
Paper ID #9650

Towards Improving Computational Competencies for Undergraduate Engi-
neering Students

Dr. Claudia Elena Vergara, Michigan State University

Claudia Elena Vergara is a Research Scientist in The Center for Engineering Education Research (CEER).
She received her Ph.D. in Plant Biology from Purdue University. Her scholarly interests include: improve-
ment of STEM teaching and learning processes in higher education, and institutional change strategies to
address the problems and solutions of educational reforms considering the situational context of the par-
ticipants involved in the reforms. She is involved in several research projects focusing on competencies-
based curriculum redesign and implementation aimed to integration across curricula; increasing the re-
tention rate of early engineering students; providing opportunities for STEM graduate students to have
mentored teaching experiences.

Dr. Mark Urban-Lurain, Michigan State University

Mark Urban-Lurain is an Associate Professor and Associate Director of the Center for Engineering Edu-
cation Research at Michigan State University.

Dr. Urban-Lurain is responsible for teaching, research and curriculum development, with emphasis on
engineering education and, more broadly, STEM education.

His research interests are in theories of cognition, how these theories inform the design of instruction,
how we might best design instructional technology within those frameworks, and how the research and
development of instructional technologies can inform our theories of cognition. He is also interested in
preparing future STEM faculty for teaching, incorporating instructional technology as part of instructional
design, and STEM education improvement and reform.

Dr. Jon Sticklen, Michigan State University

Jon Sticklen is the Director of the Center for Engineering Education Research at Michigan State Uni-
versity. He also serves MSU as Director of Applied Engineering Sciences, an undergraduate bachelor of
science degree program that is highly interdisciplinary focusing on both engineering and business. He
also is a faculty member in the Department of Computer Science and Engineering. In the decade of the
90s, Dr. Sticklen founded and led a computer science laboratory in knowledge-based systems focused
on task specific approaches to problem solving, better known as expert systems. Over the last decade,
Dr. Sticklen has pursued engineering education research focused on early engineering with an emphasis
on hybrid course design and problem-based learning; his current research is supported by NSF/DUE and
NSF/CISE.

Prof. Abdol-Hossein Esfahanian, Michigan State University
Hannah McQuade, The Center for Engineering Education Research
Andrew League, Michigan State University
Mr. Chris John Bush, Center for Engineering Education Research
Mr. Michael Cavanaugh, Michigan State University: Center for Engineering Education Research

Michael Cavanaugh is a third year graduate student in the Anthropology Department at Michigan State
University. He has a B.A. in American Indian Studies from the University of Wisconsin Eau-Claire.
He earned an M.A. in American Indian Studies from UCLA. His Ph.D. research at MSU is focused on
American Indian experiences in postsecondary education and the retention of Native students in STEM
disciplines. He currently works for the Center for Engineering Education Research (CEER) at MSU.
While at CEER he has worked on the CPACE Project (Collaborative Process to Align Computing Edu-
cation with Engineering Workforce Needs) and helped to build a framework for assessing computational
competencies within engineering education.

c©American Society for Engineering Education, 2014

P
age 24.1268.1

Enhancement of Computational Competencies Across
Engineering Curricula

Abstract

In the global economy of the 21st century, the preparation of a competitive U.S. workforce
with knowledge and understanding of critical computing concepts, methodologies, and
techniques is essential. The Collaborative Process to Align Computing Education with
Engineering Workforce Needs (CPACE) team developed a partnership among various
stakeholders – Michigan State University (MSU) and Lansing Community College (LCC) and
business and industry leaders – to identify the computational skills that are essential for a
globally competitive engineering workforce. Our goal is to redesign the role of computing within
the engineering programs at MSU and LCC to develop computational competencies –informed
by industry needs– by infusing computational learning opportunities into the undergraduate
engineering curriculum. The emphasis of this paper is on the curricular implementation phase
(CPACE II) focusing on:

• Preliminary survey results across target courses at MSU.
• Efforts to assess students’ computational competencies using a rubric based on the

CPACE computational competencies.
• Brief discussion of our efforts to develop and validate assessments to measure

computational competencies for engineering students.

