 

than 5 seconds, the researcher prompted them to continue to verbalize. All sessions were audio 

recorded for later transcription.  The think-aloud sessions ranged from 15 to 25 minutes.         

The first design problem, given to students at the beginning of the program (see Appendix A), 

was adapted from Dixon [23].  The design problem required a redesign of a motorcycle for use 

as a taxi in a mountainous tropical island.  The problem had been judged to be similar to the 

open-ended problems that beginning engineers might be asked to solve on the job [23].  The 

problem consisted of 397 words and had a Flesh-Kincaid Grade Level rating of 10.4.  The 

second design problem was given to students at the end of their program and was developed by 

our research team (see Appendix B).  This problem asked students to redesign a propane-fueled 

camp stove for use by the military in a desert combat zone.  The problem consisted of 432 words 

and had a Flesh-Kincaid Grade Level rating of 9.4.  The two problems were designed to be as 

similar as possible.  Two professional engineers judged the design problems to be similar in 

complexity.  Each problem included eight analogous constraints.  For example, each problem 

addressed maintaining low costs in the redesign, considering climate effects, and incorporating 

human factors such as comfortability.   

Data Analysis 

After transcribing the audio files, each transcription was divided into T-units (i.e., minimally 

terminable units).  T-units are “the shortest grammatically allowable sentences into which the 

theme could be segmented” [25, p. 21], and are generally a main clause plus any modifying 

subordinate clauses.   

During the analyses of the verbal data, we used our categorization scheme (Figure 1) and further 

refined our definitions of each category in the scheme by constant comparison methods.  

Changes to categories were made and agreed upon via discussion between the two coders [25]. 

We added three categories to our categorization scheme, all of which were not metacognitive:  a 

category for utterances relating to the student’s reading of the problem, a category that reflected 

domain knowledge of the context of the problem, and a category relating to solutions for the 



various problem constraints. Some examples of our categorizations taken from students’ verbal 

utterances are:  monitoring/evaluation—“As far as that goes, I think I’ve pretty well worked the 

idea of the problem”; monitoring/check on current progress—“Okay, so I resolved the issue of 

the cargo carrying capacity is going to be up front”; monitoring/identify the task—“Rack must be 

nonmetallic sufficient sturdiness to withstand rugged terrain”; metacognitive declarative 

knowledge/cognitive states—“I’m a horrible drawer”; domain knowledge—“Metal carriers that's 

probably gonna be what most people use is a metal rack because its sturdy, its cheap, and its 

relatively rugged.”  Two raters independently categorized each T-unit into one of the categories. 

Cohen’s Kappa was used to statistically compare the categorizations of the two raters.  

Agreement between the two raters ranged from .64 to .91, with a mean of .81 (SD = .06).  Any 

disagreements were resolved through discussion between the two raters.   

In order to examine the sequences of students’ utterances as they solved the two problems, a lag-

one sequential analysis was conducted for each of the 11 participants for the pre and post 

problems.  Each sequential analysis consisted of tallying the number of transitions going from 

one utterance (lag 0) to the utterance directly following (lag 1).  The frequencies of these tallies 

were then placed in a frequency matrix, examples of which are shown in Tables 1 and 2. The 

frequency matrices in the two tables are from the same student’s pre and post data.  The matrices 

show the total number of each type of sequence.  The vertical column on the left indicates a 

sequence that starts with monitoring, declarative, etc., and the horizontal row indicates what 

followed.  For example, for the pre problem, this student started with a monitoring utterance and 

44 times he/she went to another monitoring utterance, 15 times to a declarative utterance, 15 

times to a non-metacognitive domain knowledge utterance, and 12 times to a non-metacognitive 

solution.  So, the probability that the student started with a monitoring utterance and went to 

some other type of utterance was .42; and, the probability that the student went to a monitoring 

utterance after any other kind of utterance was .40. 

