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The Use of Symbolic Solvers in Engineering Education 
 

Abstract 
 
There are many books and pedagogical papers on how to use mathematical CAD programs to 
perform numerical calculations for engineering problems.  In contrast to numerical calculations, 
this paper explores the use of symbolic solvers for mechanical engineering problems and 
investigates the pedagogical inferences of using these solvers in mechanical engineering 
education.  Classroom explanations and homework for engineering courses sometimes require 
tedious symbolic manipulations of equations or systems of equations, differentiation of complex 
functions, and evaluation of integral expressions. The use of computational software systems, 
such as Mathcad, Mathematica, Maple, and Macsyma, capable of symbolic manipulations, 
allows the student to focus more on the engineering aspects of a problem than on performing the 
algebra. With less time spent on evaluating integrals, performing complex differentiations, and 
solving systems of equations, more time is available for students to engage in higher-level 
synthesis and understanding. Several examples are presented in this paper to demonstrate how 
symbolic manipulation software can be successfully employed in the classroom and in 
homework.  The examples are taken from both undergraduate and graduate courses.  Although 
the examples in this paper are appropriate for mechanical engineering, the paradigm is 
transferable to any engineering discipline in which problem formulations result in systems of 
complex equations whose solutions require tedious (and error prone) manipulations. 
 
Introduction 

Advanced mathematical CAD software offers a great opportunity to enhance the educational 
experience in engineering courses. The authors have been actively involved in using 
mathematical computer solvers in engineering education in order to inculcate a systematic 
approach to problem solving, e.g., see Hodge [1], Hodge [2], and Hodge and Luck [3]. In this 
paper the authors describe a different aspect of mathematical CAD software: the ability to 
perform symbolic manipulations.  This latter feature of some mathematical CAD software can be 
exploited by engineering instructors to help emphasize conceptual thinking while reducing 
unnecessary frustration on the students due to long algebraic steps and other repetitive analytical 
calculations required in differentiation, integration, and minimization of mathematical formulas.  
With less time spent on evaluating integrals, performing complex differentiations, and solving 
systems of equations, more time is available for students to engage in higher-level synthesis and 
understanding.  

Symbolic manipulation, initially viewed as “computer algebra,” is not new in engineering or 
engineering education.  The first relatively useful symbolic manipulation software elements 
appeared in the 1970s.  Symbolic manipulation is in the mainstream of computer applications 
with its own journal, The Journal of Symbolic Computation, founded in 1985.  However, the 
Journal is a specialist journal with most articles delving deeply into the subject and well beyond 
the skills of typical engineering undergraduates.  One of the first ASEE references to symbolic 
manipulation was by Marcovitz [4] and appeared in 1977 in the ASEE COED Transactions.  The 
software element, PRISM, discussed in the paper had limited capability, but did illustrate 
important aspects of symbolic manipulation.  Hodge [5] in 1992 discussed the use of symbolic 
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manipulation in developing lecture and textbook materials.  Hodge utilized a version of 
DERIVE, one of the early, inexpensive symbolic manipulation software elements.  Indeed, he 
suggested that symbolic manipulation would rapidly become assimilated in the engineer’s tool 
kit.  While many popular CAD software systems do contain symbolic manipulation capabilities 
and while some students utilize such capabilities, the widespread diffusion of symbolic 
manipulation into the engineer’s tool kit has not matured.  The theme of expected/suggested 
usage of symbolic manipulation has continued in recent years with Nygren [6] in the 2004 ASEE 
Frontiers in Education Conference and with Kam [7] in the IEEE in 2011.  Both of these 
references view symbolic manipulation as underutilized and support enhanced use of symbolic 
manipulation in engineering education.   

Additionally, many ASEE divisions have accepted papers related to symbolic manipulation.  A 
Google search using “ASEE symbolic manipulation” yields a number of hits.  However, 
considering the relative availability of symbolic manipulation software, the number of ASEE-
related paper/publications on symbolic manipulation is relatively small.  Recent offerings (but 
far from an inclusive list) appropriate for mechanical engineering include Parker [8], Belu et al. 
[9], Belu et al. [10], and Shah et al. [11].  These are generic references cited as illustrative 
examples of symbolic manipulation in engineering education.   

