
Paper ID #27185

TITLE: Rethinking the Gateway Computing Curriculum Across Engineer-
ing Disciplines

Dr. Michael Joseph Reese Jr., Johns Hopkins University

Michael Reese is the Associate Dean & Director at the Johns Hopkins Center for Educational Resources.
Dr. Reese previously worked as an Educational Technologist at Caliber Learning and Booz-Allen and
Hamilton. He also consulted with the University of Maryland School of Nursing on the launch of their first
online degree program. He earned a Ph.D. in sociology at Johns Hopkins. His dissertation modeled how
educational innovations diffused in higher education. He also earned an M.Ed. in educational technology
from the University of Virginia and a B.S. in electrical engineering at Virginia Tech, where he was named
the Paul E. Torgersen Leadership Scholar.

Prof. Michael L. Falk, Johns Hopkins University

Michael Falk is Vice Dean for Undergraduate Education and a Professor in the Department of Mate-
rials Science and Engineering at Johns Hopkins University’s Whiting School of Engineering where he
has served on the faculty since 2008 with secondary appointments in Mechanical Engineering and in
Physics and Astronomy. He holds a B.A. in Physics (1990) and a M.S.E. in Computer Science (1991)
from Johns Hopkins University and a Ph.D. in Physics (1998) from the University of California, Santa
Barbara. He has received several awards for his educational accomplishments, and in 2018 received the
Materials Research Society’s Impact Award for his work on broadening participation in STEM and com-
puting education. His education research focuses on integrating computation into the undergraduate core
curriculum. Falk also served as the lead investigator for STEM Achievement in Baltimore Elementary
Schools (SABES) an NSF funded Community Enterprise for STEM Learning partnership between JHU
and Baltimore City Schools.

Dr. Joanne F. Selinski, Johns Hopkins University

Joanne Selinski is an Associate Teaching Professor and the Director of Undergraduate Studies in the
Computer Science Department at Johns Hopkins University. She has MSE and PhD degrees in Computer
Science from JHU, along with a BS in Mathematics from Chestnut Hill College. Her primary research
interests are computer science education.

Dr. Sara Miner More, Johns Hopkins University
Dr. Ali Darvish, Johns Hopkins University
Ivan Sekyonda, Johns Hopkins University
Amy Brusini, Johns Hopkins University
Dr. Alejandra J. Magana, Purdue University-Main Campus, West Lafayette (College of Engineering)

Alejandra Magana is an Associate Professor in the Department of Computer and Information Technology
and an affiliated faculty at the School of Engineering Education at Purdue University. She holds a B.E.
in Information Systems, a M.S. in Technology, both from Tec de Monterrey; and a M.S. in Educational
Technology and a Ph.D. in Engineering Education from Purdue University. Her research is focused on
identifying how model-based cognition in STEM can be better supported by means of expert technological
and computing tools such as cyber-physical systems,visualizations and modeling and simulation tools.

Dr. Ahmed Ibrahim, Johns Hopkins University

Ahmed Ibrahim is the Senior Education Research Consultant at the Johns Hopkins Center for Educational
Resources. Dr. Ibrahim leads the initiatives of scholarship of teaching and learning (SoTL) at both the
Krieger School of Arts and Sciences and the Whiting School of Engineering. Dr. Ibrahim earned a PhD in
educational psychology (learning sciences) from McGill University and completed his postdoctoral train-
ing in developmental psychology at the University of California at Riverside (UCR). He earned a B.S. in
electrical engineering from Cairo University, and a MSc. in computer engineering from New York Uni-
versity (NYU) before working in the engineering field for several years. Dr. Ibrahim’s research interests

c©American Society for Engineering Education, 2019

Paper ID #27185

include: (1) practices of science, (2) engineering design, (3) computer-human interaction, (4) pedagogical
training, (5) educational research, and (6) assessment and program evaluation. Dr. Ibrahim has a number
of publications in peer-reviewed journals such as the International Journal of Science Education (IJSE)
and the International Journal of Science and Mathematics Education (IJSME). Dr. Ibrahim teaches grad-
uate and undergraduate courses in research methods, assessment and evaluation, statistics, and proposal
writing.

Nathan Graham, Johns Hopkins University

Nathan Graham is the Director of the Center for Digital and Media Initiatives at the Whiting School of
Engineering at Johns Hopkins University. He is also a PhD candidate at Rutgers University.

Mr. Paul Huckett, Johns Hopkins University

c©American Society for Engineering Education, 2019

Rethinking the Gateway Computing Curriculum Across
Engineering Disciplines

Introduction

Engineering across all disciplines now requires the ability to deploy computing within
engineering practice. New computational tools and computational analysis advances discovery
and deepens fundamental understanding. Not surprisingly, there has been a surge of interest in
computer science by undergraduates straining many institutions. Traditionally students of
various disciplines have been introduced to computing through courses taught within the
discipline of computer science (CS). There is a growing perception within the various
engineering disciplines outside of CS that being introduced to computing within a disciplinary
context is helpful for the later integration of computing into advanced coursework. It also helps
students’ careers [2], [3]. This shift has led to a diversification of the coursework by which
engineering students are introduced to computing. These courses are taught in a variety of
programming languages, chosen often due to their degree of application and perceived utility in
the host discipline.