Introduction

The learning sciences have influenced repeated calls for improving engineering education

that focus on providing students with the opportunities to integrate their knowledge across
disciplines through authentic problem solving 1- 6. Computation for engineering cannot simply be
addressed with one or two courses in computing or a few examples scattered in the curriculum,
but must be integrated as part of an engineer’s training to become a “Holistic Engineer” 7.

One of the challenges of preparing engineers for the rapidly changing workplace is to provide

the foundations they need to choose among and use a wide range of changing computational
tools. To address the computational needs of engineers, we must ground the curricula in
problems from engineering while helping students acquire the competence to understand
underlying principles and abstractions that will help them solve new problems using new tools.
Our educational challenge is to help engineering students move from novice understanding of
computing that focuses on the superficial operation of particular software, towards competence
expertise that is grounded in a deeper conceptual understanding relevant to their engineering
discipline 8. Drawing upon the extensive literature on how people learn 9, particularly in
engineering 10-12, our goal is to infuse computational competencies throughout the engineering
curricula by integrating problems of disciplinary engineering practice.

CPACE Project Overview

The CPACE project is divided in two phases, CPACE I and II. During CPACE I we: a)

P
age 24.1268.2

identified the computational competencies needed in the engineering workplace; b) developed a
‘data-to-computer science (CS)-concept map’ to translate our research findings into fundamental
CS concepts that can be used in curricular implementation. Our results are consistent with other
research on engineering education13, 14 and details of the process and findings from CPACE I are
presented elsewhere15, 16.

CPACE I: Workforce-Computing Needs

To understand engineering workplace needs for computational competence both at the

practical-tool level and at the computational problem solving level, we interviewed and surveyed
engineering stakeholders. We organized the results of the interview and survey analyses in three
categories: general skills, computational skills and future of engineering practice. Employers
place high value on: a) interpersonal skills such as communication, ability to organize and
present data, and the ability to function in a team; b) critical and innovative thinking and problem
solving; and (c) employers see trends towards computational globalization which translates to the
need for engineers to understand business practices and the importance of integrating
engineering data across larger systems. The ability of engineers to understand computational
principles in the context of the engineering practice allows them to select and use computation to
solve engineering problems. With regard to specific software, Excel, design and modeling
software, and data and project management software were identified as very important to the
engineering practice13, 14. Table 1 presents a summary of the skills identified by engineering
stakeholders.

Table 1. Categories of skills identified by engineering stakeholders

General Skills Computational Aspects Future Engineering Practice
- Communication
skills
- Team work
- Critical thinking
- Innovative thinking
- Problem solving
(both conceptual and
operational)
- Ability to learn/adapt

- Basic computational skills.
- Understanding of principles,
application and limitations of
computational tools
- Using technology to collaborate at all
levels
- Use of technology to support broad
problem solving and decision making
- Familiarity with multiple software
systems
- Ability to move between abstractions
in software and physical systems
- Multiple CAD programs including 3D
modeling
- Process simulation packages
- Numeric computational platforms
- Excel (High level capabilities)
- MS Office
- Some programming

-Corporate development, leadership,
management skills.
- Project management software
- Increasing integration of engineering
data across larger systems
- More business intelligence embedded in
systems
- Data Mining
- Globalization
- Environmental impact across
disciplines. Design for the environment
(DFE)
- Research and development including:
• Material development/new applications

for existing material.
• Electronic communication.
• Next generation of technology
- Increasing use of simulation to reduce
materials usage in design phase.

CPACE I: Workforce-Computing Needs Alignment to CS-Concepts

To translate our employer data into computer science (CS) concepts that can be integrated in
the curricula, we focused on identifying the underlying computational principles. These

P
age 24.1268.3

computational principles incorporate key components of computational needs in the broad
[workplace] engineering context. Details of the process and findings from this phase of the
project are presented elsewhere17. The chart in Figure 1 shows the distribution of the
computational competencies – required in the engineering workplace – mapped to CS concepts
that can be used to implement curricular changes. Our goal is to better align our engineering
graduates computational problem solving capabilities with the needs of industrial stakeholders
represented in this distribution.

Figure 1. Distribution of engineering workplace computational competencies aligned to CS
concepts17.