 

Table 1.  Pre-program think-aloud data for a student shown in a Lag-1 frequency matrix 

 Monitor Declarative Domain Solution 
row     

totals 
probability 

of rows 

Monitor 44 15 15 12 86 0.42  
Declarative 17 10 8 4 39 0.19  
Domain 13 14 24 3 54 0.26  
Solution  9 1 7 9 26 0.13  
column totals  83 40 54 28 205   
 
probability of 
columns 0.40 0.20 0.26 0.14    

 

 

 

 



Table 2.  Post-program think-aloud data for a student shown in a Lag-1 frequency matrix 

 Monitor Declarative Domain Solution 
       row    
    totals  

    probability 
       of rows 

Monitor 47 10 38 11 106 0.34  
Declarative 9 20 11 1 41 0.13  
Domain 37 9 68 10 124 0.40  
Solution  9 2 11 19 41 0.13  
column totals  102 41 128 41 312   
 
probability of columns 0.33 0.13 0.41 0.13    

 

Based on each frequency matrix, a Chi Square goodness of fit test was conducted to determine 

whether the frequencies in each cell differed from expected values as determined by chance (and 

thus would be considered significant).  Tables 3 and 4 show the Chi Square matrices that were 

calculated for the data displayed in Tables 1 and 2, respectively.  The Chi Square tables show 

whether the frequencies in the cells in Tables 1 and 2 are different from the frequencies expected 

by chance, and significant.  With 9 degrees of freedom and a critical Chi Square value of 21.67 

at an alpha level of .01, the example in Table 3 shows a significant Chi Square value of 32.78, 

and the example in Table 4 shows a significant Chi Square value of 105.24.  In addition, this 

student showed a significant difference from pre problem to post problem.  The Chi Square 

statistic for the post problem was considerably greater than the Chi Square statistic for the pre 

problem, indicating that the transitions for the post problem diverge to a greater extent from 

chance than the transitions for the pre problem.    

Table 3.  Chi square from Lag-1 frequency matrix for pre data 

 Monitor Declarative Domain Solution  

   Chi 
Square  

Monitor 2.421 0.189 2.586 0.005    32.78  
Declarative 0.093 0.751 0.503 0.330    

Domain 3.593 1.138 6.718 2.596    

Solution 0.221 3.270 0.003 8.360    

        

    
Table 4.  Chi square from Lag-1 frequency matrix for post data 

 Monitor Declarative Domain Solution  

   Chi 
Square  

Monitor 4.399 1.109 0.692 0.616  105.24  
Declarative 1.447 39.629 2.014 3.573    

Domain 0.309 3.266 5.767 2.432    

Solution 1.447 2.130 2.014 34.391    

        

    



In addition to the previous two matrices, for each frequency matrix a z-score matrix was 

calculated to standardize the differences between observed versus expected frequencies for each 

cell, which allows for a direct comparison of the transitions indicated in each cell and provides a 

statistical test for whether the frequencies in each cell are significantly different from chance.  

Tables 5 and 6 below show the z-score matrices for the frequency data for this student.  Ideally, 

the mean of all the z-scores in a matrix would be 0.00, and the standard deviation would be 1.00.  

Because our standard deviation was somewhat higher than 1.00, (that is, the z-scores are spread 

out slightly more than desired), to control for Type I errors, we used an alpha level of .01, which 

placed the critical z-score at 2.58.  Any z-score greater than 2.58 indicates that the frequencies 

from that cell were significantly greater than chance, and any z-score less than -2.58 indicates 

that the frequencies from that cell were significantly less than chance.  Table 5 shows that there 

were four significant cells (identified by the gray-shaded cells).  For example, the 44 monitoring-

to-monitoring sequences shown in Table 1 are significantly greater than what is expected by 

chance as is the post frequency of 47 monitoring-to-monitoring utterances shown in Table 2.  

The domain knowledge-to-domain knowledge sequences and the solution-to-solution sequences 

are significantly greater than expected by chance in both pre and post problems.  In addition, the 

magnitude of the differences in the z-scores from pre to post problems indicate greater 

divergences from chance.  For instance, the 6.752 z-score for the solution-to-solution frequencies 

in the post problem compared to the 3.330 z-score for the same cell in the pre problem indicates 

that the 19 transitions in the post problem diverged from chance to a much greater extent than the 

9 transitions in the pre problem.  