Purpose and Pitfall 

This article describes how, in the Mechanical Engineering (ME) Department at Mississippi State 
University (MSU), symbolic solvers are used in several courses including the undergraduate 
level Engineering Analysis (EA), System Dynamics (SD), and Introduction to Vibrations and 
Controls (IVC) courses and the graduate level Convective Heat Transfer (CHT) course.  The 
CAD software used in ME at MSU is Mathcad; hence, all MSU ME students have student 
editions of Mathcad and are expected to use it in most MSU ME courses.  The ME Department 
purchases a Mathcad site license each year so that Mathcad is provided at no additional costs to 
ME students (and to non-ME students enrolled in some ME courses) The Engineering Analysis 
course provides an introduction to Mathcad including symbolic manipulation.  A general 
reference, in addition to Mathcad web-based information, is that of Maxfield [12]. 

One of the pitfalls of using symbolic solvers is that, without careful guidance, computer 
generated symbolic calculations can rapidly degenerate into large cumbersome expressions that 
are meaningless to the students.  For example, the following long expression for the vibrations of 
an underdamped mass-spring-damper system, 

 

can be greatly simplified by clearly stating the assumption on the variables, substituting for well 
known groups of variables, and factorizing terms of interest.  The more useful result is as 
follows: 
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Thus, the students need to be carefully guided on how to use symbolic manipulations in a 
productive manner.  Without such guidance, students often “win” the solution battle, but lose the 
“understanding” war. 

The following sections describe the philosophy behind the courses and present details and 
examples of typical homework. 

Philosophy behind the Engineering Analysis (EA) course:  

A main objective behind the EA course is to consolidate the mathematical skills acquired during 
the freshman and sophomore years while emphasizing their use in posing and solving 
appropriate engineering problems. This is partly accomplished through the process of learning 
how to use Mathcad.  Students are introduced to Mathcad functionality by demonstrating how to 
define functions, symbolically perform differentiation and integration, simplify systems of 
algebraic and trigonometric expressions, perform series analysis, find optimal solutions, fit 
equations to data, and solve differential equations. In the homework problem illustrated in Figure 
1, the objective is to guide the students to enhance their experience on the how to use Taylor 
series approximations.  As demonstrated in the example, a rather cumbersome expression is 
defined and graphed, then a third-order Taylor series approximation about the point x = 1 is 
obtained symbolically and compared in the same plot.  Since the objective in this assignment is 
not to practice differentiation, but to clearly understand how well the Taylor series 
approximation works and the meaning of truncation error, the symbolic approach is well suited 
for this problem.  Students are encouraged to change the order of the approximation by simply 
modifying one number in the symbolic Taylor series expansion command and observe how the 
graphs are automatically redrawn showing the possible improvements in the approximation; this 
is a great advantage of using symbolic solutions to interactively observe changes due to different 
parameter values or different functions.  Students in the EA course responded well to this 
assignment and exhibited a good level of understanding on the value of Taylor series 
approximation and truncation error on a subsequent quiz. 

Philosophy behind the System Dynamics (SD) course:  

The SD course is an introduction to modeling and understanding the dynamic response of 
systems typically encountered in mechanical engineering through the use of lumped parameters.  
These systems considered consist of combinations of mechanical, electrical, hydraulic, and 
pneumatic systems.  Students are taught to draw a diagram of the system, e.g., a “free-body 
diagram” for the mechanical part of the system or an electric diagram with well defined current 
and voltage variables for the electrical part of the system, and to use the diagrams to obtain a set 
of equations modeling the transient or dynamic response of the system.  More importantly,  
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Figure 1.  Worksheet for Example 1. 

students are taught to interpret the differential equations modeling the transient response of the 
system from the perspective of time constants, damping ratios, and natural frequencies.  The 
homework problem, presented in Figure 2, is designed to help the student understand the 
convenience of using the method of partial fraction expansions and how the time constants are 
readily available from each partial fraction.  Symbolic calculations are used to simplify the 
algebra and the numerical substitutions allowing the students to concentrate on the form of the  

Given : f x( ) x2 e x−
⋅ sin x( )⋅:=

Find : The Taylor series expansion to the third derivative term to approximate the function about
the point  xo = 1.

