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Torsion Tests to Study Plastic Deformation in Ductile Materials 

ABSTRACT 

This project is an experimental study on plastic deformation in ductile materials such as aluminum 

and steel.  The objective is to stimulate interest in engineering undergraduate students the 

importance of plasticity in structural design and metal forming.  It is proposed as a supplemental 

lab activity for the junior level Mechanics of Materials course. Torsion tests were performed on 

circular cylindrical bars to obtain torque-twist curves (the torsional shear stress vs torsional shear 

strain plots).  The 0.2% offset yield shear strength, k, were estimated from these curves.  The bars 

were twisted well into their plastic regions, and as the elastic/plastic torsion continued, the torques 

seemed to approach their limiting values.  Experimental estimates for the limiting torques were in 

reasonable agreement with the values predicted by the so-called sand heap analogy. This states 

that the stress surface for a fully plastic cross-section is obtained by piling dry sand on a horizontal 

base whose shape is identical to the cross-section of the bar.  For a circular cross-section, the sand 

heap is a cone, and the limiting torque is equal to (k a /G) times the volume of the cone, where a 

is the radius.  The specimens were twisted to a predetermined maximum value.  The directions of 

twist were subsequently reversed.  After unloading and reloading from the initial loading phase, 

the materials seemed to yield in the reverse direction with lesser yield strength values.  This shows 

that the torsional plastic deformation for metallic materials is one direction affects plastic 

deformation in the reversed direction and demonstrates the Bauschinger Effect in torsion.  

 

 

 

 

 



INTRODUCTION 
 

In this work, prismatic bars of circular cross sections have been loaded in torsion to study their 

responses in elastic and elastic-plastic domains.  The purpose was to experimentally demonstrate 

the plastic deformation that takes place when the torque exceeds the amount that causes the bar to 

yield. This is an extension of the torsion test where the torques are such that yielding does not take 

place, and the torque twist characteristic is linear.   When a bar is twisted beyond the elastic range 

(yielding), there is a non-linear torque-twist behavior.  Simple analytical solutions for the 

deformation and stresses in a bar subject to axial torsion exist only for circular cross-sections. One 

of the simplest ways to study elastic as well as elastic-plastic behavior analytically is to assume an 

elastic-perfectly plastic representation of the stress-strain curve.  For the case of torsion, this would 

be the shear stress vs. shear strain curve as shown in Figure 1.  The shear stress varies linearly with 

shear strain in the elastic region, and reaches a constant value and stays constant in the plastic 

region.  Sometimes this representation is termed as one of “zero hardening.”   However, most 

ductile materials exhibit strain hardening where in the plastic region, the shear stress 

monotonically increases with shear strain.   

 

 
Figure 1 



 

There are two analogies to study elastic and elastic-plastic torsion, and are described below. 

 

 

The Membrane Analogy for Elastic Torsion  

 

An analogy between the elastic torsion of a bar and the small deflection of a laterally loaded 

membrane has been pointed out by (Prandtl, 1903). The membrane is stretched by a uniform 

tension F per unit length of its boundary, and is attached to a die whose edge plane is of the same 

shape as the cross section of the twisted bar. A uniform lateral pressure is then applied to the 

membrane to produce a deflection w at a generic point. The boundary condition is w = 0 along the 

edge of the die.  It turns out that the contours of constant deflection correspond to the lines of 

shearing of the twisted bar.  Also, the applied torque is proportional to the volume bounded by the 

deflected membrane and the xy plane.  Since the membrane everywhere concaves to the applied 

pressure, the greatest value of the shear stress must occur somewhere on the boundary. 

Consider a cylindrical or prismatic bar of constant cross section which is twisted and held 

in equilibrium by twisting moments applied at its ends. The bar is considered to be composed of 

an isotropic material possessing the idealized stress-strain relationship for an elastic, perfectly 

plastic material shown in Figure 1.  Increasing torque causes the material to pass from the elastic 

region (line AB, Figure 1) into the perfectly plastic range (line BC, Figure 1). After a point in the 

cross section reaches the yield stress in shear (point B), this maximum shearing stress remains a 

constant value k as increasing torque causes an increase in the plastic region of the bar. Before 

examining the plastic behavior of the prismatic cross section, we will consider the stress 

characteristics in the elastic range.            

                                  

 



The Sand-Heap Analogy for Plastic Torsion    

 

An extension of the membrane analogy to elastic/plastic torsion has also been suggested by (Nadai, 

1950).   It is necessary to erect a roof of constant slope while having its base similar to the boundary 

of the cross section.  

