
AC 2007-1432: TOOL SUPPORT FOR SOFTWARE PROCESS DATA
MANAGEMENT IN SOFTWARE ENGINEERING EDUCATION AND INDUSTRY
TRAINING

Mark Sebern, Milwaukee School of Engineering
MARK J. SEBERN is a Professor in the Electrical Engineering and Computer Science
Department at the Milwaukee School of Engineering (MSOE), and was the founding program
director for MSOE's undergraduate software engineering program. He has served as an ABET
program evaluator for software engineering and computer engineering.

Mark Hornick, Milwaukee School of Engineering
MARK L. HORNICK has been an Assistant Professor in the Electrical Engineering and
Computer Science Department at the Milwaukee School of Engineering (MSOE) since 2004.
Prior to that, he worked in private industry for 20 years, implementing and managing the
incorporation of standard practices and processes into the development of industrial software
products.

© American Society for Engineering Education, 2007

P
age 12.1496.1

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2007, American Society for Engineering Education

Tool Support for Software Process Data Management
in Software Engineering Education and Industry Training

Mark J. Sebern, PhD, PE
Milwaukee School of Engineering

sebern@msoe.edu

Mark L. Hornick, PhD
Milwaukee School of Engineering

hornick@msoe.edu
www.msoe.edu/se/

Abstract

Data management tools are necessary for effective support of disciplined software processes that
make use of historical data for planning and process improvement. This paper reports describes
two such tools and how they have been applied in an undergraduate software engineering
program and to support software process improvement initiatives in industry. One of the tools, an
open-source development project, has recently added new capabilities that may make it an
attractive choice for both educators and practitioners.

Introduction

Software engineering programs generally incorporate courses and other learning experiences that
are designed to provide breadth and depth of coverage across the discipline, addressing both
practice and process. Software engineering practice deals with what software engineers do, and
includes topics such as requirements analysis and specification, architecture and design,
verification, and implementation. Software engineering process is concerned with how software
engineers work, embracing subjects that include planning, team functioning, quality
management, continuous improvement, and integration of development teams, management, and
functional groups in an organization.

A variety of capable and cost-effective tools have been available to support software engineering
practice, such as integrated development environments, modeling tools, and testing frameworks.
Until recently, however, similar high-quality tool support for software engineering process
implementation has been lacking. This has been especially true for processes that include a focus
on process and product metrics, such as the Personal Software Process (PSP) and the Team
Software Process (TSP) developed by the Software Engineering Institute (SEI) at Carnegie
Mellon University. Reliable and complete measurement data is critical to effective planning and
process improvement, but data gathering and analysis that is burdensome and labor intensive will
simply not be done.

The SEI has developed several tools to support the PSP and TSP, but the availability of these
tools has often been limited to the SEI’s commercial partners. Although some PSP tools are
available for academic use10, the SEI’s definition of “academic” generally excludes industry
training, use in on-line courses or off-campus programs, or with students not enrolled in a degree
program. For this reason, some educators who serve multiple constituencies have been reluctant
to adopt these tools.

A number of other educators and researchers have surveyed available process data management
support tools, or have proposed alternative methods of gathering and analyzing process
data12,16,22, often with the goal of making data gathering completely invisible to the individual
software developer. These surveys generally fail to identify a satisfactory tool, while the
automated methods seem to encourage the use of data that is easy to gather.

P
age 12.1496.2

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2007, American Society for Engineering Education

This paper focuses on the design and application of two data management tools that support
software project planning and tracking, based on defined measurement frameworks. One of these
tools, named LEIA (Laboratory Engineering Information Archive) was developed by
undergraduate software engineering students at the Milwaukee School of Engineering (MSOE),
and is used to manage team projects in MSOE’s Software Development Laboratory. The second
such tool is the open-source Process Dashboard (processdash.sourceforge.net) developed by
David Tuma and his colleagues, Recently, this latter tool has been extended to better support
development teams and customized process definitions. As a result, the Process Dashboard may
well become a de facto standard for software process data management support.

Metrics, Process Design, and Support Tool Functionality

In designing or applying data management tools to a chosen software process, one of the first
steps is to choose appropriate product and process measures. Watts Humphrey and his SEI
colleagues, while defining the PSP and TSP processes, developed a set of four base measures,
from which many derived measures can be calculated (Table 1).

Base Measures Derived Measures
Product size (e.g., LOC)

• Per part or component
• Plan and actual

Effort (time in minutes or hours)
• Per part, per process phase
• Plan and actual

Quality (number/type of defects)
• Injected/removed phase
• Find-and-fix time
• Plan and actual

Schedule (task/phase completion date)
• Plan and actual

Productivity
Yield
Total defect density
Test defect density
Planned value (PV)
Earned value (EV)
Test time percentage
Review rate (e.g., LOC/hour)
Defect removal rate
Total product size
Size estimating error
(etc.)

