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Enhancement of Computational Competencies Across 
Engineering Curricula 

 
Abstract 
 

In the global economy of the 21st century, the preparation of a competitive U.S. workforce 
with knowledge and understanding of critical computing concepts, methodologies, and 
techniques is essential. The Collaborative Process to Align Computing Education with 
Engineering Workforce Needs (CPACE) team developed a partnership among various 
stakeholders – Michigan State University (MSU) and Lansing Community College (LCC) and 
business and industry leaders – to identify the computational skills that are essential for a 
globally competitive engineering workforce. Our goal is to redesign the role of computing within 
the engineering programs at MSU and LCC to develop computational competencies –informed 
by industry needs– by infusing computational learning opportunities into the undergraduate 
engineering curriculum. The emphasis of this paper is on the curricular implementation phase 
(CPACE II) focusing on: 

• Preliminary survey results across target courses at MSU.  
• Efforts to assess students’ computational competencies using a rubric based on the 

CPACE computational competencies.  
• Brief discussion of our efforts to develop and validate assessments to measure 

computational competencies for engineering students. 
 

Introduction 
 
The learning sciences have influenced repeated calls for improving engineering education 

that focus on providing students with the opportunities to integrate their knowledge across 
disciplines through authentic problem solving 1- 6. Computation for engineering cannot simply be 
addressed with one or two courses in computing or a few examples scattered in the curriculum, 
but must be integrated as part of an engineer’s training to become a “Holistic Engineer” 7. 

 
One of the challenges of preparing engineers for the rapidly changing workplace is to provide 

the foundations they need to choose among and use a wide range of changing computational 
tools. To address the computational needs of engineers, we must ground the curricula in 
problems from engineering while helping students acquire the competence to understand 
underlying principles and abstractions that will help them solve new problems using new tools. 
Our educational challenge is to help engineering students move from novice understanding of 
computing that focuses on the superficial operation of particular software, towards competence 
expertise that is grounded in a deeper conceptual understanding relevant to their engineering 
discipline 8. Drawing upon the extensive literature on how people learn 9, particularly in 
engineering 10-12, our goal is to infuse computational competencies throughout the engineering 
curricula by integrating problems of disciplinary engineering practice.  
 
 
CPACE Project Overview 
 

The CPACE project is divided in two phases, CPACE I and II. During CPACE I we: a) 
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identified the computational competencies needed in the engineering workplace; b) developed a 
‘data-to-computer science (CS)-concept map’ to translate our research findings into fundamental 
CS concepts that can be used in curricular implementation. Our results are consistent with other 
research on engineering education13, 14 and details of the process and findings from CPACE I are 
presented elsewhere15, 16. 
 
CPACE I: Workforce-Computing Needs 

 
To understand engineering workplace needs for computational competence both at the 

practical-tool level and at the computational problem solving level, we interviewed and surveyed 
engineering stakeholders. We organized the results of the interview and survey analyses in three 
categories: general skills, computational skills and future of engineering practice. Employers 
place high value on: a) interpersonal skills such as communication, ability to organize and 
present data, and the ability to function in a team; b) critical and innovative thinking and problem 
solving; and (c) employers see trends towards computational globalization which translates to the 
need for engineers to understand business practices and the importance of integrating 
engineering data across larger systems. The ability of engineers to understand computational 
principles in the context of the engineering practice allows them to select and use computation to 
solve engineering problems. With regard to specific software, Excel, design and modeling 
software, and data and project management software were identified as very important to the 
engineering practice13, 14. Table 1 presents a summary of the skills identified by engineering 
stakeholders. 