A major research university in North America undertook a redesign of its freshmen-year
computing curriculum after seeing a proliferation of computing courses across engineering
disciplines. The primary goal was to better align the learning outcomes across computing
courses offered by various engineering disciplines. This curriculum redesign also provided an
opportunity to encourage faculty adoption of evidence-based teaching practices. Research
suggests that student-centered, active-learning strategies lead to deeper student learning and
longer retention compared to lecture-based methods [4], [5]. These strategies also increase
students’ confidence in using computational methods and their recognition of the value of
computational skills to help them succeed in future courses and careers [6], [7], [8]. There is
evidence that students learn more in flipped courses [9]. The curriculum redesign team –
comprised of faculty and instructional support staff - committed to employing a flipped course
approach to the gateway computing curriculum. For this paper, a flipped course is defined as
students watching lectures and reading content before they attend class sessions. Students then
complete challenge problems under the supervision of faculty and teaching assistants during
class time [10].

While evidence exists that students learn more in a flipped course, there are limitations in the
design of these studies. For example, many employ single-group study designs [9]. This paper
presents the results of a comparative analysis of two introductory JAVA computing courses
taught with different pedagogical strategies – a flipped course approach and a traditional lecture
course – during the same semester. The study will go beyond collecting and analyzing student
perceptions, and also compare measures of student learning in the courses to identify if there is a
difference in student outcomes between the pedagogical approaches. Evidence shows that
flipped classrooms are more effective [10]. The team will also study how students’
computational beliefs differ in the courses. The Technology Acceptance Model suggests that
students’ acceptance of technology like computational skills can impact their mastery [11]. This
acceptance is dependent on their beliefs about the utility of computation, the perceived ease of
use, and future intentions to use computational skills in subsequent courses and careers [12].
The authors will summarize how the data informed changes to future implementations of the

course. The authors believe the findings and suggestions for improvement will benefit
instructors teaching any first-year course, not just those teaching computing.

Research Design

The team conducted a comparative analysis of a flipped course and a traditional lecture approach
for an introductory JAVA programming course. The two courses were both taught during the fall
2018 semester. The learning objectives for each course were similar. The primary difference
was how the courses were taught. One instructor taught the traditional lecture course and three
different faculty taught each taught multiple sections of the flipped course.

Course Details

In the traditional lecture course, 90 students met in a common classroom twice per week for 75
minutes. Students would generally follow the instructor through coding examples by mimicking
the code on their laptops. Occasionally, the instructor would organize students into small groups
to complete challenges that lasted 10-15 minutes. Students were evaluated in the class through
projects and exams.

The flipped course was taught on the same topic – introductory JAVA programming – with
similar learning objectives. In the flipped course, students attended one of eight sections three
times per week for 50 minutes. No section was larger than 20 students. Students were assigned
weekly readings from an interactive textbook that also included short comprehension questions.
Three different faculty taught the flipped course (2-4 sections each). Faculty recorded weekly
video lectures to supplement the textbook content. Students completed the readings and watched
the lectures before class. The average video lecture was nine minutes long (median = eight
minutes, min = < one minute, max = 26 minutes). During class, students worked on challenge
problems to apply concepts learned from the interactive textbook and online lectures. Students
worked in groups, requesting help from the instructor as needed. Two class meetings each week
were facilitated by a faculty instructor and a lead course assistant. The Friday sessions were
facilitated by a lead course assistant and two other course assistants. Students completed weekly
quizzes and auto-graded coding challenges to assess their learning. Students self-scheduled
proctored quizzes outside of class time in a computer lab. Students also completed four
computing projects contextualized by an engineering problem throughout the semester. For
example, students wrote a program to simulate and visualize heat distribution across a metal
plate. Students took a final exam at the end of the semester.

During enrollment, students did not know the two JAVA courses would be taught differently.
Upperclassman enrolled in the traditional course and only freshmen were permitted to enroll in
the flipped course. Both groups, however, included students with diverse computing experiences
(e.g., engineering majors, non-engineering majors, some computing experience, no computing
experience).

Data Collection Strategies

The team employed several data collection strategies (See Table 1) to assess students’
perspectives on the course, students’ beliefs about the utility of computing in their future careers,
and differences in students learning outcomes. Faculty used the CS1 concept inventory to
measure learning differences. The CS1 concept inventory is a validated instrument that assesses

students’ mastery of computing concepts typically taught in introductory courses [13]. Students
in each course took the concept inventory during the last week of the semester. The team
measured students’ self-beliefs about computing utility and intention through an end-of-semester
survey several of the authors used in previous educational research (See Appendix 1). Student
perspectives on the course were captured through the end-of-semester survey and standard
course evaluations. Students in both courses were recruited to participate in end-of-semester
focus groups to explore students’ perspectives in more detail. The focus group recruitment was
done purposefully to capture perspectives from students who performed well in each course and
those who struggled. Focus groups were conducted by an education researcher from the
institution’s teaching and learning center. This allowed students to share their opinions while
remaining anonymous from the instructor. Results were summarized for the faculty to ensure
individual students were not identified.

The qualitative data – course evaluations and focus group transcripts - underwent close readings
by an analyst to understand the intricacies of the students’ feedback. Students comments were
interpreted using an open-coding protocol motivated by an analytical grounded-theory-guided
process [14].