Plot the function and the approximate function in a single graph and show the truncation
when x=2..

Solution :

 Three decimal points will be used in the results (float 3) to make the answers shorter.

g x( ) f x( )
series x 1, 4, 

float 3, 
0.31 0.508 x⋅ 0.508−( )+ 0.111 x 1.0−( )2

⋅− 0.339 x 1.0−( )3
⋅−→:=

0 1 2
0.4−

0.2−

0

0.2

0.4

0.6
g(x)
f(x)

truncation error
f(1)=g(1)

Taylor Series Approximation and Truncation Error

x

f(
x)

 v
s. 

g(
x)

The truncation error at x=2 is the difference between both plots when x=2. 
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Figure 2.  Worksheet for Example 2. 

Given: 

The following transfer function: TF s( )
y s( )
u s( )

s 50+( )

s2 12 s⋅+ 20+

Find:  
(A) The response y(t) to a unit step input using the method of partial fraction expansion. 
(B) The time y(t) will take to reach within 1% of the steady-state value.

Solution:  

Simplifying for the output of the system:

TF s( )
s 50+( )

s2 12 s⋅+ 20+
:= u s( )

1
s

:= Y s( ) TF s( ) u s( )⋅ simplify
s 50+

s s 2+( )⋅ s 10+( )⋅
→:=

it follows by partial fraction expansion that

Y s( )
A

s 10+
B

s 2+
+

C
s

+ and the time solution is of the form y t( ) A e 10− t
⋅ B e 2− t

⋅+ C+

Solving for A, B, and C:

A s 10+( ) Y s( )⋅ substitute s 10−, 
1
2

→:=

B s 2+( ) Y s( )⋅[ ] substitute s 2−, 3−→:=

Solution A 
C s Y s( )⋅ substitute s 0, 

5
2

→:=
y t( )

1
2

e 10− t⋅
⋅ 3e 2− t⋅

−
5
2

+:=

Part (B)

For the exponential component, e 10− t: τ 1
1

10
:= seconds

For the exponential component, e 2− t⋅
τ 2

1
2

:= seconds

Since, τ 2 τ 1>  then, τ 2 is the dominant root.

The time it will take for y(t) to reach within 1% of the steady-state value:

tsteadystate 4.6 τ 2⋅ s⋅:= Solution B 
tsteadystate 2.3 s=

Verification:  

For part (A), the results are verified by using the basic inverse Laplace symbolic function to obtain the
time response of the transfer function give in the problem statement.  The compared time responses
are identical, therefore the results are verified.

y t( ) Y s( ) invlaplace s, 
e 10− t⋅

2
3 e 2− t⋅

⋅−
5
2

+→:=

For part (B), the time response y(t) of the system is plotted versus time (t).  Upon visual inspection, it
can be seen that at approximately 4.6 x time constant (2.3 seconds) the system has reached within 1%
fo the steady-state value.  
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0
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1.5

1.75
2
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y t( )

4.6 τ 2⋅τ 2

t
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partial fraction expansion, i.e., on the sum of the partial fractions.  The verification process used 
a simple symbolic calculation to provide another solution that can be used to compare the results 
from that of the partial fraction solution.   

Philosophy behind the Introduction to Vibrations and Controls (IVC) course:  

The IVC course concentrates on vibrations and controls application using the mathematical 
modeling techniques learned in the SD course.  One of the main objectives of the IVC course is 
to obtain a basic, engineering-level understanding of feedback control. A second objective is to 
become familiar with techniques used in vibrations of practical mechanical systems, for instance, 
vibration isolation and transmissibility of vibrations. A typical problem in introductory controls 
courses is to simplify a block diagram.  The example in Figure 3, demonstrates how this tedious 
algebraic process can be easily tackled with a symbolic command.  The advantage of the 
symbolic commands is that they permit students to concentrate their efforts on posing the correct 
equations for subsequent algebraic reduction.  This is one of the main advantages of using 
symbolic solvers in engineering education: allowing the students to concentrate their efforts in 
posing the problems correctly instead of spending most of their efforts in algebraic exercises.  
Instructors are then able to ask the students to tackle much more interesting problems that would 
otherwise require too much work by the students.   