The second and current phase of the project (CPACE II) comprises the implementation of

curricular revisions in two engineering disciplines Chemical and Civil at MSU and pre-
engineering courses at LCC. In this paper we focus on a subset of the survey analyses and
discuss our efforts to analyze student artifacts using a rubric that we created based on the
CPACE computational competencies depicted in Figure 1. We will briefly discuss our efforts to
develop and validate assessments to measure computational competencies for engineering
students.

Curricular Implementation (CPACE II)

In CPACE II our goal is to infuse computational problem-solving competencies throughout

the curricula18, 19. To achieve this goal and bring about an integrated computing experience, our
strategy entails using problems derived from contemporary industrial engineering practice. The
problems are developed in consultation with stakeholders from industry, and faculty from
engineering and CS to ensure that they exemplify relevant industrial scenarios within the
discipline. Together the team will form the educational experience to further the development of
computational problem solving in the students. These problems provide a context where students
are required to apply various computational concepts for their solution. Initial implementation
includes Chemical (CHE) and Civil (CE) Engineering at MSU and pre-engineering courses at
LCC. We targeted courses across all four years of the engineering curricula. Table 2 summarizes
the courses targeted at MSU.

P
age 24.1268.4

Table 2. Description of courses targeted at Michigan State University

Course name Level Description
Approximate

annual
enrolment

Engineering
modeling (EGR
102)

First year Intense computational course part of <university’s> First
Year Engineering Program.

900

Civil Eng. (CE)
Statics (CE 221)

Sophomore Vector description of forces and moments. 2 and 3- D
equilibrium of particles and rigid bodies. Analysis of
trusses, frames, and machines. Coulomb friction.

700

CE Str. Anal &
Design (CE 305)

Junior Theory of structural analysis for statically determinate
structures. Qualitative structural analysis and behavior.
Load estimation and placement. Introduction to structural
analysis computer software. Introduction to statically
indeterminate structures.

120

CE Intro Fluid
Mech. (CE 321)

Junior Fluid properties, fluid statics, fluids in motion.
Conservation of mass, energy, and momentum.
Dimensional analysis and similitude. Internal and external
flows. Applications.

120

Chemical Eng.
(CHE) Modeling
and Analysis of
Transport
Phenomena
(CHE 210)

Sophomore Steady and unsteady state material and energy balances.
Fluxes and rate processes. Shell balances. Balance
equations for mass, heat, and momentum transport.
Analogies among mass, heat, and momentum transport.
Analytical and numerical solutions. Application of
computational methods to problem solutions.

110

Mass Transfer
and Separations
(CHE 312)

Junior Diffusion. Mass transfer coefficients. Design of
countercurrent separation systems, both stage wise and
continuous. Distillation, absorption, extraction.
Multicomponent separations. Batch processes. Computer-
aided design methods.

110

Thermodynamics
for Chemical
Engineering
(CHE 321)

Junior First and second laws. Thermodynamics of flow and energy
conversion processes. Properties of single and multi-
component systems. Phase equilibria. Chemical equilibria
in reacting systems.

110

Data Collection and Analyses

The Introduction to Engineering Modeling (EGR 102) is one of the cornerstone academic

components of the first year engineering experience at MSU. Approximately 900 students,
primarily freshmen, enroll in EGR 102 per academic year. The course focuses on the solution of
engineering problems using computational tools (e.g., MATLAB and EXCEL). Because the
course serves seven engineering disciplines, course instruction is focused on helping students
develop transferable computational expertise that students can subsequently apply to the use of
discipline-specific software in later coursework and their professional practice. Beginning with
EGR 102 and the computational skills taught in EGR 102 we are interested in understanding how
students’ computational problem solving skills using tools such as MATLAB and excel progress
through the curricula? Are students able to transfer their conceptual understanding and
computational skills to solving problems that require the use of new tools and computational
skills?

Following a mixed methods approach, quantitative and qualitative data are collected. We

P
age 24.1268.5

collected student surveys at the beginning and end of target courses; we also conducted student
focus groups and interviews. Standard class data on learning outcomes and sample course work
e.g. final report on the assigned problem and relevant homework assignments from the target
courses at LCC and MSU were also collected and assessed using a computational competencies
rubric that we designed.