 
Table 1. Categories of skills identified by engineering stakeholders 

General Skills Computational Aspects Future Engineering Practice 
- Communication 
skills 
- Team work 
- Critical thinking 
- Innovative thinking 
- Problem solving 
(both conceptual and 
operational) 
- Ability to learn/adapt 

- Basic computational skills.  
- Understanding of principles, 
application and limitations of 
computational tools 
- Using technology to collaborate at all 
levels  
- Use of technology to support broad 
problem solving and decision making 
- Familiarity with multiple software 
systems 
- Ability to move between abstractions 
in software and physical systems 
- Multiple CAD programs including 3D 
modeling 
- Process simulation packages 
- Numeric computational platforms 
- Excel (High level capabilities) 
- MS Office 
- Some programming 

-Corporate development, leadership, 
management skills. 
- Project management software 
- Increasing integration of engineering 
data across larger systems 
- More business intelligence embedded in 
systems 
- Data Mining 
- Globalization 
- Environmental impact across 
disciplines. Design for the environment 
(DFE) 
- Research and development including: 
• Material development/new applications 

for existing material. 
• Electronic communication. 
• Next generation of technology 
- Increasing use of simulation to reduce 
materials usage in design phase. 

  
 

CPACE I: Workforce-Computing Needs Alignment to CS-Concepts 
 

To translate our employer data into computer science (CS) concepts that can be integrated in 
the curricula, we focused on identifying the underlying computational principles. These 
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computational principles incorporate key components of computational needs in the broad 
[workplace] engineering context. Details of the process and findings from this phase of the 
project are presented elsewhere17. The chart in Figure 1 shows the distribution of the 
computational competencies – required in the engineering workplace – mapped to CS concepts 
that can be used to implement curricular changes. Our goal is to better align our engineering 
graduates computational problem solving capabilities with the needs of industrial stakeholders 
represented in this distribution. 

 

 
 

Figure 1. Distribution of engineering workplace computational competencies aligned to CS 
concepts17. 

 
The second and current phase of the project (CPACE II) comprises the implementation of 

curricular revisions in two engineering disciplines Chemical and Civil at MSU and pre-
engineering courses at LCC. In this paper we focus on a subset of the survey analyses and 
discuss our efforts to analyze student artifacts using a rubric that we created based on the 
CPACE computational competencies depicted in Figure 1. We will briefly discuss our efforts to 
develop and validate assessments to measure computational competencies for engineering 
students. 
 
Curricular Implementation (CPACE II) 

 
In CPACE II our goal is to infuse computational problem-solving competencies throughout 

the curricula18, 19. To achieve this goal and bring about an integrated computing experience, our 
strategy entails using problems derived from contemporary industrial engineering practice. The 
problems are developed in consultation with stakeholders from industry, and faculty from 
engineering and CS to ensure that they exemplify relevant industrial scenarios within the 
discipline. Together the team will form the educational experience to further the development of 
computational problem solving in the students. These problems provide a context where students 
are required to apply various computational concepts for their solution. Initial implementation 
includes Chemical (CHE) and Civil (CE) Engineering at MSU and pre-engineering courses at 
LCC. We targeted courses across all four years of the engineering curricula. Table 2 summarizes 
the courses targeted at MSU. 
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Table 2. Description of courses targeted at Michigan State University 

Course name Level Description 
Approximate 

annual 
enrolment 

Engineering 
modeling (EGR 
102) 

First year Intense computational course part of <university’s> First 
Year Engineering Program. 

900 

Civil Eng. (CE) 
Statics (CE 221) 

Sophomore Vector description of forces and moments. 2 and 3- D 
equilibrium of particles and rigid bodies. Analysis of 
trusses, frames, and machines. Coulomb friction. 

700 

CE Str. Anal & 
Design (CE 305) 

Junior Theory of structural analysis for statically determinate 
structures. Qualitative structural analysis and behavior. 
Load estimation and placement. Introduction to structural 
analysis computer software. Introduction to statically 
indeterminate structures. 

120 

CE Intro Fluid 
Mech. (CE 321) 

Junior Fluid properties, fluid statics, fluids in motion. 
Conservation of mass, energy, and momentum. 
Dimensional analysis and similitude. Internal and external 
flows. Applications. 