Table 5.  Z-score matrix for pre data 

 Monitor Declarative Domain Solution   

Monitor 2.647 -0.636 -2.459 0.105 0.011 mean 

Declarative 0.439 1.073 -0.918 -0.688 1.981  std dev 

Domain -2.863 1.386 3.519 -2.020   

Solution -0.653 -2.157 0.072 3.330   

 

Table 6.  Z-score matrix for post data 

 Monitor Declarative Domain Solution   

Monitor 3.146 -1.390 -1.333 -1.036 0.057 mean 

Declarative -1.573 7.248 -1.983 -2.176 3.276  std dev 

Domain -0.873 -2.498 4.028 -2.156   

Solution -1.573 -1.680 -1.983 6.752   

 

To interpret the differences between pre- and post-problem solving, we examined the z-score 

cells that were statistically significant either in the pre- or post- problem matrices and then the 

magnitude of the differences.  The monitoring-to-monitoring transitions were significantly 

greater than chance in both problems, but the magnitude of the z-score in the post problem was 

greater than the pre problem, which suggests that monitoring was more sustained in the post 

problem. Another large difference between pre and post is from declarative-to-declarative, which 

is not significant for the pre problem but shows a large difference, and is significant, in the post 



problem.  Part of metacognitive declarative knowledge is knowledge of task and knowledge of 

strategies, so the student could be using knowledge of strategies more often in the post problem. 

In addition, the student was much more likely to follow a solution utterance with another 

solution utterance in the post problem than in the pre problem; thus, the student added to the 

solution utterances or explained them in more depth in the post problem.  The student also 

followed a domain knowledge utterance with another domain knowledge utterance more often in 

the post problem than the pre problem, so use of domain knowledge was more sustained in the 

post problem    

In order to test our hypotheses, we averaged the z-scores in each cell across all students’ pre and 

post problems and computed a Chi Square statistic to analyze differences between the two.  

Table 7 below shows the results for the pre data, and Table 8 shows the results for the post data.  

Cells that are shaded in gray are those that diverge from chance and are considered significant.    

 

Table 7.  Z-score matrix for pre data across all participants (n = 11) 

 Monitor Declarative Domain Solution 

Monitor 3.128 -0.362 -2.413 -0.406 

Declarative 0.178 0.910 0.223 -1.020 

Domain -2.364 0.278 2.637 -0.641 

Solution -1.237 -0.475 -0.284 2.106 

 

 

Table 8.  Z-score matrix for post data across all participants (n = 11) 

 Monitor Declarative Domain Solution 

Monitor 3.367 -0.064 -1.548 -1.222 

Declarative -0.849 4.271 -0.416 -1.691 

Domain -0.992 -1.276 3.230 -1.839 

Solution -1.404 -1.387 -1.849 4.525 

 

 

Table 9.  Chi square from matrix for comparison of pre data and post data 

 Monitor Declarative Domain Solution 

                 Chi 
   Square 

30.014 

Monitor 0.057 0.089 0.748 0.666  
Declarative 1.055 11.296 0.408 0.450  

Domain 1.882 2.415 0.352 1.435  
Solution 0.028 0.832 2.449 5.852  

      

      



Our results are preliminary, but the Chi Square was significant (Table 9).  With 9 degrees of 

freedom and a critical Chi Square value of 21.67 at an alpha level of .01, a Chi Square value of 

30.014 shows a significant difference between the pre- and post-problem sequences.  We found 

support for hypotheses 1, 3, and 5, partial support for hypothesis 2, and no support for hypothesis 

4.  From pre to post problems, students increased their use of engineering domain knowledge, 

elaborated their solutions, and made greater use of their metacognitive knowledge of strategies, 

as reflected in their sustained use of metacognitive declarative knowledge.  In addition, they 

made greater use of metacognitive monitoring before but not after the use of their engineering 

knowledge.  Metacognitive monitoring remained stable before a solution but decreased after a 

solution.   

In conclusion, students in the IRE program showed positive growth in both their engineering 

knowledge and in their metacognitive use of that knowledge.   Our use of a lag-one sequential 

analysis to examine series of think-aloud utterances is unique, and the analysis may offer other 

researchers an additional way to understand the complex procedural aspect of metacognition.  

Understanding how engineering students develop metacognitive skills may help engineering 

programs improve instruction in this area which, in turn, could help students transition more 

effectively into professional practice. 
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Appendix A 
 

DESIGN TASK 
Instruction 

The objective of this engineering design activity is to understand the cognitive process of 

engineering designers as they solve a design problem. Verbal Protocol Analysis will be used. 