Table 1: Data Collection Strategies

Construct Categories Instrument
Student Learning of Core Programming Concepts CS1 Concept Inventory

Student Perceptions of the Course
 End-of-Semester Survey
 Standard Course Evaluations
 End-of-Semester Focus Groups

Computational Beliefs:
Utility, Confidence, Future Intentions

End-of-Semester Survey

Results

Student Learning

Students in both courses took the CS1 concept inventory at the end of the semester. There was
no significant difference between students’ overall performances on the CS1 despite the mean
being almost 10% higher in the flipped course. (See Table 2). An item analysis was conducted
for specific topics covered on the concept inventory (See Table 3). Students in the traditional
lecture course outperformed students in the flipped course on for- and while-loop topics.
Students in the flipped course outperformed on function return values. The team is cautious in
interpreting these differences as meaningful for two reasons. First, there were few items
comprising each factor (2-3 questions for each topic). Second, the entire CS1 concept inventory
was too long to implement in a standard class session. The instructions for implementing the
concept inventory stated the instrument was designed to be implemented in 60 minutes. Most
students did not complete the concept inventory the first time it was implemented (over 50% did
not complete questions 17-27; 40% of all answers blank). Based on this experience, the team
decided to modify the implementation for subsequent sections. Students were only presented the
first 17 questions of the CS1 concept inventory. These questions were chosen because they

represented the key learning objectives of the course. The results reported in Tables 2 and 3
reflect the analysis on the common 17 questions asked of all students.

Table 1: CS1 Concept Inventory Overall Results

Traditional Lecture Course Flipped Course
Sample size= 46
Mean= 7.26 (out of 17)
SD= 3.12

Sample size= 93
Mean= 7.88 (out of 17)
SD= 2.78

Table 2: CS1 Concept Inventory Topic Results

Concept Traditional Lecture Flipped Course Differences
For
(3 items)

N=46 N= 93 Traditional
Lecture Course
Better (p<.01)

Mean=1.41 Mean= 1.01
SD=.8987 SD=.6134

Logical Operators
(2 items)

N=46 N= 93 No difference
Mean=1.22 Mean= 1.35
SD=.778 SD=.728

While
(3 items)

N=46 N= 93 Traditional
Lecture Course
Better (p<.001)

Mean=1.76 Mean= .89
SD=.913 SD=.47

Arrays
(2 items)

N=46 N= 93 No difference
Mean=.587 Mean= .785
SD=.645 SD= .73

Function return values
(3 items)

N= 46 N= 93 Flipped Course
Better (p<.001) Mean= .870 Mean= 1.484

SD= .875 SD= 1.023

Computational Beliefs

The team explored the differences in students’ confidence in their computational abilities, beliefs
about the utility of computation, and intention for future study of computation between the two
courses. Students completed a survey of nine questions regarding

 confidence with computation skills (e.g., “I am confident that I can successfully write a
computer program.”);

 perceived utility of computation (e.g., “I feel that the knowledge of computation will be
useful in my studies.”); and

 intentions of leveraging computation in the future (e.g., “I intend to use computation in
my future career.”).

A full list of questions is available in Appendix 1.

The only significant difference between the two courses was that students in the flipped course
rated their confidence producing data visualizations higher (p < 0.05) and that the knowledge of
computation will be useful in their careers at a higher level (p < 0.1). The higher beliefs in the

utility of computation in careers for the flipped course may reflect the more contextualized and
applied approach to how the course is taught. Complete results are shared in Table 4.

Table 3: Independent Samples T-Test for Computational Beliefs, Utility, and Intentions

Topic Lec
Mean

Lec
SD

Flip
Mean

Flip
SD

t df p

Algorithm confidence 3.08 1.21 3.23 0.93 0.720 112.0 0.473
Programming confidence 3.67 0.90 3.63 0.93 -0.054 112.0 0.957
Data Visualization confidence 2.25 1.16 2.78 1.04 2.206 110.0 0.029
Useful in my studies 3.96 0.98 3.93 0.96 0.032 108.0 0.975
Useful in my professional development 3.92 0.76 4.04 0.95 0.838 105.0 0.404
Useful in my career 3.58 1.26 4.02 1.02 1.902 104.0 0.060
Intend to seek out computation courses 3.62 1.03 3.93 1.21 1.263 103.0 0.209
Intend to seek out comp prof development 3.79 0.82 3.96 1.12 0.876 103.0 0.383
Intend to use computation in my career 3.54 1.26 3.80 1.22 1.006 103.0 0.317

A deeper analysis of the results revealed that most of the differences between the courses was
actually driven by one instructor. Table 5 shows the results for each of the three instructors who
taught the flipped course. Students in Instructor 3’s section scored significantly higher on all
three measures of programming confidence, the usefulness of programming in future careers, and
intention to seek out programming experiences in future computational courses and professional
development experiences. It turns out this was likely not an instructor effect, but a student
effect. Instructor 3’s students were predominantly computer science majors. It would be
expected they will rate themselves higher on programming confidence and intentions to use
programming in the future. This provides evidence of the validity of the questions asked,
however, the project team interprets the results as null finding for the overall impact of the
flipped course compared to the traditional lecture course.

