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Abstract

The importance of statistics in engineering is not disputed, but how to effectively take it from a
meaningless ritual to a truly interesting and integral part of a laboratory is disputed, especially at
the introductory level. The current paper describes a simplified statistical procedure that is used
in a sophomore level laboratory course that permits students to easily couple a propagation of
error analysis to a system’s theoretical model. This is accomplished through the use of the
function capability that modern spreadsheets possess. In this case, a Visual Basic function macro
is written to calculate the desired experimental result in terms of the mean values of its measured
parameters. This function is then used to numerically estimate the variance of the result with
respect to each of its measured properties and, therefore, its respective sensitivity to errors in
each of the measurements, as well as the experiment’s maximum probable error. This technique
permits the investigation of more complex and realistic systems in a beginning laboratory.  It
also permits the use of experimental design both to determine what instrumentation should be
used and how to configure the apparatus to minimize the resulting error. Embedding this
uncomplicated technique in a spreadsheet environment is very helpful to the student since
spreadsheets are the natural experimental platform for data presentation and reduction, and this
software already possesses various statistical packages. The details of an example with four
degrees of freedom are documented.

I. Introduction

In 1992, University of Wyoming’s College of Engineering completed an internal review in
which a questionnaire was sent to alumni who graduated in the last decade1. Most reported that
they were adequately prepared to compete with their colleagues but recommended that more
“real world” engineering tasks be incorporated in future curriculums. These tasks included the
development of better oral and written communication skills plus more exposure to computer
tools (engineering graphics, computer programming, spreadsheets and word processing),
engineering statistics, teamwork, and general management. The Mechanical Engineering
Department (ME) immediately initiated a major effort to integrate these constructive criticisms
throughout its curriculum. Many of these suggestions are also delineated in the new
Accreditation Board of Engineering and Technology (ABET) 2000 criteria2. The UW’s P
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Engineering Task Force on Undergraduate Education also recommended students should be
made to rely more on their own resources and less on formal lectures3.

A curriculum reform integrating many of the above recommendations was undertaken.  The first
one credit-hour ME laboratory was restructured from basically a demonstration format to a
class/laboratory mix based on a “discovery” approach. The primary goal of this sophomore level
course is to help students develop the logical thought process that is required in engineering
practice. In this case, it is how to integrate their fragmented knowledge base in mathematics,
dynamics, statistics, programming, and communications to solve authentic, hands-on technical
challenges and then to clearly and concisely report the results. Other educators also have
emphasized the use of hands-on experiments for similar reasons4-10 but many of these are so
uncomplicated that they can be performed at home.

In the past, the inclusion of experimental design and basic statistical analysis of the results in
elementary courses limited investigations to fairly simple and often boring systems. In this type
of environment, statistics becomes almost a meaningless ritual to the students11. Fortunately, the
dramatic changes in computer software now make it easier for students in introductory courses to
incorporate simplified statistical considerations into their experimental work and design
problems. This permits the use of more engaging and realistic systems in which students can
truly comprehend the critical importance of statistics to the engineering profession.

This paper provides an overview of a simplified but concise statistical procedure to combine a
propagation of error calculation with a theoretical analysis. This procedure is used to both
optimize experimental designs and to help evaluate the experimental results. An application of
this procedure to determine the optimum configuration of a reasonably complex multi-degree of
freedom system is detailed here. This example uses a spreadsheet-computing environment,
which is the natural platform for recording data from simple experiments, and its accompanying
Visual Basic function capability.

II. Statistical Procedure

The revised ME class/laboratory emphasizes the application of the participants’ existing
knowledge base, rather than the introduction of new information. The experiments build from a
purely direct measurement, statistical lab to optimizing the configuration of an involved
dynamics system. In this case the pertinent prerequisite courses and material include:

1. Introduction to Engineering and Computing12, which introduces freshman students to
engineering problem solving and computer productivity software.  This contains
instruction in the utilization of Excel spreadsheets, including the application of its
Solver tool to problems involving non-linear regression analysis. A chapter on
statistics is also included which introduces the following basic concepts: sample size,
population, central tendency descriptors, normal distributions, residuals, and
histograms.

2. Math sequence which exposes students to partial differentiation and the construction
of mathematical modeling of physical phenomena.