To gauge how students’ computational skills progress through the curricula, we created self-

reported survey instruments that ask students about their confidence to perform specific tasks in
each of the software packages. The surveys are constructed and administered online. The
instrument included open- and close-ended items. The goals of the student surveys were to: (a)
measure general attitudes towards engineering; (b) measure attitudes towards computational
problem solving; and (c) determine the use and application of computational tools. The surveys
for all the target courses included the same MATLAB and excel related questions. Questions
about specific software tools required in a particular course were also included in consultation
with the instructor (e.g. SAP 2000 for CE 305 and ASPEN for CHE 312).

Test/retest of these instruments were performed with a population of teachers and pre-service

teachers as part of a project aimed to improve the integration of technology in a teacher
education program by promoting Fluency with Information Technology (FITness)20. We
performed factor analysis (FA) to determine how many factors the survey questions load on. The
FA on items for Excel together or MATLAB together revealed that they load only on single
factors (one excel, one MATLAB). For all survey analyses we used SPSS V20 and performed
1000 bootstrap iterations to estimate confidence intervals for all regression coefficients, using a
95% confidence interval for significance. The open-ended responses were analyzed using the
SPSS Text Analysis for Surveys.

To complement our analyses and understand the complexity of the students’ computational

thinking processes we conducted semi-structured interviews and focus groups; the objective of
the interviews was to focus on the role of computation during the problem solving process.
During the interviews students were asked to describe/recount their thought processes as they
solved the engineering problem. The interviews were recorded and transcribed verbatim; the
transcripts were segmented and coded using Atlas Ti software tool for the analyses of qualitative
data. We are currently completing the analyses of the interview data; complete and detailed
results of this qualitative data set will be presented in a forthcoming manuscript.

The majority of the data presented in this paper corresponds to survey data collected from

students beginning in Fall, 2011, through Spring, 2013. There are brief references to preliminary
interview data as we are still completing those analyses.

Survey Analyses

These analyses include survey data collected from students beginning in Fall, 2011, through

Spring, 2013. The courses included in these analyses are EGR102 (freshman level), CHE 210
(sophomore level) and CHE 312 (junior level). As indicated above student surveys are
administered at the beginning (pre) and end (post) of EGR 102, CHE 210, and CHE 312. This

P
age 24.1268.6

allowed us to track the same students as they moved from EGR 102 through the subsequent
courses.

At MSU the one formal place in the engineering curriculum where students are explicitly

taught computational tools is EGR 102; in this course students learn to use Excel and MATLAB
to compute various numeric methods. While students in EGR 102 are graded in part on their
ability to use these software packages, grades in their subsequent engineering courses do not
explicitly evaluate their skill using these tools. To gauge how students’ skills with these tools
progress through the curricula, we created self-reported survey instruments that ask students
about their confidence to perform specific tasks in each of the software packages. Some example
questions for Excel include “I can compute the average of a column of numbers using a built-in
function” and “I can create a macro to perform a mathematical function for which I know the
formula.” For each question students are asked to rate their ability on a 1-5 scale where 1 is “I
don’t know what that means” to 5, “I know what it means and am certain I can do it”.

We performed exploratory factor analysis on these instruments and determined that there is a
single dimension on which all items load, this allowed us to create composite total scores for
Excel and MATLAB by averaging their responses to all items on the instrument to account for
students who may not answer every item.

Students in EGR 102 reported statistically significant gains in most computational skills

related to MATLAB (p< .005 Wilcoxon signed rank test for related samples pre and post survey)
and Excel (p< .005 Wilcoxon signed rank test for related samples pre and post survey). Some of
these skills include writing FOR loops and nested FOR loops, and basic programming in
MATLAB. These results indicate that participation in the course project is helping students feel
more confident with respect to their computational abilities. The survey results for students at the
end of the EGR 102 course correlated with the final course grade (Excel, r=.11, p < .003; Matlab,
r=.272, p< .0001). Note that most of the grade in EGR 102 was based upon MATLAB, rather
than Excel, assignments.