120 

Chemical Eng. 
(CHE) Modeling 
and Analysis of 
Transport 
Phenomena 
(CHE 210) 

Sophomore Steady and unsteady state material and energy balances. 
Fluxes and rate processes. Shell balances. Balance 
equations for mass, heat, and momentum transport. 
Analogies among mass, heat, and momentum transport. 
Analytical and numerical solutions. Application of 
computational methods to problem solutions. 

110 

Mass Transfer 
and Separations 
(CHE 312) 

Junior Diffusion. Mass transfer coefficients. Design of 
countercurrent separation systems, both stage wise and 
continuous. Distillation, absorption, extraction. 
Multicomponent separations. Batch processes. Computer-
aided design methods. 

110 

Thermodynamics 
for Chemical 
Engineering 
(CHE 321) 

Junior First and second laws. Thermodynamics of flow and energy 
conversion processes. Properties of single and multi-
component systems. Phase equilibria. Chemical equilibria 
in reacting systems. 

110 

 
 

Data Collection and Analyses 
 
The Introduction to Engineering Modeling (EGR 102) is one of the cornerstone academic 

components of the first year engineering experience at MSU. Approximately 900 students, 
primarily freshmen, enroll in EGR 102 per academic year. The course focuses on the solution of 
engineering problems using computational tools (e.g., MATLAB and EXCEL). Because the 
course serves seven engineering disciplines, course instruction is focused on helping students 
develop transferable computational expertise that students can subsequently apply to the use of 
discipline-specific software in later coursework and their professional practice. Beginning with 
EGR 102 and the computational skills taught in EGR 102 we are interested in understanding how 
students’ computational problem solving skills using tools such as MATLAB and excel progress 
through the curricula? Are students able to transfer their conceptual understanding and 
computational skills to solving problems that require the use of new tools and computational 
skills?  

 
Following a mixed methods approach, quantitative and qualitative data are collected. We 
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collected student surveys at the beginning and end of target courses; we also conducted student 
focus groups and interviews. Standard class data on learning outcomes and sample course work 
e.g. final report on the assigned problem and relevant homework assignments from the target 
courses at LCC and MSU were also collected and assessed using a computational competencies 
rubric that we designed.  

 
To gauge how students’ computational skills progress through the curricula, we created self-

reported survey instruments that ask students about their confidence to perform specific tasks in 
each of the software packages.  The surveys are constructed and administered online. The 
instrument included open- and close-ended items. The goals of the student surveys were to: (a) 
measure general attitudes towards engineering; (b) measure attitudes towards computational 
problem solving; and (c) determine the use and application of computational tools. The surveys 
for all the target courses included the same MATLAB and excel related questions. Questions 
about specific software tools required in a particular course were also included in consultation 
with the instructor (e.g. SAP 2000 for CE 305 and ASPEN for CHE 312). 

 
Test/retest of these instruments were performed with a population of teachers and pre-service 

teachers as part of a project aimed to improve the integration of technology in a teacher 
education program by promoting Fluency with Information Technology (FITness)20. We 
performed factor analysis (FA) to determine how many factors the survey questions load on. The 
FA on items for Excel together or MATLAB together revealed that they load only on single 
factors (one excel, one MATLAB). For all survey analyses we used SPSS V20 and performed 
1000 bootstrap iterations to estimate confidence intervals for all regression coefficients, using a 
95% confidence interval for significance. The open-ended responses were analyzed using the 
SPSS Text Analysis for Surveys.  

 
To complement our analyses and understand the complexity of the students’ computational 

thinking processes we conducted semi-structured interviews and focus groups; the objective of 
the interviews was to focus on the role of computation during the problem solving process. 
During the interviews students were asked to describe/recount their thought processes as they 
solved the engineering problem. The interviews were recorded and transcribed verbatim; the 
transcripts were segmented and coded using Atlas Ti software tool for the analyses of qualitative 
data. We are currently completing the analyses of the interview data; complete and detailed 
results of this qualitative data set will be presented in a forthcoming manuscript. 