3. Calculus-based physics course. This freshman course introduces classical mechanics
and the associated physics laboratory also utilizes the basic statistical concepts listed
above and introduces a simplistic procedure to estimate experimental errors.
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4. Engineering Dynamics Course.

The simple statistical rules that are utilized in the above physics laboratory were adopted for the
introductory ME class/laboratory course; subsequent ME laboratories refine the statistical
methods. The equations and rules specified in this procedure are as follows13:

Rule 1. All direct experimental measurements are reported in terms of their mean value ± the
standard deviation of its mean, 

X
XX σ±= , where

,                                                                              (1)

n is the sample size and Xi is an individual measurement. The normal distribution is used to
demonstrate that a sample’s mean value is the best estimate of a quantity’s true value.  This
relationship is assumed to be reasonable for all the laboratory measurements without any
formal justification. The specified relationship for the standard deviation of the mean, 

X
σ ,  is

defined in terms of the sample’s standard deviation, S, or measurement accuracy where

                      (2)

and

                                                                     (3)

No theoretical arguments for the above definition of S are presented other than to note that
the standard deviation of a sample consisting of a single measurement should be undefined.
The use of the quantity ( )nS /  to calculate

X
σ  is also stated without proof but again assumes

a normal distribution.

The second quantity in the
X

σ  formula gives an estimate of a measurement’s accuracy with

regards to a measuring scale’s resolution and the round-off error of a digital output. It is
based on the theoretical assumption of a uniform probability within the minimum scale
markings (output). This result is also given without proof but justified with a physical
argument that one should be able to estimate a reading to approximately one-third (≅ 1/√12)
the minimum scale.

Rule 2. A result property R(x,y,...) that is computed from an explicit function of the measured
parameters (x,y…) is reported in terms of its mean value ± its maximum probable error,

                                                              (4)

where the maximum probable error 
R

σ  is defined as11, 13, 14
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                                    (5)

This maximum probable error expression reduces to the exact expression for the variance of R if
R is a linear function of the independent variables (x,y…), which in turn all have normal
distributions, and their respective errors are independent of each other. The linear function
requirement is met if the variances of the independent variables are small enough so that a first
order Taylor series expansion of R is valid in this error domain. Researchers have shown that the
assumption of normality is reasonable except in situations concerned with the extreme values of
the variables, i.e. the tails of a distribution15.

This overly simplified procedure gives the students a methodology that they can easily
understand to calculate the gross statistical characteristics of their experimental design and
resulting data. Of course this assumes that the desired experimental result R can be written as a
simple explicit function of the measured variables. This is the case for all the demonstration
experiments that are performed in the introductory physics laboratory; each apparatus has a
given configuration, the experimental procedure and the instrumentation to be used are specified,
and the relevant relationships are delineated. The above statistical procedure is only used to
calculate the maximum probable error and perform a sensitivity analysis upon completion of the
experiment. Therefore, no experimental design is done before an experiment is performed in an
attempt to minimize the error in the results.

Unfortunately, the numerical evaluation of the partial derivatives in the maximum probable error
relationship (i.e. Equation 5) is often quite difficult to perform analytically for a majority of the
more realistic and intriguing problems. This can be true even if a symbolic logic program is
utilized since these programs are frequently quite cryptic and difficult to use in parametric
studies, such as experimental design problems.

III. Numerical Error Evaluation

If the variances of the measured variables are small enough, the maximum probable error
relationship, Equation 5, can be approximated by the first order relationship

       (6)

The above calculation can be readily and efficiently executed in a worksheet environment
through the use of a Visual Basic function macro in Excel, independent of the complexity of the
explicit result function R.  Students are given brief instructions on how to write a function macro
along with an illustration of Equation 6 that they can download to help them learn by example.
This illustration and corresponding homework assignments are all elementary enough to permit
comparisons between analytical and numerical results.  These homework assignments present a
practical method for estimating the relative sensitivity of a dependent variable’s variance to
errors in each of its directly measured independent variables. Furthermore, this approach permits
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parametric studies and corrections to be readily implemented. Consequently, it helps eliminate
most of the drudgery associated with these types of calculations.

It should also be noted that the students enter this class/lab with no formal programming
background. Besides the brief introduction to Visual Basic function programming, the use of
“proper programming practices” is also demonstrated and enforced. This includes such things as
well commented spreadsheets and the use of Named Variables rather than cell references. The
point is made that a little time spent initially can aid substantially in debugging spreadsheets as
well as effectively documenting one’s work for future references.