Table 4: Computational Beliefs Results

Concept Instructor 1 Instructor 2 Instructor 3 p-value
Algorithm
confidence

N= 23
M= 2.96
SD= .71

N= 61
M= 3.08
SD= .80

N= 25
M= 3.84
SD= .94

< .001*

Programming
confidence

N= 23
M= 3.35
SD=.71

N= 61
M= 3.12
SD= 1.03

N= 24
M= 4.17
SD= .87

< .001*

Data Visualization
confidence

N= 23
M= 2.43
SD= .90

N= 61
M= 2.67
SD= .85

N= 22
M= 3.36
SD= 1.26

 .004*

Useful in my studies
N= 23
M= 3.83
SD= .83

N= 61
M= 4.08
SD=.86

N= 20
M= 4.05
SD= 1.00

.491

Useful in my
professional
development

N= 23
M= 3.87
SD= .81

N= 61
M= 4.16
SD= .92

N= 17
M= 4.41
SD= .71

.142

Useful in my
career

N= 23
M= 3.78
SD= 1.00

N= 61
M= 4.02
SD= 1.00

N= 16
M= 4.63
SD= .50

.021*

Intend to seek out
computation
courses

N= 23
M= 3.87
SD= 1.01

N= 61
M= 3.28
SD= 1.49

N= 15
M= 4.5
SD= .83

.003*

Intend to seek out
comp prof
development

N= 23
M= 3.87
SD= 1.01

N= 61
M= 3.30
SD= 1.34

N= 15
M= 4.6
SD= .83

< .001*

Intend to use
computation in my
career

N= 23
M= 3.57
SD= 1.16

N= 61
M= 3.67
SD= 1.29

N= 15
M= 4.27
SD= .83

.211

Student perceptions

This section reports key findings from the end-of-semester surveys, standard course evaluations,
and focus groups. Responses rates for these data collection strategies are listed in Table 6. All
activities were voluntary and did not contribute to the students’ final grades. Response rates are
higher for the end-of-semester course evaluations because grades are embargoed for two weeks
after the semester unless a student completes the standard course evaluation. Grades are released
immediately after completing the evaluation. This is standard practice for all courses in the
engineering school.

Table 5: Responses Rates Surveys and Focus Groups

Data Source Traditional Lecture Course
(67 students)

Flipped Course
(144 students)

End-of-semester Survey 46 responses (69%) 93 responses (65%)
Course evaluations 61 responses (91%) 143 responses (99%)
Focus Groups
(2 conducted per course)

10 students 16 students

Student perceptions of the course reflected, not surprisingly, the structure of each course.
Analyzing these differences helps to identify the strengths and weaknesses of each approach to
inform future implementations pulling from both courses. Key insights came from recognizing
common explanations about what students liked in one course and disliked in another. For
example, the importance of purposefully structuring student-teacher interactions with an
instructor was evident by the fact that traditional lecture students talked about the value of
consulting with the instructor during office hours, but students in the flipped course felt the
interaction with instructors during class could be more structured.

What did students like about the flipped course? On the course evaluation, students answered
two open questions, “What are the best aspects of the course?” and “What are the worst aspects
of the course?” Table 7 provides a list of the coded categories for what students rated as the best

and worst aspects of the flipped course. Only the most frequently cited aspects will be discussed
in this paper for brevity.

Perceptions of Students in the Flipped Course: Positive

The most frequently cited favorite aspect of the flipped course was the four challenge projects
(n=36). Students articulated that the projects motivated them, pushed their thinking, and
assessed their learning in a realistic way for a programming course. One student wrote, “The
projects could be very challenging at times, but they were a good test of our understanding of the
material.” Another student shared a similar sentiment that was not uncommon. “The projects are
interesting and push you to explore different solutions to somewhat complex problems.”

The second most frequently listed aspect of the course was the content (n=26). Twenty-one
students also listed the interactive textbook as a valued resource. “[The online textbook] is
interactive and helpful with teaching concepts. It is very useful in studying for lab assessments.”
These perspectives were shared in the focus groups with students commenting how the content
was well organized in the interactive textbook. They also felt the topics were clearly explained.
One student, however, commented that the textbook was used primarily as a reference source
and not the primary place for learning. While students enjoyed learning content from the
interactive textbook, they did not enjoy the assessment tool associated with it as described below.

Students spent time during class working on coding examples. Twenty students listed this as one
of the best aspects of the class. Some students liked coding in class. They felt it was helpful
because it gave them authentic practices and was interesting. “Classwork and projects are very
hands-on and interesting.” Another student wrote, “in-class activities help to solidify concepts
really well on a high level and to ensure that students can implement them.” Several students
said they liked that class was small and they worked in groups. “You have a small class so
everyone is pretty close.” It is important to note that classwork was also listed as one of the
worst aspects of the course for reasons described below.

The teachers (n=17) and teaching assistants (n=16) were listed as one of the favorite aspects of
the course. Words to describe the instructors and teaching assistants were “friendly,”
“knowledgeable,” “helpful,” and “encouraging.”

Seventeen students specifically listed the course structure as the best aspect of the course with
some describing it as the flipped approach. “I think the ‘flipped classroom’ is really effective;
[the online textbook] is great and really helpful for learning basic knowledge about Java, and I
think reading it and doing the problems ourselves is better than just listening to instructors
talking about this in class.” Eight students specifically mentioned they liked the self-paced
aspect of the course. Students could schedule to take the weekly quiz at times convenient to
them. Six students said they liked the pacing of the course/workload. Some of the comments
about more specific aspects of the course (interactive textbook, classwork) listed above provide
additional examples of why students liked the course structure.