Philosophy behind the Convection (graduate) course:  

The CHT course is a conventional graduate-level heat transfer course that emphasizes 
differential equation formulations and solutions.  Much of the first part of the course is devoted 
to the classical laminar solutions of convective heat transfer.  The textbook used is Bejan’s 
Convection Heat Transfer (third edition) [13].  Mathcad is adopted to obtain the numerical 
solutions of virtually all the classical two-dimensional, constant-property, laminar convective 
heat transfer boundary-value problems, including free convection formulations.  Experience in 
teaching the CHT course has demonstrated the pedagogical usefulness of providing solution 
procedures rather than just referring to tabular and/or graphical solution presentations.  Class 
time is used to develop in detail (from the outline provided in the textbook) the general 
formulation of integral solutions to both the momentum and energy equations.  Symbolic 
manipulation via Mathcad is utilized to demonstrate the simplest of the integral profile 
approximations—linear.  A homework assignment is made requiring the students to do the 
complete integral solutions for a more complex profile assumption—quadratic, cubic, quartic, or 
trigonometric.  Figure 4 is a copy of the Mathcad worksheet used to discuss the integral 
procedure with the linear profile used.  Figure 5, the integral solution for a cubic profile, 
illustrates what a student is expected to accomplish as a homework assignment.  The 
development of integral solutions for Prandtl numbers greater and less than unity forces to 
student to understand Bejan’s scale analysis and how that translates into an understanding of the 
effect of Prandtl number on the resulting solutions.  Experience indicates this to be an effective 
teaching/learning tool at the graduate level.    
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Figure 3.  Worksheet for Example 3. 

 

Given :  The block diagram shown 

Find:    The transfer function relating the output e to the input R.

Solution:  

All inputs other than R must be set to zero:   N 0

Given

Y F e K⋅ R G1⋅ H1⋅+( )⋅

e R G1⋅ H2 e K⋅ R G1⋅ H1⋅+ Y G2⋅+( )⋅−

Find Y e, ( )

F G1⋅ H1⋅ R⋅ F G1⋅ K⋅ R⋅+

H2 K⋅ F G2⋅ H2⋅ K⋅+ 1+

G1 H1⋅ H2⋅ R⋅ G1 R⋅− F G1⋅ G2⋅ H1⋅ H2⋅ R⋅+

H2 K⋅ F G2⋅ H2⋅ K⋅+ 1+
−

⎛⎜
⎜
⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎟
⎟
⎠

→

e
R

G1−
1− H2 G2⋅ F⋅ H1⋅+ H2 H1⋅+( )
1 H2 G2⋅ F⋅ K⋅+ H2 K⋅+( )⋅
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Figgure 4.  Worrksheet for EExample 4. 
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Figure 4.  Continued. 
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Figure 4.  Conclud
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Figuree 5.  Cubic pprofile soluti
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of all the example problems are identical and emphasize the three steps: (1) formulate a well-
posed system of equations, (2) utilize a symbolic manipulator to do the “algebra,” and (3) 
verify/explain the results.  In this paper, the symbolic manipulation has been accomplished using 
Mathcad.  Other computational software systems (Mathematics, Matlab,….) offer the same 
capability, albeit in different formats, but with the same results.   

Students appreciate the reduction of tedious algebra using symbolic manipulation software.  
With less time spent on algebra, more time is available for students to engage is higher-level 
synthesis and understanding.  Although no formal assessments were made, the instructors 
involved in the courses were consistently able to enhance student assignments because of the 
introduction of symbolic manipulation.  Thus, anecdotally, the approach offers advantages in 
providing students with capability to solve more “real world” problems while concentrating on 
the engineering aspects of the problems. 
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