These concepts are reinforced the work performed in the inaugural laboratory and subsequent
homework exercises. The first objective of this laboratory is to get acquainted with all the
measuring instruments that will be available for use in every experiment and to determine their
respective accuracies. This information is important in the student’s experimental design of
subsequent experiments and data reduction. Some of the available instruments are quite crude to
intentionally introduce significant errors in certain measurements. This forces the students to
visually recognize that there must be uncertainty in their results.  Other educators have noted
sophisticated equipment can give students the illusion of accuracy4. Further, sophisticated
gadgetry often obscures the studied phenomena and may confuse some students16.

Simple experimental measurements are then performed during this initial laboratory that
involves obtaining a statistical sample of some directly measurable property or properties. The
students are asked to perform some basic statistical analysis on these data that includes a
sample’s histogram and standard deviation of its mean according to Equation 2. These measured
data are also used to determine a simple calculated property such as density or moment of inertia
and its respective maximum probable error. The students are again asked to compare analytically
(equation 5) and numerically (equation 6) calculated maximum probable error.

The students are asked to produce a brief but comprehensive memo with attachments that reports
their experimental results. Since this is the first time that many of these sophomores have been
required to produce a narration that integrates various mathematical, statistical, numerical,
programming, graphical and experimental concepts, it is very important that this initial
experimental assignment does not overwhelm them. The homework assignments must
adequately prepare them for this work and the first experiment must be so basic that it also helps
to foster a non-intimidating environment.

IV. Details of an Example Laboratory Design Project

As previously mentioned, the real power in the proposed maximum probable error numerical
approach is the ability to perform a basic error analysis on more realistic and complicated
systems. Since engineers seek superior if not optimal designs within well-defined constraints, the
last laboratory experiment mimics this objective by challenging the students to determine an
optimum experimental configuration for a multi-degree of freedom, dynamics apparatus. This
final laboratory assignment is intended to enhance the students’ design competence via a hands-
on and open-ended laboratory experience. It is always linked to at least one previous experiment
in which pertinent empirical information is obtained. Figure 1 illustrates the type of experimental
design problem that is presented. In this case the design objective is to determine the pendulum

P
age 4.545.5



launcher configuration that minimizes the
maximum probable error for a specified range
L0. The string length R, the launch pin pivot
angle φ and the initial ball-string displacement
angle θ that is used to launch the ball are all
completely arbitrary while the pin height H is
confined by our particular apparatus to a range
between 0.8 to 1.6 m.

For this particular design experiment, the slip
angle for various string/wire combinations is
measured in the linked experiment. The
experimental procedure calls for the
suspension of a plumb bob that utilizes a
designated string on a specified straight wire.
Each two-person team makes multiple
measurements of the string/wire slip angle (φµ)
by rotating the wire next to a small protractor, both of which are handheld. In this case, both the
measuring instrument and experimental procedure are intentionally specified to be crude but
simple. Each team also investigates if there appears to be any functional dependence on the plum
bulb’s weight and/or on the wire’s diameter. It should be noted that these diameter measurements
represent the first time many students have utilized micrometers and calipers. Each team
investigates only a single string/wire material combination, but several material combinations are
utilized among all the laboratory teams. The class’ accumulative data set presents the class with
some quantitative information about how the string/wire slip angle varies with some possible key
physical parameters. One of
these string/wire
combinations is specified
for use in the pendulum
launcher design
experiment, i.e. the chosen
wire will be used to
construct the pin.  Sample
class results are shown in
Figure 2.

For the design problem,
each student must come up
with what s/he believes to
be an optimum launcher
configuration. To model
this launcher, students must recognize on their own that:

1. the classical pendulum and free trajectory analyses are joined by the empirical slip
angle which was measured in the linked laboratory experiment;

Figure1. Pendulum Launcher
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2. there are constraints on R, θ and φ in addition to the before-mentioned pin height (H)
constraint, and that these constraints must be imposed to obtained a valid
configuration.

3. for a given range (L0), ball diameter (D) and slip angle (φµ), only three of the four
geometric variables in the set (R, φ, θ, H) are independent.