Perceptions of Students in the Flipped Course: Negative

While some students liked the course structure, others did not. This is not uncommon in that
students’ perceptions of the flipped classroom can be mixed [9]. There were fewer negative
comments captured by the question “What were the worst aspects of the course?” (83 responses)
than positive responses (121 responses). However, the intensity of negative responses was
deeper based on the length of comments. Some of these comments ran multiple paragraphs.

Table 7 lists all the categories used to code the negative comments in the flipped course. The
biggest complaint was the requirement to complete work independently outside of class time
(n=29). This is not surprising. The instructional design team supporting this project has helped
several departments flip courses, and one of the most frequent student complaints is completing
work outside of class time. The team plans to explore this perception of workload more in future
studies. Related to this perception, 20 students mentioned increased workload as the worst
aspect of the course in addition to the 29 mentions of independent learning outside of class. For
the flipped course, the weekly quiz and challenge problems required to be taken at a computer
lab outside of scheduled class time was listed as a burden. The faculty wanted students to have
the flexibility to take these assessments once they felt prepared. While eight students said this
self-paced aspect of the course was beneficial, many more students did not. They considered it a
fourth class session with some students arguing that the course should be increased to four
credits for this reason.

o “It was sometimes difficult to schedule the weekly assessment and there is so
much out-of-class learning that I never had time to complete the in-class exercises
that we never finished outside of lecture.”

o “Needing to fit another hour of weekly tests into my schedule. This was said to be
a three credit course, but there are four hours a week that you need to be with your
professor or t.a.”

Student complaints about the challenge problems focused on the inflexibility of the auto-grading
platform associated with the interactive textbook. The auto grading tool would assign a zero for
minor errors in an otherwise well-constructed program. A student in a focus group gave this
example. “I had this one test where all my codes were getting the correct numbers except the last
two decimal places out of 12 decimal places were wrong for all my numbers and it turned out it
was because, instead of saying to the power, I was multiplying them together, which should be
the same mathematically but … it ended up in a rounding error in the code.” Comments from the
course evaluation included the following.

o “The auto-graded quizzes are perhaps the single most frustrating assessment tool
I've ever encountered in my academic career. There have been numerous
instances where I solved the problem and my output matched the answer output
almost exactly, yet due to one extremely minor elusive detail, resulted in awful
grades on an assessment that I otherwise completed 95% correctly.”

o “Most of our assessments were all or nothing. If your code didn't compile, that is
a shame. You get a 0, even if you have the logic for everything else down
correctly.”

While students didn’t like the strict auto-grading rubric, some students said they preferred
weekly quizzes to periodic mid-terms because it reduced the stress that comes with high-stakes
evaluations. “Having the weekly module quizzes take the place of three or four midterms. I felt
like [that] took a lot of the stress off of the main portion of the class because I wasn't worried
about having a big chunk of my grade represented by a single midterm.”

As noted above, some students mentioned classwork as the best aspect of the course. Almost an
equal number of students mentioned it was the worst aspect of the course (n=20). Students felt
the facilitation could be more purposefully structured, and in some cases, implied they were
hesitant to ask for help. This hesitance originated with the flipped format. Students worried if
they asked questions the instructor might think they not did complete the pre-work even if the
student had done so. While some students felt the classwork was engaging (see previous
section), others felt it was too challenging for the 50-minute class meetings. Some students
were also frustrated that there was no incentive to attend class. Problems completed during
class were not graded, and as noted above, students did not attempt to complete the problems if
they were not finished during class.

o “Given how difficult it is to learn outside of class and how the curriculum itself
doesn't prompt the class's teachers or TAs to actually lecture, students would sit
through class painfully as they struggle between trying to figure out how to do the
day’s assignment without the tools to complete it, mustering up the courage to
either ask the teacher or T.A. about something that they ‘should have seen in the
pre-lecture material.’"

o “I'm not really a fan of the flipped classroom learning. I don't think it's very
effective because half the time we only get thorough half a question of the three
that are put up each class.”

o “I think a little more should have been gone over in class. It seemed like it was
assumed that we understood the material perfectly before we were asked to do it
in class. For some of the harder subjects it would have been nice if we had a
period at the beginning of the week to discuss questions.”

o “Classwork is often way too long and never completed.”

Perceptions of Students in the Traditional Course: Positive

For the traditional lecture course, students listed the instructor most frequently as one of the best
aspects of the course (n=18). Students described the faculty member as “extremely helpful” and
“explains things clearly.” “Helpful” was the most frequently used word to describe why the
instructor was the best aspect of this course. It appears this may reflect the instructor’s
availability outside of class as much as the help provided during class. Students listed teaching
assistants as one of the best aspects of the course 11 times for similar reasons. This suggests
students place a high priority on the value of developing a relationship with the instructor and

the need for help clarifying difficult concepts. While the flipped course provided this
opportunity for feedback during class, some students in the lecture course actively sought the
same help through office hours.