 
The majority of the data presented in this paper corresponds to survey data collected from 

students beginning in Fall, 2011, through Spring, 2013. There are brief references to preliminary 
interview data as we are still completing those analyses. 

 
Survey Analyses  

 
These analyses include survey data collected from students beginning in Fall, 2011, through 

Spring, 2013. The courses included in these analyses are EGR102 (freshman level), CHE 210 
(sophomore level) and CHE 312 (junior level). As indicated above student surveys are 
administered at the beginning (pre) and end (post) of EGR 102, CHE 210, and CHE 312. This 
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allowed us to track the same students as they moved from EGR 102 through the subsequent 
courses.  

 
At MSU the one formal place in the engineering curriculum where students are explicitly 

taught computational tools is EGR 102; in this course students learn to use Excel and MATLAB 
to compute various numeric methods. While students in EGR 102 are graded in part on their 
ability to use these software packages, grades in their subsequent engineering courses do not 
explicitly evaluate their skill using these tools.  To gauge how students’ skills with these tools 
progress through the curricula, we created self-reported survey instruments that ask students 
about their confidence to perform specific tasks in each of the software packages.  Some example 
questions for Excel include “I can compute the average of a column of numbers using a built-in 
function” and “I can create a macro to perform a mathematical function for which I know the 
formula.”  For each question students are asked to rate their ability on a 1-5 scale where 1 is “I 
don’t know what that means” to 5, “I know what it means and am certain I can do it”.   
 

We performed exploratory factor analysis on these instruments and determined that there is a 
single dimension on which all items load, this allowed us to create composite total scores for 
Excel and MATLAB by averaging their responses to all items on the instrument to account for 
students who may not answer every item. 

 
Students in EGR 102 reported statistically significant gains in most computational skills 

related to MATLAB (p< .005 Wilcoxon signed rank test for related samples pre and post survey) 
and Excel (p< .005 Wilcoxon signed rank test for related samples pre and post survey). Some of 
these skills include writing FOR loops and nested FOR loops, and basic programming in 
MATLAB. These results indicate that participation in the course project is helping students feel 
more confident with respect to their computational abilities. The survey results for students at the 
end of the EGR 102 course correlated with the final course grade (Excel, r=.11, p < .003; Matlab, 
r=.272, p< .0001).  Note that most of the grade in EGR 102 was based upon MATLAB, rather 
than Excel, assignments. 
 

To determine how student abilities with Excel and MATLAB progress throughout the 
curricula, we administered these surveys to students at the beginning and end of EGR 102, CHE 
210, and CHE 312 (freshman to junior).  This allowed us to track the same students as they 
moved from EGR 102 through the subsequent disciplinary courses. EGR 102 is required for 
most students in the College of Engineering, but the Chemical Engineering courses are required 
only for Chemical Engineering students. Table 3 shows the numbers of students who completed 
the EGR 102 AND the CHE 210 surveys.  
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Table 3. Cross tabulation of students who completed both EGR 102 AND CHE 210 surveys  
 EGR102_Crse_Term_Code Total 

FS11 FS12 SS11 SS12 SS13 

CHE210_Crse_Term_Code 

 153 212 198 387 443 1393 

FS11 0 0 7 0 0 7 

FS12 4 0 5 8 0 17 

SS12 9 0 24 1 0 34 
Total 166 212 234 396 443 1451 

 
The columns show the numbers of students who took the EGR 102 survey each semester and 

the rows show the numbers of students who took the CHE 210 survey. Thus, 166 students took 
EGR 102 in Fall 2011.  Of those students, 4 students took CHE210 in Fall 2012 and 9 took CHE 
210 in Spring, 2012.  Of the 1451 EGR 102 students, 58 students took CHE 210 (numbers 
highlighted in red in table 3). 
 