Table 1 PSP/TSP Measurement Framework

While not completely original or unique, this measurement framework neatly describes a small
and consistent data set from which a great deal of useful information can be extracted. The data
thus gathered is most useful in the context of a defined process6,10 that identifies the specific
steps (e.g., design, design review, coding, peer inspection) that are to be followed in developing
a product. With a stable process, historical data can be used to plan and track future projects.

LEIA: Laboratory Engineering Information Archive

The LEIA (Laboratory Engineering Information Archive) process support tool has been
developed by a series of student teams in MSOE’s Software Development Laboratory.20 LEIA is
a web-based application build on the Apache web server, the Tomcat servlet container, and the
Struts application framework. Persistent storage is provided by a PostgreSQL database server.
Coding is done in Java, JavaScript, and CSS (Cascading Style Sheets).

While various commercially available products such as Microsoft Project can be used for task
and schedule planning and management, such generalized tools typically offer no support for
software quality management. By contrast, LEIA provides time and defect logging, task and
schedule planning, and reporting of plan and quality metrics. Projects are subdivided into
development cycles of configurable length. The work breakdown structure (WBS) model defines

P
age 12.1496.3

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2007, American Society for Engineering Education

a number of components to be delivered in a particular cycle. Each component has a set of tasks
that are required to complete it, as shown in Figure 1.

Figure 1. LEIA Task Breakdown for Component “Task Time Page”

Each LEIA task can be assigned to one or more students, with time estimates (in minutes) for
each assigned team member, as shown in Figure 2. Each task is then assigned a starting and
ending week, relative to the current development cycle; this permits the system to generate a
workload summary by week and team member, to facilitate load balancing within the team and
across the cycle. The development schedule can take into account external dependencies; in
Figure 2, for example, weeks 3 and 4 correspond to a holiday break period when no work is
planned (though some may actually be done).

Figure 2. LEIA Schedule Plan

LEIA supports tracking of team and individual progress, as shown in the effort report of Figure
3. The time values reflect only “task time”, not total time spent on the project; new teams (like
this one) are often too optimistic in their initial planning. This snapshot was taken in the middle
of week 6, so data for that week is not complete.

P
age 12.1496.4

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2007, American Society for Engineering Education

Another way to visualize team progress is with a LEIA earned-value plot, as shown in Figure 4.
As tasks are completed, the team earns their planned value; the plot shows the expected and
actual progress toward project completion. When the “earned” line is above the “planned” line, it
means that the team is ahead of schedule. The cumulative earned value is updated daily, while
the planned value is based on the schedule granularity, which is one week.

Figure 3. LEIA Effort Report (time in minutes)

Figure 4. LEIA Earned Value Plot

The availability of up-to-date tracking data helps the team to know when they are in trouble, and
to take corrective action such as increasing task time or replanning project work.

Process Dashboard

As an open-source project, the Process Dashboard has the potential to gain widespread use and
acceptance. The availability of source code has facilitated its customization, but limited
documentation and a difficult learning curve have been a hindrance. Some past intellectual
property concerns have also cast a shadow, but recent architectural changes have made it easier
to separate out proprietary materials so that more general use and adoption is practical. Perhaps
significantly, the Process Dashboard seems to be an ideal candidate for adoption and
enhancement by software engineering educators and students.

The architecture of the Process Dashboard is very different from that of the LEIA tool described
above. It is a Java application, with basic parts of the user interface implemented in Java.
However, it is also a web server, and many forms and reports are rendered in a local browser. Its
networking capabilities also support links between individual and team data repositories.

The Process Dashboard’s main application window is shown in Figure 1. This small “toolbar” is
intended to be unobtrusive on the desktop, and incorporates a running “stopwatch” timer, a link

P
age 12.1496.5

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2007, American Society for Engineering Education

to forms and reports, and a navigation mechanism for the work breakdown structure. The “C”
menu provides access to additional tools and dialogs.

Figure 5. Process Dashboard Main Bar

When used by individual developers, the work breakdown structure is defined in a hierarchy
editor, as shown in Figure 6. The hierarchy items can be simple nodes or instances of previously
defined processes. The first hierarchy in Figure 6 corresponds to a 10-week academic course
based on the PSP, while the second one represents a nested process definition used by one of
MSOE’s industry partners. In the latter case, the “module” process supports any number of
“components”; each component has a set of process phases, while additional phases are part of
the enclosing module. Data from the individual components is consolidated at the module level.

Figure 6. Examples of Process Dashboard Work Breakdown Structure

The Process Dashboard defect logging dialog is shown in Figure 7. It incorporates its own timer
which can be used to automatically record the “find and fix” time for the current defect. The “fix
defect” capability provides correct time accounting when a new defect is injected while fixing an
existing one. With properly designed processes, defect injection and removal can be tracked
across subprocesses (e.g., from one component in a module to another), though this may not be
required in introductory software process courses.