Table 6: Coded Student Comments on Flipped Course Evaluations

Best Aspect of the Course Worst Aspect of the Course
Projects (n=36) Class Structure (n=35)
Topics (n=25) Working Independently Beyond Class Time (n=29)
Interactive Textbook (n=21) Classwork (n=21)
Classwork (n=20) Pace/Workload (n=20)
Class Structure (n=17) Weekly Quizzes (n=18)
Teacher (n=17) No Incentives to Attend Class (n=13)
Teaching Assistants (n=16) Curriculum Misalignment (n=9)
Self-paced Course (n=8) Self-paced Course (n=9)
Video Lectures (n=6) Interactive Textbook (n=7)
Pace/Workload (n=6) Video Lecture (n=7)
Nothing (n=5) Not sharing solutions/Feedback (n=7)
Discussion Board (n=4) Inflexible Auto-grading (n=5)
Weekly Quizzes (n=3) Teacher (n=5)
 Projects (n=3)

Topics (n=3)
Nothing (n=2)
Final Exam Format (n=2)
Teaching Assistants (n=2)

Learning how to program JAVA was the second most-frequently mentioned item as the best
aspect of the course (n=12). Like the flipped course, the projects were listed as one of the more
popular aspects of the course (n=11). Homework was listed 11 times as well. The flipped and
lecture courses did not use the exact the same projects and homework, but they did assess similar
objectives. The student responses from both courses suggest they like opportunities to apply
course concepts to contextualized engineering problems that push them to extend their thinking.
In the focus groups, students shared that homework and projects contributed to their learning. “I
definitely think the homework is the most important part though. Just being able to take what
you've learned - the theory of and actually implementing it - is like the only way to really learn
it.” One student in the flipped course focus group described how the homework combined with
support through office hours was important. “One of the biggest aspect of the course that helped
me was the [course assistant] office hours, … it helped me a lot with homeworks, and the
homeworks helped me a lot, like just understanding the material.”

Perceptions of Students in the Traditional Course: Negative

Students’ most frequent complaint about the traditional course was the grading and feedback
(n=13). Students wanted the assignments returned sooner and the instructor and TAs to answer
emails more quickly. One student mentioned the grading was “harsh,” but in general the
promptness of feedback on graded work was the biggest reason for listing feedback as the worst

aspect of the course. Again, this supports the importance students place on consulting the
instructors and TA for help.

The next most frequent complaint was class time (n=7). Students felt lectures were sometimes
“ineffective” and that it “Gets boring in class.” This may have been impacted by the fact that
class meetings were 75 minutes. “Lectures feel extra long because they're over an hour long,”
wrote one student.

Despite these complaints “Nothing” or “N/A” was listed 7 times as the worst aspect of the
course.

Like the flipped course, students did not like taking the final exam with pen and paper (n=6).
They wanted to be tested in an environment similar to how they coded other assignments.
Specifically, they wanted a debugger to check their work. Students in the focus groups shared
similar concerns. “I personally thought having to write down my code was not the most practical
way to do the exams, I guess, because in the real world everyone is gonna write code on the
computer.” On the course evaluations, students commented that they understood why this format
was used – to minimize cheating – but felt it was a challenge that should be addressed. One
student in the focus group recognized it may reflect a practice used in job interviews. “The thing
that I have about that is like in in-person interviews, I heard that they ask you to write code in
front of them sometimes, like on a whiteboard. So in terms of that I think it was just like, like
even though in an actual job you probably wouldn't have to do that, it's still something that you
might have to do in terms of like interviewing, stuff like that.” It may be useful to explain this to
students so they understand the rationale for using pen-and-paper exams.

Table 8 provides a complete list of the coded categories for what students rated as the best and
worst aspects of the lecture course.

Table 7: Coded Student Comments on Traditional Lecture Course Evaluations

Best Aspect of the Course Worst Aspect of the Course
Instructor (n=18) Grading/Feedback (n=13)
Learning to Program in JAVA (n=12) Classwork/Lecture (n=7)
Teaching Assistants (n=11) Nothing (n = 7)
Projects (n=11) Final Exam Format (n=6)
Homework (n=11) Pace/Workload (n=5)
Pace/Workload (n=4) Teacher (n=5)
Feedback (n=4) Course Materials (n=3)
Course Structure (n=4) Topics (n=1)
Clicker Questions (n=1) Homework (n=1)
Lectures (n=1) Discussion Board (n=1)
Class Materials (n=1)
Gradescope (n=1)
Discussion Board (n=1)
Nothing (n=1)

Discussion

The curriculum design team analyzed the data to identify changes to future implementations of
the course. Only general interpretations and recommendations that are relevant to a broader
audience are shared here.

Lessons Learned

It is clear students value the role of the instructor. Students in both classes commented on the
importance of the faculty member to motivate and help them. In the traditional lecture course,
students described the importance of the faculty member in explaining difficult concepts,
however, this was often done through office hours outside of class. Students in the flipped
course also consulted faculty and teaching assistants through office hours, however, they
expressed the need for more structured engagement as they completed classwork. Formative
assessment techniques during class can provide feedback to the instructor during class to know
when to help individual groups or when to debrief to the whole class.

While active-learning has been shown to be more valuable than lecture in previous research [4]
[5], there is still a role for lecture during class. Students in the flipped course requested that the
instructor start each class with a review of the key concepts presented in the pre-work. One
student in a focus group session said, “We did get videos, but I felt like it would be better if there
was something inside the class like lecture like ten, fifteen minutes in beginning to go through
the topics that are going to come in the following week.”

There were two other findings that are worth sharing. First, students may prefer a lecture
approach more than anticipated. Comments from students in the traditional lecture suggest they
could not envision other ways of learning computer science. One student in the focus groups
said, “I won't say there's another way, as if like a better way to be taught [than traditional
lecture]. Sometimes it just feels like in terms of programming courses it is probably one of the
only ways that it can be taught.” Students limited exposure to student-centric pedagogies may
limit their understanding of how courses could be taught differently than lecture or their
openness to learning through a flipped method.