H was arbitrarily chosen as the dependent variable in this example and the Excel Visual Basic
function that performs the corresponding dynamic calculations to produce H(L0, R, θ, φ, φµ,, D) is
presented in Appendix I. The analogous range function L(H, R, θ, φ, φµ, D) is also presented in
this appendix. This range function permits the numerical calculation of the variation of range for
a given uncertainty in any of the independent variables. This in turn allows the numerical
calculation of the maximum probable error for a given configuration. The Excel worksheet in
Appendix II.A illustrates this for the case with the following specified variables and their
respective standard deviations: L0 = 0.50 m, D = 4.76 ± 0.08 cm and φµ, = 40° ± 7° which
corresponds to the nylon twine/steel pin of 4.80 ± 0.03 mm diameter combination (see Figure 2).
This Appendix also indicates that the initial guesses and their respective standard deviation for
the independent parameters are: R = 10.0 ± 0.5 cm, θ  = 65° ± 3° and φ = 0 ± 2°.

The worksheet results shown in Appendix II.A indicate that the required pin height is H = 1.54 ±
0.02 m. This assumed configuration is within the constraint envelope, and it results in a predicted
maximum probable error of ± 9.3 cm in the range, L0 . The results also imply that the uncertainty
in φµ (i.e. spreadsheet variable dLdphif^2) produces most of the error in the range. Note that
meaningful functional relationships are easily expressed through the use of cell names.

Excel’s Solver tool, which uses a generalized reduced gradient nonlinear optimization algorithm,
can then be used to determine an
optimum configuration. Figure3
indicates that cell MPE, the
maximum probable error
location, is to be minimized by
varying the independent
variables R, θ and φ within their
respective constraints. Most of
the launcher constraints are
listed in Figure 3. Running
Solver results in the following
configuration: R = 6.4 ± 0.5 cm,
θ  = 84° ± 3°, φ = -27° ± 2° and
H = 0.80 ± 0.02 m which is at its
lower constraint. The range’s
maximum probable error drops
from ± 9.3 cm for the initial
guessed configuration to ± 2.2 cm

Figure 3 Excel’s Solver Window
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for this optimum configuration (see Appendix II.B). For this new configuration, the uncertainties
in θ and R instead of φµ are now responsible for most of the maximum probable error in the
range. The optimum configuration reduced this error by 76% in this case.

When the students physically perform this experiment they can determine the validity of their
experimental design. If the experimentally determined pattern of impact points lie outside the
predicted maximum probable error band, they must try to identify possible causes and corrective
actions. For instance, closer examination of the apparatus may indicate that the somewhat a
priori estimation of measurement errors made in the pre-lab must be improved if they were
underestimated for the actual experiment. They may discover errors in their assumptions,
analysis, programming, or that the model must be refined. Any changes that students decide to
make to their pre-lab model and/or input values can be rapidly implemented by editing the
spreadsheet and/or its associated Visual Basic macro function if these were initially well done.

Overall, the experiment is quite successful demonstrating that error analysis is essential in
design. Though the students use the Solver optimization tool as a black box, they are able to
observe and demonstrate via parameter studies that an optimum solution has been found. While
the experiment is intentionally designed to use inexpensive and unsophisticated equipment and
instrumentation, it is still able to mimic the “real world” where modeling of a system with some
complexity is required. Further, the experiment is designed with a flexible configuration such
that 1) different experimental objectives may be posed, with different constraints becoming
active and 2) a particular design variable may be measured via alternative methods.  This
versatility helps prevent the problem with “dry labs.” The parameter study found in Appendix
II.C illustrates that changing the desired range yields a very different solution with different
constraints becoming active.

V. Conclusions

With the dramatic changes in computational tools, from slide rules to calculators to spreadsheets,
it is now possible to perform a basic propagation of error analysis efficiently and effectively
through the use of numerical differentiation. Through repeated implementation of a given
statistical procedure, the instructors have tried to provide the students with a deeper
understanding of the importance and power of performing an error analysis in experimental
design.  Namely, the sensitivity of the probable error of a calculated result to the accuracy of the
various measurements that are to be made can be investigated ahead of time. Though the
statistical concepts are oversimplified, the authors feel that they have been successful in giving
students 1) a sense of the importance of error analysis in experimental design and 2) some
introductory tools which will assist them in performing these types of analyses in their
engineering practice. Generally, the students become quite knowledgeable in using function
modules by the end of the semester, and many of them continue to utilize the spreadsheet’s
function modules and optimization technique throughout their educational careers. More
importantly, students leave the course with a sense of accomplishment that they have
independently integrated various components of experimental design (modeling, numerical
uncertainty analysis, experiment execution, and evaluation of results).
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Appendix I