To determine how student abilities with Excel and MATLAB progress throughout the
curricula, we administered these surveys to students at the beginning and end of EGR 102, CHE
210, and CHE 312 (freshman to junior). This allowed us to track the same students as they
moved from EGR 102 through the subsequent disciplinary courses. EGR 102 is required for
most students in the College of Engineering, but the Chemical Engineering courses are required
only for Chemical Engineering students. Table 3 shows the numbers of students who completed
the EGR 102 AND the CHE 210 surveys.

P
age 24.1268.7

Table 3. Cross tabulation of students who completed both EGR 102 AND CHE 210 surveys
 EGR102_Crse_Term_Code Total

FS11 FS12 SS11 SS12 SS13

CHE210_Crse_Term_Code

 153 212 198 387 443 1393

FS11 0 0 7 0 0 7

FS12 4 0 5 8 0 17

SS12 9 0 24 1 0 34
Total 166 212 234 396 443 1451

The columns show the numbers of students who took the EGR 102 survey each semester and

the rows show the numbers of students who took the CHE 210 survey. Thus, 166 students took
EGR 102 in Fall 2011. Of those students, 4 students took CHE210 in Fall 2012 and 9 took CHE
210 in Spring, 2012. Of the 1451 EGR 102 students, 58 students took CHE 210 (numbers
highlighted in red in table 3).

Table 4 shows the same information for students who took EGR 102 and CHE 312. Note
that a total of 49 students (numbers highlighted in red in table 4) took both EGR 102 and CHE
312 in this time period.

Table 4. Cross tabulation of students who completed both EGR 102 AND CHE 312 surveys
 EGR102_Crse_Term_Code Total

FS11 FS12 SS11 SS12 SS13

CHE312_Crse_Term_Code

 154 212 205 388 443 1402

SS12 0 0 7 1 0 8

SS13 12 0 22 7 0 41
Total 166 212 234 396 443 1451

We compared the results across courses moving from freshman (EGR 102) to sophomore

(CHE210) and junior (CHE312) levels; figure 2 shows the mean scores for questions related to
the use of excel for students who took the pre- and post-course surveys in EGR 102, CHE 210
and CHE 312. The error bars are the 95% confidence interval (CI). Note that the student
confidence increases from the beginning of EGR 102 (EGR102 pre-excel total in figure 2) to the
end of the course (EGR102 post-excel total in figure 2), but then reverts to pre-EGR 102 levels
when they start CHE 210 (CHE210 pre-excel total in figure 2). Their confidence continues to
increase across CHE 210 (usually taken in the sophomore year) and CHE 312 (usually taken in
the junior year).

P
age 24.1268.8

Figure 2. Mean excel scores for students who took the pre- and post-course surveys in EGR 102,
CHE 210 and CHE 312.

Figure 3 shows the mean scores for questions related to the use of MATLAB. In this case,

confidence in the use of MATLAB increases dramatically in EGR 102 (EGR102 pre and post
MATLAB total in figure 3), but then decreases at the start of CHE 210. It increases by the end
of CHE 210, but declines again at the start of CHE 312 and again increases. It is important to
note that both CHE 210 and 312 courses provide students the opportunity to engage in course
related activities such as projects and homework where they have the opportunity to practice
their MATLAB skills.

Figure 3. Mean MATLAB scores for students who took the pre- and post-course surveys in EGR
102, CHE 210 and CHE 312

P
age 24.1268.9

There is a difference between the patterns observed for the MATLAB-related skills (figure 3)
and the excel-related skills where students’ self-reported confidence continues to increase across
CHE 210 and CHE 312 (figure 2). A likely explanation comes from our interview data.
Preliminary results from students’ interviews indicate that they use Excel much more frequently
in all of their disciplinary course work than they use MATLAB. They tend to use MATLAB
only if the assignment specifically instructs them to, in contrast they will use Excel as their first
choice when given the freedom to pick a tool.