If the bar of certain cross-section is twisted beyond the yield point, certain parts of the bar 

will be deformed plastically. Similar to the case of the elastic torsion, the shearing stresses are 

directed tangentially to the contour lines of the plastic stress surface. The plastic stress function 

may be considered as a “roof” under which the membrane, geometrically the same as the cross 

section, expands. When the membrane touches the “roof,” the condition of plasticity is satisfied 

and plastic yielding begins at that point in the cross section. As the torque is increased, as 

represented by increasing air pressure on the membrane, the membrane expands and touches more 

of the “roof.” At the limit, the membrane fills the entire volume under the roof. The cross section 

is considered to have attained a fully plastic state. Following the membrane analogy, the torque 

required to achieve the fully plastic state is proportional to the volume under the “roof.”   The 

mathematical and physical interpretation of the plastic response for the case of complete yielding 

of the entire prismatic bar can be demonstrated by sand heaps covering a plate similar in cross 

section to the twisted bar. This analogy was first presented by (Nadai, 1923) at a meeting of the 

German Society of Applied Mathematics and Mechanics in Marburg, Germany in 1923. 

 

“A plate whose shape is geometrically similar to the cross section of the twisted bar 

serves as a horizontal tray to hold a heap of dry uniform sand. The heap is to be as 

big as it is possible to pile by pouring a gentle stream of sand on top of the model, 

the excessive sand rolling freely down the slopes of the heap and falling off the 

elevated tray.” (Nadai, 1950) 

 



In a solid bar made of non-hardening material, the fully plastic stress distribution represents 

a limiting state which is approached in an asymptotic manner as the angle of twist increases. The 

fully plastic value of the torque has a physical significance, since it is very closely attained while 

the deformation is still of the elastic order of magnitude. The stress surface for a fully plastic cross 

section can be obtained experimentally by piling dry sand on a horizontal base whose shape is 

geometrically similar to that of the cross section of the bar. The limiting torque is proportional to 

the volume of sand forming the hill. Once the limiting torque has been reached, the bar is free to 

twist in an unrestricted manner. 

 

 

TORSION EXPERIMENTS 

MTS axial and torsion testing machine (Figure 2) was used. The torsion tests were performed on 

6061-T6 extruded aluminum and low alloy steel A-36 bars of circular cross section (1.0 inch in 

diameter). The loading was increased and continued through the inelastic region. Figures 3 and 4 

display the data graphically and shows the torques appear to asymptotically reach constant values 

for both materials with increase in twist angles.  However it was decided to reverse the loading 

after a certain value of torque.  This asymptotic trend was more prominent in Figure 4 for A-36 

material.  Figure 5 displays the torque twist characteristics for both aluminum and steel specimens. 



                                                                          

Figure 2: MTS Axial-Torsion Machine 

 

 

 



 

           

 

 

 

Figure 3: Torque vs Twist for 6061 Aluminum Rod of Circular Cross-section 

 

       

 

 

 



 

 

 

Figure 4: Torque vs Twist for A-36 Steel Rod of Circular Cross-section 

 

 

 

 

 



 

 

 

 

 

Figure 5: Torque vs Twist for Two Specimens on one plot 

 

 

 

 

 

 

 

 

 



BAUSCHINGER EFFECT OBSERVED IN SHEAR STRESS SHEAR STRAIN CURVES  

The torque twist (T – φ) curves obtained in Figures 3 and 4 were first converted into shear stress 

(τ) vs shear strain (γ) curves using equations (1) and (2) (Hibbeler, 2011) 

The torsional shear stress is given by 

                                                          𝜏 =  
16 𝑇

𝜋𝑑3                                               (1)  

Here T denotes the applied torque, and d is the diameter of the specimen used in the test and equals 

1 inch (25.4 mm)  

And the shear strain is given by,  

𝛾 =  
𝑟

𝐿
 ∅                                                          (2) 

Here φ refers to the twist measured in radians, r is the radius of the specimen and equals 0.5 in 

(12.7 mm) and L is the length of the specimen (distance between the jaws) and equals 8.0 inches 

(203.2 mm) 

The τ- γ curves (as obtained from Figures 3 and 4) are shown in Figures 6 and 7.   

One of the uses of the τ- γ plot is to determine the yield strength in shear.  The τ- γ curve departs 

smoothly from the linear law relationship τ= G γ, where G is the shear modulus.  It can be quite 

difficult to determine the points at which the T – φ curves depart from linearity.  To deal with the 

problem, the 0.2% offset has been used for both the direct torsional loading as well as the reversed 

torsional loading and displayed in Figure 6 and 7.  This is the stress level from which an unloading 

results in a plastic strain of 0.2%, or γ = 0.002.   