Function H (L, R, theta, phi, phif, D)
‘This function determines the required launcher pivot point
‘height given the other geometric parameters

‘D = ball diameter (m)
‘L = range (m)
‘H = launcher’s pivot height (m)
‘phi = pivot angle (deg)
‘phif = string/pivot wire slip angle (deg)
‘R = string length (m)
‘t = free trajectory time of flight (s)
‘theta = launch angle (deg)
‘V0 = exit velocity from launcher (m/s)
‘y0 = vertical free fall distance (m)

g = 9.807  ‘gravitational constant (m/^2)
Pi = Application.Pi()
R = R + D / 2  ‘pivot point to ball’s c.g. radius

‘change all angles to radians
phi = phi * Pi / 180
phif = phif * Pi / 180
theta = theta * Pi / 180

‘mechanical energy balance applied to launcher:
‘ball’s initial energy = its exit energy
V0 = Sqr(2 * g * R * (Cos(phi + phif) - Cos(theta)))
V0x = V0 * Cos(phi + phif)  ‘horizontal exit velocity (m/s)
V0y = V0 * Sin(phi + phif)  ‘vertical exit velocity (m/s)

‘free trajectory analysis
t = (L - R * Sin(phi + phif)) / V0x
y0 = g * t ^ 2 / 2 - V0y * t
H = y0 + D / 2 + R * Cos(phi + phif)

End Function

Function L(H, R, theta, phi, phif, D)
‘This function determines the range given the other geometric

parameters
‘D = ball diameter (m)
‘L = range (m)
‘H = launcher’s pivot height (m)
‘phi = pivot angle (deg)
‘phif = string/pivot wire slip angle (deg)
‘R = string length (m)
‘t = free trajectory time of flight (s)
‘theta = launch angle (deg)
‘V0 = exit velocity from launcher (m/s)
‘y0 = vertical free fall distance (m)

g = 9.807  ‘gravitational constant (m/^2)
Pi = Application.Pi()
R = R + D / 2  ‘pivot point to ball’s c.g. radius

‘change all angles to radians
phi = phi * Pi / 180
phif = phif * Pi / 180
theta = theta * Pi / 180

H = H - D / 2  ‘pivot’s effective height (m)
‘mechanical energy balance applied to launcher:
‘ball’s initial energy = its exit energy
V0 = Sqr(2 * g * R * (Cos(phi + phif) - Cos(theta)))
V0x = V0 * Cos(phi + phif)  ‘horizontal exit velocity (m/s)
V0y = V0 * Sin(phi + phif)  ‘vertical exit velocity (m/s)
y0 = H - R * Cos(phi + phif)

‘free trajectory analysis
t = (V0y + Sqr(V0y ^ 2 + 2 * g * y0)) / g
L = R * Sin(phi + phif) + V0x * t

End Function
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Appendix II
A. Initial Guesses

B. Excel Solver’s Optimum Solution

L0 = 0.500 (m) Desired Target Range
D = 4.76E-02 (m) Handball Outer Diameter dD = 8E-04 (m)  Given in handball rule handbook

phif = 40 (deg) String/Pivot Wire Slip Angle dphif = 7 (deg) Based on Experiment #1 results

Rs = 0.100 (m) String Length dRs = 0.005 (m) assumed 0 <= Rs <= H0 - D (m)
theta = 65 (deg) launch angle dtheta = 3 (deg)  assumed 0 <= theta <= 90 (deg)

phi = 0 (deg) pivot angle dphi = 2 (deg)  assumed -(90 + phif) <= phi <= 90 (deg)

H0 = 1.54 (m) = H(L0,Rs,theta,phi,phif,D) dH = 0.02 (m) assumed 0.8 <= H <= 1.6 (m)
= Required height for above Geometric Paramters

dLdH = 0.003 (m) =L(H0 + dH,Rs,theta,phi,phif,D) - L0 (dLdH)^2 = 6.90E-06 (m^2)
dLdRs = 0.012 (m) =L(H0,Rs+dRs,theta,phi,phif,D) - L0 (dLdRs)^2 = 1.45E-04 (m^2)

dLdtheta = 0.032 (m) =L(H0,Rs,theta+dtheta,phi,phif,D) - L0 (dLdtheta)^2 = 1.01E-03 (m^2)
dLdphi = -0.023 (m) =L(H0,Rs,theta,phi+dphi,phif,D) - L0 (dLdphi)^2 = 5.08E-04 (m^2)

dLdphif = -0.084 (m) =L(H0,Rs,theta,phi,phif+dphif,D) - L0 (dLdphif)^2 = 6.97E-03 (m^2)
dLdD = 9.11E-04 (m) =L(H0,Rs,theta,phi,phif,D+dD) - L0 (dLdD)^2 = 8.29E-07 (m^2)