Table 4 shows the same information for students who took EGR 102 and CHE 312.  Note 
that a total of 49 students (numbers highlighted in red in table 4) took both EGR 102 and CHE 
312 in this time period. 
 
Table 4. Cross tabulation of students who completed both EGR 102 AND CHE 312 surveys 
 EGR102_Crse_Term_Code Total 

FS11 FS12 SS11 SS12 SS13 

CHE312_Crse_Term_Code 

 154 212 205 388 443 1402 

SS12 0 0 7 1 0 8 

SS13 12 0 22 7 0 41 
Total 166 212 234 396 443 1451 

 
We compared the results across courses moving from freshman (EGR 102) to sophomore 

(CHE210) and junior (CHE312) levels; figure 2 shows the mean scores for questions related to 
the use of excel for students who took the pre- and post-course surveys in EGR 102, CHE 210 
and CHE 312.  The error bars are the 95% confidence interval (CI).  Note that the student 
confidence increases from the beginning of EGR 102 (EGR102 pre-excel total in figure 2) to the 
end of the course (EGR102 post-excel total in figure 2), but then reverts to pre-EGR 102 levels 
when they start CHE 210 (CHE210 pre-excel total in figure 2).  Their confidence continues to 
increase across CHE 210 (usually taken in the sophomore year) and CHE 312 (usually taken in 
the junior year).  
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Figure 2. Mean excel scores for students who took the pre- and post-course surveys in EGR 102, 
CHE 210 and CHE 312. 

 
Figure 3 shows the mean scores for questions related to the use of MATLAB. In this case, 

confidence in the use of MATLAB increases dramatically in EGR 102 (EGR102 pre and post 
MATLAB total in figure 3), but then decreases at the start of CHE 210.  It increases by the end 
of CHE 210, but declines again at the start of CHE 312 and again increases.  It is important to 
note that both CHE 210 and 312 courses provide students the opportunity to engage in course 
related activities such as projects and homework where they have the opportunity to practice 
their MATLAB skills.  

 
 

 
Figure 3. Mean MATLAB scores for students who took the pre- and post-course surveys in EGR 
102, CHE 210 and CHE 312 
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There is a difference between the patterns observed for the MATLAB-related skills (figure 3) 
and the excel-related skills where students’ self-reported confidence continues to increase across 
CHE 210 and CHE 312 (figure 2). A likely explanation comes from our interview data. 
Preliminary results from students’ interviews indicate that they use Excel much more frequently 
in all of their disciplinary course work than they use MATLAB.  They tend to use MATLAB 
only if the assignment specifically instructs them to, in contrast they will use Excel as their first 
choice when given the freedom to pick a tool.  
 

Our preliminary survey analyses indicate that students who are engaged in an intense 
computational course such as the EGR 102 at MSU or the Numerical Methods and MATLAB 
course at LCC (results not shown) report statistically significant gains in the use and application 
of important computational skills and competencies after completing the course project. In all the 
examples analyzed students entering their disciplinary courses either at the sophomore or junior 
level report a drop in confidence in their MATLAB-related computational skills. Students in the 
disciplinary courses who are engaged in a project or classroom activities that encourage the use 
of those computational skills report regaining confidence in the use of those skills after 
completing the project. This is exemplified in both the sophomore and junior courses in CHE 
where students have the opportunity to practice their MATLAB skills in the context of the 
project and other course related activities.  
 
CPACE Computational Rubric  

 
To compare students’ self-reported survey data regarding their computational abilities and 

their actual performance in classroom assignments, we designed and are currently developing 
rubrics based on the computational competencies aligned to CS concepts presented in figure 1.  
Table 5 shows two of the CPACE competencies from the distribution depicted in Figure 1 
(Modeling & Abstraction and Algorithmic Thinking & Programming) and gives examples of 
identifying features (descriptors) aligned to associated activities and characteristics for each 
descriptor. 