Our preliminary survey analyses indicate that students who are engaged in an intense
computational course such as the EGR 102 at MSU or the Numerical Methods and MATLAB
course at LCC (results not shown) report statistically significant gains in the use and application
of important computational skills and competencies after completing the course project. In all the
examples analyzed students entering their disciplinary courses either at the sophomore or junior
level report a drop in confidence in their MATLAB-related computational skills. Students in the
disciplinary courses who are engaged in a project or classroom activities that encourage the use
of those computational skills report regaining confidence in the use of those skills after
completing the project. This is exemplified in both the sophomore and junior courses in CHE
where students have the opportunity to practice their MATLAB skills in the context of the
project and other course related activities.

CPACE Computational Rubric

To compare students’ self-reported survey data regarding their computational abilities and

their actual performance in classroom assignments, we designed and are currently developing
rubrics based on the computational competencies aligned to CS concepts presented in figure 1.
Table 5 shows two of the CPACE competencies from the distribution depicted in Figure 1
(Modeling & Abstraction and Algorithmic Thinking & Programming) and gives examples of
identifying features (descriptors) aligned to associated activities and characteristics for each
descriptor.

Table 5. Descriptors and Associated Activities/Characteristics for the Modeling & Abstraction
and Algorithmic Thinking & Programming Competencies from Figure 1

Modeling & Abstraction
Descriptors Activities/Characteristics

Representation of a problem as a
model (equation, graph, relationship,
simulation model)

Use of appropriate assumptions and justifications.
Identification of most crucial assumptions Parsimony.
Use of correct approximations.
Correct choice of variables

Implementation of the model
(computational/mathematical
approach) to obtain solution

Use of appropriate approach and applies generalizable solution.
Reusability
Correctness of the approach

Abstraction of computation Appropriate decomposition of the implementation into small
cohesive parts each of which is tested and debugged until
complete
Assembles and tests components for complete solution

Analyses of results/solution Result is correct and recognized as such; self-corrected if
necessary
Meets specifications, codes or constraints

Algorithmic Thinking & Programming

P
age 24.1268.10

Descriptors Activities/Characteristics
Use top-down design, and refinement
to develop algorithms

Appropriate documentation of the design and use of high level
descriptions of the solution before writing code (e.g use of
flowcharts)

Selection of computational tools
(e.g., programming language,
software functions or features)

Selection of the most appropriate computational tool to implement
the best solution

Use of data structures (record, array,
list)

Matches characteristics of the data to the appropriate data structures
(e.g., data types; structures, arrays) for efficient processing

Creation of generalizable solutions
by parameterizing solutions

Writing of reusable code that utilizes parameters to specify
individual cases

Good programming style Writing of readable code; appropriate documentation, control:
repetition (iteration and /or recursion), decision constructs

Program testing Successful identification and debugging of problems

Initial pilot analyses using the rubric to assess and analyze student artifacts (homework

assignment and course projects) revealed that employing the artifacts alone made it difficult to
recognize students’ computational thinking processes [let alone measure computational
competencies] as they solved engineering problems.

Interview Analyses

One of the most challenging aspects during the implementation phase has been the lack of
assessment instruments to measure student computational competencies. Initial analyses of
student artifacts using the CPACE computational competencies rubric revealed that to
understand the students’ computational thinking processes as they solve engineering problems,
we needed to complement the artifact analyses with student interviews.

We conducted one-hour semi-structured interviews with students enrolled in the target
courses. Our objectives were to better understand the process by which students solve
engineering problems using computational tools, specifically how, when and why computational
tools are employed during the problem solving process. Students described their thought process
as they solved the engineering problem using their course projects as a guide for both interviewer
and interviewee.

Interview analyses have enabled us to more clearly align the CPACE computational
competencies [using the rubric] and the student artifacts. Hence we have a better understanding
about the ways in which students use computational skills as they solve engineering problems
(table 6). While these are preliminary analyses this strategy is helping us triangulate between the
different data sources i.e. self-reported students’ surveys, students’ artifacts, computational
rubric and interviews. In particular the rich interview data have enabled us to better align the
CPACE computational competencies [using the rubric] and the student artifacts including
projects and other course assignments.

Our preliminary interview analyses agree with the results observed in the surveys; in general,

students have limited conceptual understanding about underlying computational principles and
fail to integrate their knowledge in ways that would allow them to extend what they learn in one
context to new and different contexts.