Upon re-twisting in the reversed direction, the materials will start to yield in the reverse direction.  

We observe from both Figures 6 and 7 that both the materials yield at a lower value in the reversed 

direction.  This reduction in yield strength experienced after a reversal of loading is known as the 

Bauschinger Effect.  Named after German engineer Johann Bauschinger, the Bauschinger effect is 

an important property that occurs in most materials, and describes characteristics that changes in 

them due to stress applied, such as torsion in this experiment. Due to the stress distribution that 

occurs resulting from plastic deformation in materials, there is possible stress or strain changes 

that makes one characteristic increase and another decrease. More importantly, this change in 

property indicates the loss of isotropic behavior that occurs in these metals because of the added 

deformation by torsion. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 6: τ- γ curve for 6061 Aluminum 

(0.2% offset yield strengths obtained during direct and reversed twisting) 

 

 

 

 

 

 



 

 

 

 

 

 

Figure 7: τ- γ curve for A-36 Steel 

(0.2% offset yield strengths obtained during direct and reversed twisting) 

 

 

 

 

 



 Table 1 clearly demonstrates the Bauschinger Effect in aluminum and steel specimens 

 

Sample Direct Yield 
(MPa) 

Direct Yield 
(psi) 

Reverse Yield 
(MPa) 

Difference (MPa) 
(Direct-Reverse) 

6061 Aluminum  225.9 32764 155.4 70.5 

A-36 Steel  244 35389 181.1 62.9 
 

Table 1: Relation between Direct Yield and Reverse Yield 

 

ESTIMATIONS OF FULLY PLASTIC TORQUES  

These estimates are based on Nadia’s Sand Heap Analogy: 

The fully plastic torques for the aluminum and steel specimens were obtained from Figures 3 and 

4, as the curves asymptotically reach the maximum values:  For aluminum from Figure 3 we have  

𝑻𝒑 = 𝟕𝟓𝟎𝟕 𝒍𝒃𝒊𝒏   

From Table 1 the 0.2% offset yield strength k = 32764 psi.  We use this value in the analytical 

estimate of the fully plastic torque  

The volume of a cone of height ka/G and radius (a) = 0.5 in, gives the fully plastic torque 

 

                                𝑇𝑝 = 2𝐺 [
1

3
𝜋𝑎2ℎ] =  2𝐺 [

1

3
𝜋𝑎2 (

𝑘𝑎

𝐺
)]       =

𝟐

𝟑
   𝝅𝒂𝟑 𝒌                                    (3) 

𝑇𝑝  =  
2

3
𝜋(0.5)3(32764) =>  𝑻𝒑 = 𝟖𝟓𝟕𝟕 𝒍𝒃𝒊𝒏 

For aluminum from Figure 4 we have  

𝑻𝒑 = 𝟕𝟎𝟕𝟓 𝒍𝒃𝒊𝒏   



 

From Table 1 the 0.2% offset yield strength for A-36 steel k = 35389 psi.  We use this value in the 

analytical estimate of the fully plastic torque  

Using Equation 3 we get as follows: 

𝑇𝑝 =
𝟐

𝟑
   𝝅𝒂𝟑 𝒌 =  

2

3
𝜋(0.5)3(35389) =>  𝑻𝒑 = 𝟗𝟐𝟔𝟒 𝒍𝒃𝒊𝒏          (4)        

 

Both experimental values and analytical values were estimated. The tables below show how these 

values compare with each other. 

 

Sample Analytical Estimate Experimental Estimate 

6061 Aluminum 8577 lb-in 7507 lb-in 

A-36 Steel 9264 lb-in 7075 lb-in 
 

 

Table 2: Fully Plastic Torque Comparisons 

 

DISCUSSION 

This project introduces the students to material plasticity through torsion experiment involving 

loads that causes the material to yield.   As the torque is increased, a plastic region develops around 

an elastic core. There are errors introduced in the experiment primarily due to setup repeatability. 

 

 

 

 

 



 

ASSESSMENT OF STUDENT LEARNING 

A number of activities in terms of solving problems, and explaining some concepts will be 

introduced.  Typical questions are:  

1. Show that if the yield strength is exceeded, the governing equations for the torsional shear 

stress and twist do not hold. Why?  

2. Calculate the maximum elastic torque when the shear yield is given. Also calculate the 

maximum elastic twist. 

3. Why is the maximum torque different from the value predicted by Sand Heap Analogy?     
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