 
Table 5. Descriptors and Associated Activities/Characteristics for the Modeling & Abstraction 
and Algorithmic Thinking & Programming Competencies from Figure 1 

Modeling & Abstraction 
Descriptors Activities/Characteristics 

Representation of a problem as a 
model (equation, graph, relationship, 
simulation model) 

Use of appropriate assumptions and justifications.  
Identification of most crucial assumptions Parsimony.  
Use of correct approximations. 
Correct choice of variables 

Implementation of the model 
(computational/mathematical 
approach) to obtain solution 

Use of appropriate approach and applies generalizable solution. 
Reusability 
Correctness of the approach 

Abstraction of computation Appropriate decomposition of the implementation into small 
cohesive parts each of which is tested and debugged until 
complete  
Assembles and tests components for complete solution 

Analyses of results/solution Result is correct and recognized as such; self-corrected if 
necessary 
Meets specifications, codes or constraints 

Algorithmic Thinking & Programming 
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Descriptors Activities/Characteristics 
Use top-down design, and refinement 
to develop algorithms 

Appropriate documentation of the design and use of high level 
descriptions of the solution before writing code (e.g use of 
flowcharts) 

Selection of computational tools 
(e.g., programming language, 
software functions or features) 

Selection of the most appropriate computational tool to implement 
the best solution 
 

Use of data structures (record, array, 
list) 

Matches characteristics of the data to the appropriate data structures 
(e.g., data types; structures, arrays) for efficient processing 

Creation of generalizable solutions 
by parameterizing solutions 

Writing of reusable code that utilizes parameters to specify 
individual cases 

Good programming style Writing of readable code; appropriate documentation, control: 
repetition (iteration and /or recursion), decision constructs 

Program testing Successful identification and debugging of problems 
 

 
Initial pilot analyses using the rubric to assess and analyze student artifacts (homework 

assignment and course projects) revealed that employing the artifacts alone made it difficult to 
recognize students’ computational thinking processes [let alone measure computational 
competencies] as they solved engineering problems.  
 
Interview Analyses 
 

One of the most challenging aspects during the implementation phase has been the lack of 
assessment instruments to measure student computational competencies. Initial analyses of 
student artifacts using the CPACE computational competencies rubric revealed that to 
understand the students’ computational thinking processes as they solve engineering problems, 
we needed to complement the artifact analyses with student interviews. 
 

We conducted one-hour semi-structured interviews with students enrolled in the target 
courses. Our objectives were to better understand the process by which students solve 
engineering problems using computational tools, specifically how, when and why computational 
tools are employed during the problem solving process. Students described their thought process 
as they solved the engineering problem using their course projects as a guide for both interviewer 
and interviewee.  
 

Interview analyses have enabled us to more clearly align the CPACE computational 
competencies [using the rubric] and the student artifacts. Hence we have a better understanding 
about the ways in which students use computational skills as they solve engineering problems 
(table 6). While these are preliminary analyses this strategy is helping us triangulate between the 
different data sources i.e. self-reported students’ surveys, students’ artifacts, computational 
rubric and interviews. In particular the rich interview data have enabled us to better align the 
CPACE computational competencies [using the rubric] and the student artifacts including 
projects and other course assignments. 

 
Our preliminary interview analyses agree with the results observed in the surveys; in general, 

students have limited conceptual understanding about underlying computational principles and 
fail to integrate their knowledge in ways that would allow them to extend what they learn in one 
context to new and different contexts. 
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Table 6. Sample interview data aligned to exemplar CPACE computational competencies 
(depicted in figure 1) 

Exemplar Computational Competencies Interview Quotes 
Algorithmic thinking and programming: students 
who describe the use/function of particular 
computational tools and as a result demonstrate an 
understanding (or lack of) of the tool. How/why a 
particular tool works the way it does; references to 
programming, coding, debugging, design, iteration, 
parameterization, refinement, and utility of 
particular applications*. 