P
age 24.1268.11

Table 6. Sample interview data aligned to exemplar CPACE computational competencies
(depicted in figure 1)

Exemplar Computational Competencies Interview Quotes
Algorithmic thinking and programming: students
who describe the use/function of particular
computational tools and as a result demonstrate an
understanding (or lack of) of the tool. How/why a
particular tool works the way it does; references to
programming, coding, debugging, design, iteration,
parameterization, refinement, and utility of
particular applications*.

“It's such a multicomponent system that to try to do
it by hand would be just tedious … went to
Polymath …hit go and it'll, it spits out a table and a
graph if you want it.”
“MATLAB has more built-in functions in terms of
math. Also, you know, Python is a powerful
language, but it will require me as a programmer to
code most of the functions and math myself, and
that just leaves more room for error”

Digital representation of information: examples
include references to: conversion, copy and pasting,
migrating info, and representing data across fields*.

“[…] there's just so many things you need to input,
to get Aspen to actually work, you know, the
number of stages, the diameter of the column, the
feed stage, the reflux ratio..”

Limitations of technology: examples include
references to tool capabilities/purposes in relation to
the problem; awareness of the assumptions made
when simulating a 'real world' phenomenon;
assessing what/when tool can be applied*.

“So instead of creating an Aspen document first and
like getting our whole process flow in there and
then trying to get it all to work, we figured it's
probably just a better idea to, to tackle each
individual process first and then try to like
interconnect them in Aspen.”

Modeling and abstraction: Examples include
references to methods for representing 'real world'
phenomena through computer modeling. References
to representing a problem as a model (system
equations, graphs, simulations) and implementing
the model to obtain solution or solve problems
(debug)*.

“From my basic knowledge, just being able to type
in line then you’re able to create a line which has a
simple command. [...] you make a rectangle so those
simple commands kind of add –gave me a sense of
what I wanted to try.”

* Descriptor from the rubric used to inform the interview coding process. The underlined items
correspond to the computational competencies depicted in Figure 1.

Summary and Future Directions

The Collaborative Process to Align Computing Education with Engineering Workforce
Needs (CPACE) project brings together MSU, LCC and business and industry leaders in an
effort to transform undergraduate computing education within the engineering and technology
fields. Based on the results of our employer interviews and employee surveys we developed a
Computer Science concept distribution framework to guide the design and implementation of a
curricular reform (Figure 1), beginning in two academic majors at MSU, chemical and civil
engineering, and pre-engineering transfer courses at LCC. Our goal is to better align our
engineering graduates capabilities – to solve disciplinary problems utilizing computational skills
– with the needs of industrial stakeholders represented in this distribution. To accomplish an
integrated computing experience, we integrate problems derived from contemporary industrial
engineering into the target courses. These problems provide a context where students are
required to apply various computational concepts for their solution. The underlying computing
concepts – fitting course objectives – will be explicitly addressed across the various courses and
throughout the degree programs.

Our analyses indicate that students who are engaged in project or classroom activities that
encourage the use of computational skills report statistically significant gains in the use and

P
age 24.1268.12

application of important computational competencies. Our results also suggest that participation
in the course project is helping students feel more confident with respect to their computational
abilities. Very importantly both Chemical and Civil engineering students entering their
disciplinary courses either at the sophomore or junior level reported a marked drop in confidence
in their ability to use and apply important computational skills (e.g. MATLAB and EXCEL-
related), and in all cases, student confidence declines the longer since they took EGR 102. A
major conclusion of our study is that students have difficulties making connections between
different computational tools and skills and fail to integrate their knowledge in ways that would
allow them to extend what they learn in one context to new and different contexts. This points to
a limited understanding about underlying computational principles.

While we still have massive amounts of data to analyze from both the surveys and the
interviews, our studies point to the need of a deeper revision of the instructional practices for the
teaching and learning of computational competencies, particularly at the introductory level to
help students develop a cohesive computational knowledge based on computing principles that is
well integrated with the engineering practice. Principally, it is very important to develop valid
and reliable assessment instruments for pedagogical or research purposes. We will build on our
existing assessment framework to refine the design and further develop performance-based
assessment tools (formative and summative) and scoring rubrics to measure computational
competencies for engineers.