This means that as you solve the problem you will be required to “think aloud” (say aloud) 

what you are thinking. If you stop speaking I will remind you to resume speaking aloud as you 

solve the problem. Please include all the notes and sketches of your solution on the sketch pads 

that are provided. 

Duration: 1 Hr 

The context 

Fonthill is a hilly terrain in the District of St. Mary with narrow tracks and virtually non-existent 

roads. This area also experiences high amounts of rainfall yearly. There are several communities 

like Fonthill on this mountainous tropical island. Because of the very poor state of the roads the 

most frequent mode of transportation are motorcycles. Motorcycles are used to take residents 

to and from work, market, and school. While the residents see this system of transportation as 

essential, the government has serious concerns about the safety of the riders and their 

passengers. The government therefore secured a loan to purchase a fleet of motorcycles that 

are specially built to handle these rugged terrains. These motorcycles will be leased as taxis to 

specially trained riders. 

The design problem 

The Honda CRF230 shown on the next page is a cross between a dirt bike and a street bike. 

Modify the Honda CRF230 so that it is robust enough to handle repeated journeys through 

these mountainous terrains that are prone to a lot of rainfall annually. The average cost of a 

new car in this country is about US $25,000.00 and the government expects that the cost of this 

motorcycle will not exceed one third this cost. The motor cycle must also: 

⚫ Be equipped with more cargo carrying capacity and at the same time make the rear 

seating (pillion) more comfortable. 

⚫ Have an improved rack or a holding system for carrying packages, books, or a 

reasonable amount of groceries on the motorcycle. The rack must be non-metallic but 

of sufficient sturdiness to withstand a rugged terrain, occasional brushing against rocks, 

and a lot of rainfall. 



⚫ Be capable of enough horsepower to climb sections of mountains with slopes of 30 

degrees, carrying the rider and the pillion passenger. 

⚫ Have a device to prevent the theft of helmets from the motorcycle. 
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Figure 1. The engineering design task. 

 

 

 

 

 

 

 

 



 

 

 

Appendix B 

DESIGN TASK  

Instruction  

The objective of this engineering design activity is to understand the cognitive processes of 

engineering designers as they solve a design problem. Verbal Protocol Analysis will be used. 

This means that as you solve the problem you will be required to “think aloud” (say aloud) 

what you are thinking.  If you stop speaking, I will remind you to resume speaking aloud as you 

solve the problem.  Please include all the notes and sketches of your solution on the sketch 

pads that are provided. 

Duration: 1 Hr 

The context 

The United States Army has issued a public request for proposals (RFP) to anyone interested in 

designing a two-burner cook stove that is to be used by troops who are actively on extended 

patrol duties under desert conditions.  The stove will be used to prepare meals for patrols of up 

to six soldiers.  I CAN DO IT, a small startup company in Minnesota, has decided to submit a 

proposal and a design for a contract with the Army.  To minimize costs, I CAN DO IT has decided 

to start with a two-burner cook stove shown on the next page and to make modifications to it 

to satisfy the parameters specified in the request for proposals.   The stove shown on the next 

page is easily available and reasonably priced. 

The design problem 

The camp stove shown in figure 1 is a two-burner stove, measuring about 12 inches wide, 20 

inches long, and 3.5 inches high when folded up.  The stove is fueled by propane canisters that 

attach/detach from the stove.  The stove costs about US $60, and the small startup company 

needs to keep design costs down and to make the cost-per-stove low so that they have a more 

attractive proposal.  The stove must also: 

⚫ Be robust enough to withstand rough conditions that can be expected in an active war 

zone. 

⚫ Be built to be used in a dry, dusty, and windy environment so that the clogging of valves 

and burners is avoided. 



⚫ Have increased capacity for carrying more fuel so that the stove can be used over 

extended periods of time on patrol. 

⚫ Be equipped with a carrying rack so that it can be attached to a soldier’s backpack. 

⚫ Have burners that are sufficiently powerful to heat food for six soldiers in a short 

amount of time. 

⚫ Be light weight and compact for easier carrying. 

⚫ Have a device for locking the stove onto a backpack to deter the theft of the stove by 

other patrols that may have had theirs stolen or lost. 

 

 

 

 

                                              

                                                   Figure 1. The engineering design task.  

 

 

 

 

 


