You’ve identified a need and developed a feasible solution. The next step is to locate an appropriate funding agency and to write a grant. Your goal is to create a document that funders feel: addresses an existing need; provides a realistic plan to achieve desired outcomes; and that you and your organization can deliver on your promises.

Proposals generally follow this pattern: Introduction; Statement of problem/need; Objectives; Methods; Evaluation; Budget.

Statement of Problem/Need
The grant writing process can appear overwhelming. However, once you have clearly identified the problem and your solution -- the rest of the process falls into place.

Beginning with the most important section first -- why are you doing this at all? What is your need/problem? and how are you going to fix it?

Individual Brainstorming
Taft [8] offers a practical exercise to organize your ideas. Using a blank sheet of paper, in the center draw a circle into which you place your main idea or project (a computer lab, peer counseling, minority mentorships, etc.). Now list all possible ramifications of your project and place these in circles. Describe the need; the solutions; identify prime beneficiaries; expected outcomes; success measurements; staffing needs. Force yourself to consider all aspects of your idea. Don’t edit at this stage, get it all down. My “problem” is that many Duke science and engineering majors can not independently use the information resources provided by the library. My solution is to first conduct an in-depth survey exploring how Duke students currently use library resources and then develop strategies to remedy this “information illiteracy”. My circles included: at risk populations; prime beneficiaries; secondary beneficiaries (faculty and employers, the library benefits from creating informed users, etc.); identified goals; goals evaluations; staff needs; survey development, etc. Generate as many circles as possible; then start a new sheet with one of these circles in the center and start again. What are the ramifications of the new circle? I identified faculty as an “at risk” group. How does my project serve them? How do I evaluate success/failure with this population?

Group Brainstorming
Describe your ideas to peers, colleagues and students, get feedback. For example, colleagues informed me that not all science and engineering students are information illiterate. Chemists appear to be the exception. Some students felt information illiteracy was a problem, others felt it was to minor to consider seriously. Some faculty were very enthusiastic about my project, and again, others did not see a “problem”. The Library’s
Development Officer was particularly informative. As she was unfamiliar with my “problem”, she asked pertinent questions. Who is affected by this? Is this problem unique to Duke? If not, how are other institutions dealing with this? Is my solution unique? Would I get buy-in from the Duke community, from colleagues? Any opportunities for partnerships in my plan? She offered a useful suggestion to focus my thoughts. Compose a single sentence that captures your problem and provides the solution in simple English. Make this statement so clear that anyone could immediately grasp the situation.

Writing the Need/Problem Statement

There are 3 basic parts to your need/problem statement: 1) describe the problem; 2) describe the underlying conditions creating this problem; 3) describe your solution(s). Base your need/problem on facts, hard data. For example, a 75% drop-out rate of minority engineering students; 25 computers for 150 students, etc. A demonstrated need is the rationale for the whole proposal -- so back it up. It provides the funder with an accurate assessment of a problem, and highlights your credibility. **Tips:** Be clear in what you want. Follow the directions provided by the funding agency. Write for the reader. Keep it as simple

Introduction

The introduction describes your organization and boasts about its accomplishments. You want to convey a sense of competence and confidence about yourself and your ability to manage any funds you might receive. Establish credibility. Sell yourself and your organization; convince them you can deliver. **Tips:** Stay focused -- include what is most relevant to the grant, your expertise. Show competence/confidence -- even if you have never received a grant, or your organization has no experience in this area -- highlight individuals with the experience, expertise or enthusiasm to pull this off; describe successful projects. Describe who you are, how long you have been around; anything unique about your organization that is relevant to the grant; cite significant achievements, accomplishments and any other support/grants you have received.

Objectives

Objectives should be specific and measurable. If your problem is a lack of computers, your objective is to get “x” number of computers; if your problem is a lack of minority engineering students, your objective is to retain “x” number of minority engineering students. It is easy to get confused in your objectives. Don’t describe HOW you are going to get those computers or those students; focus on the outcome and concrete measurement of success. A simple diagram can organize your thoughts. At the top of a piece of paper, place “Objectives”, “Activities” and “Measurement”:

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Activities</th>
<th>Measurement</th>
</tr>
</thead>
</table>

For each objective, indicate an activity to achieve the objective, then the measurement tool to assess success. If your objective is to obtain more computers, an activity is contacting local businesses, the measurement is the number of computers obtained. One
of my objectives is to assess students’ effective use of the library’s on-line catalog. An activity is a hands-on test using the on-line catalog. The measurement tool is a grade assigned to this test. **Tips:** Beware of fuzzy statements, such as “students will learn more” -- how do you know students will learn more -- prove it. Be realistic -- what can you really accomplish? Don’t take on more than you can handle.

Methods
The activity sheet identifies objectives, activities (methods) and measurement tools, now extrapolate these activities and present them as methods. On what basis were these activities/methods chosen? Is there supporting data for these methods? Have other institutions had success with these methods? If so, are you working on a larger scale? smaller scale? a different population group? Is your method unique? If so, is an objective to explore the feasibility of your approach? If so, be very clear as to how you plan to evaluate your project. **Tips:** This is your action plan so make it logical, make it clear. Issues such as staffing; facilities required; the time needed, etc. Detail the nuts and bolts of what you will do to achieve your goal.

Evaluation
From your objectives sheet, pull out the measurements. Think of evaluation as a type of road map. Before you can get to point A -- it is critical to know where point A is. If my objective is to assess Duke University engineering/science students’ library skills -- how will I know I have achieved my goal? How many students will be enough for me to make general statements? What is an “information literate” person? How many or how little information literate students have I identified? **Tips:** Get feedback from others. Get real - - does the evaluation truly match the objective? If not, why not? Is the disconnect due to the evaluation or the activity?

Budget
You are asking for a certain amount, justify this amount by indicating: staff salaries and benefits; travel expenses; equipment and material needs (hardware/software); administrative costs: postage, telephone, photocopying costs, any consultant costs. **Tips:** Be realistic. Everything costs, make every attempt to include all of your expenses.

Bibliography

LINDA MARTINEZ is Head of the Vesic Engineering Library at Duke University. Prior to coming to Duke in 1997, she was the Core Competencies Librarian at the Massachusetts Institute of Technology and was also responsible for collection development in the areas of electrical engineering and computer science.