Acknowledgments

We would like to especially acknowledge the participation and collaboration of the faculty

teaching the target courses; they have been instrumental during the implementation of the
project. This material is based upon work supported by the National Science Foundation (NSF)
under awards 722221 and 0939065. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of
the NSF.

References

[1] Bernold, L. E., Spurlin, J. E., & Anson, C. M. (2007). Understanding our students: A longitudinal study of
success and failure in engineering with implications for increased retention. Journal of Engineering Education, 96
(3), 263-274.

[2] Denning, P. J. (1992). Educating a new engineer. Communications of the ACM, 35 (12), 82-97.

[3] Froyd, J. E., & Ohland, M. W. (2005). Integrated engineering curricula. Journal of Engineering Education, 94
(1), 147-164.

[4] National Research Council (Ed.). (2002). Evaluating and improving undergraduate teaching in science,
technology, engineering, and mathematics . Washington, DC: National Academies Press.

[5] Seymour, E., & Hewitt, N. M. (1997). Talking about leaving: why undergraduates leave the sciences. Boulder,
Colo.: Westview Press.

P
age 24.1268.13

[6] Sheppard, S. D., Macatangay, K., Colby, A., & Sullivan, W. M. (2008). Educating engineers: Designing for the
future of the field : Jossey-Bass.

[7] Heldrich Center, Harvard University’s Labor and Worklife Program, & National Bureau of Economic Research,
2008

[8] Alexander, P. A. (2003). The development of expertise: The journey from acclimation to proficiency.
Educational Researcher, 32(8), 10-14.

[9] Bransford, J. (Ed.). (2000). How people learn brain, mind, experience, and school (Expanded ed.). Washington,
D.C.: National Academy Press.

[10] Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and
Instruction, 8 (4), 292-332.

[11] Denzine, G. (2007, June). Five misconceptions about engineering students' motivation that affect the
teaching and learning process. Paper presented at the American Society for Engineering Education, Honolulu,
Hawaii.

[12] Smith, K. A. (1999, October 28-29, 1999). Cooperative learning and the new paradigm for engineering
education. Paper presented at the ABET Annual Meeting, Baltimore, MD.

[13] Vergara, C. E., Urban-Lurain, M., Dresen, C., Coxen, T., MacFarlane, T., Frazier, K., et al. (2009a).
Leveraging workforce needs to inform curricular change in computing education for engineering: The CPACE
project. Computers in Education Journal, Vol XVIIII (4), 84-98.

[14] Vergara, C. E., Urban-Lurain, M., Dresen, C., Coxen, T., MacFarlane, T., Frazier, K., et al. (2009b). Aligning
computing education with engineering workforce computational needs: New curricular directions to improve
computational thinking in engineering graduates. Paper presented at the Frontiers in Education, San Antonio, TX.

[15] Committee on the Engineer of 2020, Educating the engineer of 2020: Adapting engineering education to the
new century. National Academy Press: Washington, DC, 2005.

[16] Educating Engineers: Designing for the future of the field. The Carnegie Foundation for the Advancement of
Teaching 2008.

[17] Vergara, C. E., Urban-Lurain, M., Dresen, C., T., Frazier, K., et al. (2011). Computational Expertise in
Engineering: Aligning Workforce Computing Needs with Computer Science Concepts. ASEE, Vancouver BC, AC
2011-1050.

[18] Ohmann, P. R., Green, A. S., & Johnston, M. E. (2008). Infusing computation throughout the undergraduate
curriculum. Computers in Education Journal, 18 (3), 12-22.

[19] Vergara, C. E., Briedis, D., Buch, N., Esfahanian, A-H., Sticklen, J., et al. (2012). Integrating computation
across engineering curricula: Preliminary impact on students. Paper presented at the Frontiers in Education, Seattle,
WA.

[20] Urban-Lurain, Mark, Anderson, Charles W., Parker, Joyce, & Richmond, Gail. (2006, March 20-24). Fluency
with information technology in teacher education: Moving from novice towards expertise. Paper presented at the
Society for Information Technology & Teacher Education, Orlando, FL.

P
age 24.1268.14