P
age 12.1496.6

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2007, American Society for Engineering Education

Figure 7. Process Dashboard Defect Log Dialog Box

The Process Dashboard is also capable of schedule planning and tracking, at the individual and
team level. Figure 8 shows a schedule “roll up” that consolidates individual schedule data from
individual team members. It supports tracking of task completion and earned value, and can
generate planned calendar task completion dates from supplied data on the number of available
task hours per week.

Figure 8. Process Dashboard Task and Schedule Dialog

The schedule data can also be presented in graphical form, as shown in Figure 9. The “plan” and
“actual” lines illustrate current performance. The forecast is generated using Monte Carlo
methods, and attempts to define the likely range of future performance based on to-date values of
actual task hours and productivity for completed tasks. The optimized forecast is made assuming
perfect workload balancing (all team members finish their assigned tasks at the same time).

P
age 12.1496.7

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2007, American Society for Engineering Education

Figure 9. Process Dashboard Earned Value Chart

Another powerful Process Dashboard tool is the weekly report. This report, part of which is
shown in Figure 10, provides a capsule summary of individual and team progress to date, or for
any past week. Commonly, this data is displayed during team meetings, while individual team
members are reporting on their own work. It has proven very useful in detecting obstacles and
workload imbalances, so that they can be effectively dealt with by the team. For example, one
team adopted a policy that a variance in earned value greater than 10% would be actively
addressed before the end of the team meeting.

Figure 10. Process Dashboard Weekly Status Summary (partial)

Recently, enhanced team support has been added to the Process Dashboard. This capability
supports a team launch process similar to that specified in the TSP, using planning mechanisms
like those shown in Figure 11. It provides two-way transfer of work breakdown structure and
process data between the team and team member instances of the Process Dashboard program.

P
age 12.1496.8

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2007, American Society for Engineering Education

Figure 11. Process Dashboard Team Work Breakdown Dialog

Tool Application in Software Engineering Education

At MSOE, the LEIA data management tool has been used for several years in the Software
Development Laboratory, a year-long experience for all software engineering students. Student
teams work on ongoing, large-scale projects for real clients, using a process originally based on
the TSP. As LEIA’s capabilities have grown, it has become more useful to the student teams.
The web interface and central database support collaboration within and across teams; this can be
important since an individual student may be a member of both a development team and a staff
team (e.g., the software engineering process group). It has also been common for software
engineering students to use LEIA for their senior design projects. Since these projects are often
multidisciplinary, students from other majors have also learned to use LEIA successfully.

For the last two years, the Process Dashboard has been used in SE-280, a sophomore course that
introduces software engineering process. MSOE faculty members have customized the process
templates and simplified reporting and assignment submission. Some of these changes have been
submitted for integration into the main Process Dashboard code base. While there is a significant
learning curve associated with the creation and customization of processes and tool functions, the
power and capabilities of the tool have proved to be very impressive. With the advent of new
team capabilities, the Process Dashboard may come to play a part in the Software Development
Laboratory, integrating into the LEIA framework or perhaps even supplanting some of the latter
tool’s functions.

Application to Industry Training

MSOE’s Business Excellence Consortium (BEC) provides targeted training for industry partners
in a variety of areas, including software process improvement. Using concepts and techniques
from published books6,7,9,8,10 on the PSP and TSP, and incorporating other process improvement
methods, these efforts assist software development organizations that seek to improve
predictability and quality. The Process Dashboard has been very effective in supporting these
efforts, particularly in creating customized processes that integrate with existing organizational
standards and practices. To date, simple data export and consolidation has been employed to link
team member data to the overall team aggregate. Ongoing experimentation with and adaptation
of the new team support features is expected to provide a basis for even more effective use of the
Process Dashboard with industry teams.

Conclusion

Data gathering and analysis, in a timely manner and with an acceptably low level of effort, is a
key success factor in the application of disciplined software processes that rely on correct and
complete data. In the past, it was often necessary for individual software engineering educators

P
age 12.1496.9

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2007, American Society for Engineering Education

and practitioners to develop their own tools. With the advent of highly functional and widely
available tools like the Process Dashboard, the opportunity may exist to place more emphasis on
common efforts and joint development.

Acknowledgment

Major support for the MSOE Software Development Laboratory has been provided by Johnson
Controls, Inc. This assistance, as well as continuing support from Johnson Controls management
and staff, has made a significant contribution to the success of the software engineering program.