Variance = 8.65E-03 (m^2)
Max Prob Error  = MPE = 0.093 (m)

Mean Standard Error 
or Measured Error

Geometry Dependent Variable

Independent Geometric Parameters

Numerical VariancesNumerical Differentials

Constraints in Solver

Given Geometric Parameters

L0 = 0.500 (m) Desired Target Range
D = 4.76E-02 (m) Handball Outer Diameter dD = 8E-04 (m)  Given in handball rule handbook

phif = 40 (deg) String/Pivot Wire Slip Angle dphif = 7 (deg) Based on Experiment #1 results

Rs = 0.064 (m) String Length dRs = 0.005 (m) assumed 0 <= Rs <= H0 - D (m)
theta = 84 (deg) launch angle dtheta = 3 (deg)  assumed 0 <= theta <= 90 (deg)

phi = -27 (deg) pivot angle dphi = 2 (deg)  assumed -(90 + phif) <= phi <= 90 (deg)

H0 = 0.80 (m) = H(L0,Rs,theta,phi,phif,D) dH = 0.02 (m) assumed 0.8 <= H <= 1.6 (m)
= Required height for above Geometric Paramters

dLdH = 0.006 (m) =L(H0 + dH,Rs,theta,phi,phif,D) - L0 (dLdH)^2 = 4.08E-05 (m^2)
dLdRs = 0.014 (m) =L(H0,Rs+dRs,theta,phi,phif,D) - L0 (dLdRs)^2 = 1.96E-04 (m^2)

dLdtheta = 0.015 (m) =L(H0,Rs,theta+dtheta,phi,phif,D) - L0 (dLdtheta)^2 = 2.37E-04 (m^2)
dLdphi = 0.002 (m) =L(H0,Rs,theta,phi+dphi,phif,D) - L0 (dLdphi)^2 = 3.34E-06 (m^2)

dLdphif = 0.001 (m) =L(H0,Rs,theta,phi,phif+dphif,D) - L0 (dLdphif)^2 = 2.11E-06 (m^2)
dLdD = 1.00E-03 (m) =L(H0,Rs,theta,phi,phif,D+dD) - L0 (dLdD)^2 = 1.00E-06 (m^2)

Variance = 4.81E-04 (m^2)
Max Prob Error  = MPE = 0.022 (m)

Propagation  of  Error Analysis for a Pendulum Launcher

Mean Standard Error 
or Measured Error

Geometry Dependent Variable

Independent Geometric Parameters

Numerical VariancesNumerical Differentials

Constraints in Solver

Given Geometric Parameters
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C. Parameter Study

JOHN NYDAHL
John Nydahl is currently a professor of Mechanical Engineering at the University of Wyoming and is actively
involved in renewable energy research. Dr. Nydahl received his B.S. and M.S. degrees in Aeronautical Engineering
from the University of Florida and a Ph.D. in Mechanical Engineering from Colorado State University in 1971.

NANCY PECK
Ann “Nancy” Peck joined the University of Wyoming’s Mechanical Engineering department in 1995. Her research
interests include the analysis and design of composite structures and the use of structural optimization tools.  She
received her B.S. in Mechanical Engineering from Lehigh University and the M.S. and Ph.D. degrees from
Rensselaer Polytechnic Institute (1992).

L0 (m) = 0.330 0.500 0.750 1.000 2.000
Rs (m) = 0.014 0.064 0.100 0.150 0.525

theta (deg) = 84 84 90 90 90
phi (deg) = -27 -27 -23 -23 -8

H (m) = 0.80 0.80 1.10 1.38 1.60
Max Prob Error (m) = 0.025 0.022 0.028 0.033 0.101

* Shaded Cells indicate variable is at a constraint boundary

Parametric Study
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