“It's such a multicomponent system that to try to do 
it by hand would be just tedious … went to 
Polymath …hit go and it'll, it spits out a table and a 
graph if you want it.” 
“MATLAB has more built-in functions in terms of 
math. Also, you know, Python is a powerful 
language, but it will require me as a programmer to 
code most of the functions and math myself, and 
that just leaves more room for error” 

Digital representation of information:  examples 
include references to: conversion, copy and pasting, 
migrating info, and representing data across fields*. 

“[…] there's just so many things you need to input, 
to get Aspen to actually work, you know, the 
number of stages, the diameter of the column, the 
feed stage, the reflux ratio..” 

Limitations of technology: examples include 
references to tool capabilities/purposes in relation to 
the problem; awareness of the assumptions made 
when simulating a 'real world' phenomenon; 
assessing what/when tool can be applied*. 

“So instead of creating an Aspen document first and 
like getting our whole process flow in there and 
then trying to get it all to work, we figured it's 
probably just a better idea to, to tackle each 
individual process first and then try to like 
interconnect them in Aspen.” 

Modeling and abstraction: Examples include 
references to methods for representing 'real world' 
phenomena through computer modeling. References 
to representing a problem as a model (system 
equations, graphs, simulations) and implementing 
the model to obtain solution or solve problems 
(debug)*. 

“From my basic knowledge, just being able to type 
in line then you’re able to create a line which has a 
simple command. [...] you make a rectangle so those 
simple commands kind of add –gave me a sense of 
what I wanted to try.” 

* Descriptor from the rubric used to inform the interview coding process. The underlined items 
correspond to the computational competencies depicted in Figure 1. 
 
Summary and Future Directions 
 

The Collaborative Process to Align Computing Education with Engineering Workforce 
Needs (CPACE) project brings together MSU, LCC and business and industry leaders in an 
effort to transform undergraduate computing education within the engineering and technology 
fields. Based on the results of our employer interviews and employee surveys we developed a 
Computer Science concept distribution framework to guide the design and implementation of a 
curricular reform (Figure 1), beginning in two academic majors at MSU, chemical and civil 
engineering, and pre-engineering transfer courses at LCC. Our goal is to better align our 
engineering graduates capabilities – to solve disciplinary problems utilizing computational skills 
– with the needs of industrial stakeholders represented in this distribution. To accomplish an 
integrated computing experience, we integrate problems derived from contemporary industrial 
engineering into the target courses. These problems provide a context where students are 
required to apply various computational concepts for their solution. The underlying computing 
concepts – fitting course objectives – will be explicitly addressed across the various courses and 
throughout the degree programs. 
 

Our analyses indicate that students who are engaged in project or classroom activities that 
encourage the use of computational skills report statistically significant gains in the use and 
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application of important computational competencies. Our results also suggest that participation 
in the course project is helping students feel more confident with respect to their computational 
abilities. Very importantly both Chemical and Civil engineering students entering their 
disciplinary courses either at the sophomore or junior level reported a marked drop in confidence 
in their ability to use and apply important computational skills (e.g. MATLAB and EXCEL-
related), and in all cases, student confidence declines the longer since they took EGR 102. A 
major conclusion of our study is that students have difficulties making connections between 
different computational tools and skills and fail to integrate their knowledge in ways that would 
allow them to extend what they learn in one context to new and different contexts. This points to 
a limited understanding about underlying computational principles. 
 

While we still have massive amounts of data to analyze from both the surveys and the 
interviews, our studies point to the need of a deeper revision of the instructional practices for the 
teaching and learning of computational competencies, particularly at the introductory level to 
help students develop a cohesive computational knowledge based on computing principles that is 
well integrated with the engineering practice. Principally, it is very important to develop valid 
and reliable assessment instruments for pedagogical or research purposes. We will build on our 
existing assessment framework to refine the design and further develop performance-based 
assessment tools (formative and summative) and scoring rubrics to measure computational 
competencies for engineers. 
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