References
1. CMMI Product Team, Capability Maturity Model Integration (CMMI), Version 1.1: CMMI for Systems

Engineering, Software Engineering, Integrated Product and Process Development, and Supplier Sourcing
(CMMI-SE/SE/IPPD/SS, V1.1), Continuous Representation, Technical Report CMU/SEI-2002-TR-011,
Software Engineering Institute, 2002, http://www.sei.cmu.edu/publications/.

2. N. Davis and J. Mullaney, The Team Software Process (TSP) in Practice: A Summary of Recent Results,
Technical Report CMU/SEI-2003-TR-014, Software Engineering Institute, 2003,
http://www.sei.cmu.edu/publications/.

3. W. Hays and J. Over, The Personal Software Process (PSP): An Empirical Study of the Impact of PSP on
Individual Engineers, Technical Report CMU/SEI-97-TR-001, Software Engineering Institute, 1997,
http://www.sei.cmu.edu/publications/.

4. T. Hilburn, “Software engineering - from the beginning”, Proceedings of the 9th Conference on Software
Engineering Education (CSEE'96), April 1996.

5. T. Hilburn, “Teams need a process!”, Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSE Conference on
Innovation and Technology in Computer Science Education (ITiCSE 2000), July 2000.

6. W. Humphrey, A Discipline for Software Engineering, Addison-Wesley, 1995.
7. W. Humphrey, Introduction to the Team Software Process, Addison-Wesley, 2000.
8. W. Humphrey, The Team Software Process (TSP), Technical Report CMU/SEI-2000-TR-023, Software

Engineering Institute, 2000, http://www.sei.cmu.edu/publications/.
9. W. Humphrey, Winning With Software: An Executive Strategy, Addison-Wesley, 2002.
10. W. Humphrey, PSP - A Self-Improvement Process for Software Engineers, Addison-Wesley, 2005.
11. W. Humphrey, Software Engineering Institute, personal communication.
12. P. Johnson, et al, HackyStat Research Summary, http://csdl.ics.hawaii.edu/Research/Hackystat/.
13. Joint Task Force on Computing Curricula, IEEE Computer Society and Association for Computing Machinery,

Computing Curriculum — Software Engineering, July 2004; http://sites.computer.org/ccse/.
14. C. Jones, Software Assessments, Benchmarks, and Best Practices, Addison-Wesley, 2000.
15. Process Dashboard (software process support tool), http://processdash.sourceforge.net/.
16. M. Postema, et al, “Tool Support for Teaching the Personal Software Process”, Computer Science Education,

Vol. 10, August 2000.
17. L. Pracchia, “The AV-8B team learns synergy of EVM and TSP accelerates software process improvement”,

Crosstalk:The Journal of Defense Software Engineering, January, 2004.
18. P. Runeson, “Experiences from teaching PSP for freshmen”, Proceedings of the 14th Conference on Software

Engineering Education and Training (CSEE&T'01), February 2001.
19. M. Sebern, “Iterative development and commercial tools in an undergraduate software engineering course”,

Proceedings of the 28th SIGCSE Technical Symposium on Computer Science Education, ACM Press, 1997.
20. M. Sebern, “The software development laboratory: incorporating industrial practice in an academic

environment”, Proceedings of the 15th Conference on Software Engineering Education and Training
(CSEE&T'02), February 2002.

21. M. Sebern and T. Hilburn, “Integrating software engineering process in an undergraduate curriculum”,
Proceedings of the 18th Conference on Software Engineering Education and Training (CSEE&T'05), April
2005.

22. A. Sillitti, et al, “Collecting, integrating and analyzing software metrics and Personal Software Process data”,
Proceedings of the 29th EUROMICRO Conference, IEEE, 2003.

P
age 12.1496.10

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2007, American Society for Engineering Education

23. Software Engineering Institute, PSP academic materials,
http://www.sei.cmu.edu/tsp/psp/download/academic.html.

24. D. Suri and M. Sebern, “Incorporating software process in an undergraduate software engineering curriculum:
challenges and rewards”, Proceedings of the 17th Conference on Software Engineering Education and Training
(CSEE&T'04), March 2004.

25. D.A. Umphress and J.A. Hamilton, Jr., “Software process as a foundation for teaching, learning, and
accrediting”, Proceedings of the 15th Conference on Software Engineering Education and Training
(CSEE&T'02), February 2002.

Biography
MARK J. SEBERN is a Professor in the Electrical Engineering and Computer Science Department at the Milwaukee
School of Engineering (MSOE), and was the founding program director for MSOE's undergraduate software
engineering program. He has served as an ABET program evaluator for software engineering and computer
engineering.

MARK L. HORNICK has been an Assistant Professor in the Electrical Engineering and Computer Science
Department at the Milwaukee School of Engineering (MSOE) since 2004. Prior to that, he worked in private
industry for 20 years, implementing and managing the incorporation of standard practices and processes into the
development of industrial software products.

P
age 12.1496.11