Second, students in a lecture-section focus group shared they would prefer not to learn through
a flipped course. They felt watching lectures outside of class was not as impactful as watching
them during class. Here is an exchange in the focus group between several students that
illustrates this point.

Student 1: If you're watching the lectures outside of class, I think I put less
energy into 'em.

Students 2: Yeah, I've never come out of a flipped classroom experience feeling
like I understood or mastered the material.

Student 3: Yeah, I'd say, the professor usually does a better job of teaching than
the videos that we have to watch

Student 2: It's definitely easier to pay attention to a lecturer when the person's
right in front of you, and maybe that's a me problem, but I get really distracted by
computer screens.

Student 1: Yeah, I agree with that.

Students 2: Right. 'Cause we're busy, and also, I always end up, like, watching
those lectures is like the last thing I do before I go to sleep - So I'm tired and I've
had a long day. Whereas, if you actually do it during class time, it's earlier in the
day, before you're stressed out and fatigued. But I come out of every traditional,
well not every, but, almost all of traditional lectures, I feel like I actually
understood and learned something.

This leads to another observation. Students can be intimidated to ask for help in a flipped
environment because of the expectation that they learned the material through pre-work.
Students shared they were worried that if they asked questions, the instructor would think they
had not completed the pre-work even if they had. Students generally rated the faculty as
approachable and accessible. But it is important to recognize that faculty-student power
hierarchies can cause students to hesitate to ask for help if they think it will signal they have not
done the pre-work. Some students reported consulting teaching assistants during office hours
because they did not want to ask questions during class. This provided them another outlet to
clarify concepts, but it would be better if they asked questions during class. Prompt feedback is
important to helping students learn [15].

Another challenge for class time was providing students incentives to attend. In the flipped
course, students weren’t graded on the work they completed during class. It was meant to be a
low-stakes opportunity to apply key concepts in computing. The unintentional outcome was that
some students did not feel it was worth coming to class, and if they did not finish the challenge
problems during class, they did not bother doing so after class. This was amplified by the fact
that students in the flipped course felt overwhelmed with the work required outside of class. The
biggest complaint was scheduling 50 minutes to take a quiz outside of class. The team originally
thought students would appreciate the flexibility to schedule this evaluation when they felt ready.
Some students did comment they liked this self-paced aspect of the course. Many more students,
however, felt it was essentially a fourth hour of class each week.

Proposed Future Changes

The redesign team made several changes to address the concerns about more structured faculty
support and the workload required outside of class. First, the weekly quiz will be conducted
during class on Friday to reduce the workload outside of class. Second, faculty will provide
more instruction during class time not only explaining difficult concepts but also helping
students recognize how concepts are related. Solutions to in-class activities will be posted so
students who do not finish them during class can check their work when they are finished. The
team will also implement new methods for addressing concerns about auto-graded quizzes.
Assessments assigned a zero will automatically be checked by a teaching assistant. Non-zero
submissions will be randomly spot checked to identify potential auto-grading problems.

Despite the challenges to the pilot implementation of the flipped course, there is enough
evidence for the team to continue the pilot. The most important revelation was that students
enjoy being challenged by projects and homework and recognize they were some of the most
effective ways to learn the content. Some students reported the assignments helped them learn
more than how to program; they also learned critical thinking skills. “…teaching yourself
language is usually a very valuable lesson you can do. It's more like problem solving skills and
those types of things will transfer over [to other courses].” Therefore, there is reason to believe
that improving the facilitation of in-class challenge problems will help students learn the
concepts better. Faculty will more purposefully facilitate in-class activities. They will also
provide solutions to allow students to check their work.

Conclusion

This paper describes a comparative analysis of introductory JAVA courses – one taught with
traditional lecture and another using a flipped course approach. While there were no significant
learning differences measured between the courses, this likely reflected challenges to the
implementation of the CS1 concept inventory. There was limited evidence that the flipped
course contributed to improved student confidence with some skills (data visualization) and
usefulness of computing compared. Upon deeper investigation it appears this result reflects the
perspectives of computer science majors embedded in the flipped course sections. The team will
investigate this more in the future. The paper also reported what students liked and disliked
about each approach through various data collection methods.

There are some limitations of the study that should be considered by other faculty who may be
interested in using the results to inform their own teaching. First, students were not randomly
assigned to each course. Second, each course was taught by a different instructor – with three
instructors facilitating the eights sections of the flipped course. Third, students were assessed
differently in each course so the application of course content was different in each class,
however, these choices reflect the pedagogical design of the course.

Another potential limitation is the history of the course. Introductory JAVA has been taught
with a lecture method for years. The instructor of that course had experience teaching with the
lecture method and leveraged existing course materials. The flipped course instructors had to
create new course materials during the previous summer and learn how to integrate the
interactive textbook into the curriculum while also experimenting with new active-learning
teaching strategies. As the instructors gain more experience teaching in this new way, the impact
on student learning and perspectives may change.

It is also worth considering that some students may not have been open to learning in the flipped
environment. Some students in the lecture course focus group expressed unprompted criticism of
the flipped method. Normative expectations of how course are taught may influence student
outcomes, and will be explored more in the future.

Even with these limitations, the authors hope these findings are useful to other instructors
teaching introductory or gateway courses.

References

[1] National Academies of Sciences, Engineering, and Medicine, and National Academies of

Sciences, Engineering, and Medicine. Assessing and Responding to the Growth of Computer
Science Undergraduate Enrollments. Washington, DC: The National Academies Press, 2017.

[2] J.B. Adams. “Computational science as a twenty-first century discipline in the liberal arts.”

Journal of Computing Sciences in College, vol. 23, no. 5, pp: 15–23. 2008.

[3] L.K. Soh, A. Samal, S. Scott, S. Ramsay, E. Moriyama, G. Meyer, B. Moore, W.G. Thomas,

and D.F. Shell. “Renaissance computing: An initiative for promoting student participation in
computing.”w SIGCSE Bulletin, vol. 41, no. 1, pp: 59–63. 2009.

[4] M. Prince. “Does active learning work? A review of the research.” Journal of Engineering

Education, vol. 93, no. 3, pp: 223-231. 2004.

[5] National Research Council. How People Learn: Bridging Research and Practice.

Washington D.C.: National Academies Press, 1999.

[6] C.M. Viera, A.J. Magana, A.M. Roy, M.L. Falk, M.J. Reese Jr. “Exploring undergraduate

students’ computational literacy in the context of problem solving.” The ASEE Computers in
Education Journal, vol. 7, no. 1, pp: 100-112. 2016.

[7] A.J. Magana, M.L. Falk, M.J. Reese Jr. “Introducing discipline-based computing in

undergraduate engineering education.” ACM Transactions on Computing Education, vol. 13,
no. 4, pp: 16-24. 2013.

[8] A.J. Magana, M.L. Falk, C. Vieira, M.J. Reese. “A case study of undergraduate engineering

students' computational literacy and self-beliefs about computing in the context of authentic
practices.” Computers in Human Behavior, vol. 61, pp: 427-442. 2016.

[9] J.L. Bishop, J. Lowell, M. A. Verleger. "The flipped classroom: A survey of the research."

In Proceedings of the 120th American Society of Engineering Education Annual Conference
and Exposition, Atlanta, GA, vol. 30, no. 9, pp. 1-18. 2013.

[10] J. Bergmann and A. Sams. Flip Your Classroom: Reach Every Student in Every Class Every

Day. International Society for Technology in Education. 2012.

[11] F.D. Davis. "User acceptance of information technology: system characteristics, user

perceptions and behavioral impacts." International Journal of Man-Machine Studies, vol. 38,
no. 3, pp. 475-487. 1993.

[12] A.J. Magana, M.L. Falk, M.J. Reese Jr. C. Vieira. "Materials science students’ perceptions

and usage intentions of computation." In Proceedings of the 120th American Society of
Engineering Education Annual Conference and Exposition, Atlanta, GA. 2013.

[13] A.E. Tew and M. Guzdial. "Developing a validated assessment of fundamental CS1
concepts," in Proceedings of the 41st ACM Technical Symposium on Computer Science
Education, Milwaukee, WI, USA, Mar 10-13, 2010, G. Lewandowski, S. Wolfman, T. J.
Cortina, E. L. Walker, and D. R. Musicant, Eds. ACM, 2010. pp. 97-101.

[14] J.M. Corbin and A.L. Strauss, Basics of qualitative research: Techniques and procedures

for developing grounded theory, Sage, 2008.

[15] S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C. Lovett, and M. K. Norman. How
Learning Works: Seven Research-based Principles for Smart Teaching. San Francisco, CA:
John Wiley & Sons, 2010.

Appendix 1 – Computational Beliefs, Utility, and Intention Survey

Please select the option that best represents how you feel for each statement.

I am confident that I can successfully design an algorithm.

Not at all confident - Not so confident - Somewhat confident - Very confident - Extremely confident

I am confident that I can successfully write a computer program.

Not at all confident - Not so confident - Somewhat confident - Very confident - Extremely confident

I am confident that I can successfully produce data visualizations (transform data into
visualizations).

Not at all confident - Not so confident - Somewhat confident - Very confident - Extremely confident

I feel that the knowledge of computation (e.g., algorithm design, modeling and simulation, data
visualization) will be useful in my studies.

Not at all useful - Not so useful - Somewhat useful - Very useful - Extremely useful

I feel that the knowledge of computation (e.g., algorithm design, modeling and simulation, data
visualization) will be useful for my professional development.

Not at all useful - Not so useful - Somewhat useful - Very useful - Extremely useful

I feel that the knowledge of computation (e.g., algorithm design, modeling and simulation, data
visualization) will be useful for my career.

Not at all useful - Not so useful - Somewhat useful - Very useful - Extremely useful

I intend to purposefully seek courses that will allow me to increase my knowledge about
computation (e.g., algorithm design, modeling and simulation, data visualizations).

Strongly disagree – Disagree – Neither agree or disagree – Agree – Strongly agree

I intend to purposefully seek opportunities and resources that will allow me to increase my
knowledge about computation (e.g., algorithm design, modeling and simulation, data
visualizations).

Strongly disagree – Disagree – Neither agree or disagree – Agree – Strongly agree

I intend to use computation (e.g., algorithm design, modeling and simulation, data visualizations)
in my future career.

Strongly disagree – Disagree – Neither agree or disagree – Agree – Strongly agree

