
Proceedings of the 2004 American Society for Engineering Education
Midwest Section Conference

Transitioning a Microcontroller Course from Assembly Language to C

Steve Menhart, Ph.D.

Dept. of Engineering Technology
University of Arkansas at Little Rock

2801 S. University Ave.
Little Rock, AR 72204

Abstract

This paper describes improvements made to an integrated lecture and laboratory course dealing
with microcontrollers, taught in the Engineering Technology Department, at the University of
Arkansas at Little Rock (UALR). This course initially used the Motorola 68HC11
microcontroller, but currently uses the Motorola MC9S12DP256B microcontroller. The course
was previously taught using assembly language, but has just been updated so that students now
program using C. The issues related to upgrading a course such as this from assembly language
to C are addressed in this paper.

Introduction

The use of programmable devices has become the paradigm of choice for circuit designers.
These devices result in cost-effective, flexible designs. There is an inherent appeal to circuits
whose application may be changed via reprogramming, as opposed to a change in hardware
components. Complex programmable logic devices (CPLDs) and field programmable gate
arrays (FPGAs) may be programmed using a hardware description language such as VHDL.
CPLDs and FPGAs provide very cost effective realizations of large combinational and sequential
logic circuits. However, a point is reached, particularly when arithmetic or timed operations are
involved when a microcontroller is a required. Indeed embedded microcontrollers are now
ubiquitous. The applied nature of engineering technology (ET) requires that students in the
electronics and computer ET fields be fully competent in the use of programmable devices, and
microcontrollers should certainly stand at the pinnacle of such degree programs. In order for
students to fully comprehend all aspects of embedded systems it is essential that they gain the
hands-on experience of actually programming and interfacing hardware to a microcontroller.
Assembly language is a very efficient method of programming small applications, and for those
well versed its art, the preferred method. However, industry has steadily moved towards
programming microcontrollers using high-level languages, most often using the C language. To

Proceedings of the 2004 American Society for Engineering Education
Midwest Section Conference

program in C, and generate the machine code to download to the microcontroller, a cross-
compiler is required.

Every engineering program has to be responsive to the needs of the employers of their students.
The baccalaureate Electronics and Computer Engineering Technology program, here at the
University of Arkansas at Little Rock has seen an increasing number of requests for us to teach
our microcontrollers course using C-programming. As a result the course is now taught in C,
although a minimal assembly language component is still included. It should be noted that the
department still teaches a parallel microprocessor course sequence, using Intel assembly
language.

Hardware

This course uses the Adapt9S12DP256 board, manufactured by Technological Arts1. This board
uses the Motorola 9S12DP256 chip (a derivative of the 68HC12), which is an extremely feature-
packed microcontroller. The 9S12DP256 has 12k of RAM, 4k of EEPROM, 256k of fast flash
memory, and two 10-bit, eight-channel analog-to-digital converters, plus many other features, all
on-chip. Although capable of interfacing to external memory so as to operate in an expanded
mode, it seems very unlikely that this would ever be necessary, given the amount of single-chip
mode memory available. All I/O lines and control signals are routed to two 50-pin interface
connectors, allowing the full use of all of its numerous ports. Figure 1 shows the
Adapt9S12DP256 development board. As can be seen the board is remarkably compact, and
designed to be modular and stackable with other types of boards. For student lab use, printed
circuit boards have been designed and constructed here at UALR. These boards plug into each
of the header strips, with each board having a set of terminal strips mounted to it. This allows
students to connect their experiments to the board, with minimized risk of damage to the board.
The current text used in the course covers both assembly language and C-programming, as
applied to the 68HC12 family2. The text supports an integrated hardware/software approach and
is a good fit for a lab-intensive course such as this3.

Proceedings of the 2004 American Society for Engineering Education
Midwest Section Conference

Figure1. The Adapt9S12DP256 development board.

Software and Lab Assignments

One advantage of programming in assembly language is that there are freeware tools available.
(This course used to use the miniIDE assembler throughout the course, provided as freeware
from MGTEK, which includes a built-in text editor, and integrated build and download features.)
A free, usable, cross-compiler for the 68HC12 could not be found. The C cross-compiler
selected and purchased is produced by ImageCraft, and lists for $199 for the standard version.
This compiler was chosen for the following reasons: it is relatively inexpensive compared to
other products on the market; it is supported in the course text; it is intuitive and easy to learn
how to use.

When the ImageCraft program is started the user sees a graphical user interface, and several
windows. The main window is the editor window, in which C-code is written and saved as a
file. This file can be added to a newly created project. The target device (in this case the 9S12)
is specified using the project options. When a target is specified the RAM and EEPROM
addresses and the stack pointer are also defined. Usually, the project will also contain header
files. The software also contains a terminal window, in which D-bug12 commands can be
executed, and the status of the microcontroller’s registers and memory can be displayed. There
is another window that shows the status of any on-going event, such as compiling the code. Any
error messages are also shown in this window. After the project has compiled successfully, an
S19 file is generated. The S19 file can be downloaded to the 9S12 from within the ImageCraft

Proceedings of the 2004 American Society for Engineering Education
Midwest Section Conference

program via a download button. The program is run by executing the “Go” command from
within the terminal window.

One disadvantage of using the ImageCraft software, as compared to the miniIDE, is that after
running the program the user cannot communicate with the 9S12 board unless the reset button is
pressed. When using the miniIDE and programming in assembly language, control is returned to
D-bug12, provided that the program is not of a continuous polling type. One consequence of not
having control returned to D-bug12 is that the user cannot view the contents of the
microcontroller’s registers, because pressing reset reinitializes them. (It does not change values
in RAM.) It also means that students cannot set user breakpoints or execute the program line by
line using the “trace” command. For example, before adopting C programming, the following
was a typical first student assignment using assembly language.

org $1000 ;place program beginning at address 100016
ldaa #$aa ;load register ‘a’ with aa16
ldab #$77 ;load register ‘b’ with 7716
deca ;decrement ‘a’
decb ;decrement ‘b’
swi ;software interrupt
stop ;stop processing
end

Students were instructed to look at registers ‘A’ and ‘B’ before the program was run, and then to
run the program and observe the changed data in ‘A’ and ‘B’. Students also executed the
program using the “trace” command, and set user breakpoints. These methods were valuable
debugging techniques. To get around the problem of not having control returned to D-bug12
when programming in C, printf statements can be used to display any desired information, such
as internal register values. The following complete program shows part of the first C-language
assignment.

#include <stdio.h>
main()
{
unsigned char save; //must define as unsigned char or char
asm("ldaa #100"); //in-line assembly language instructions
asm("deca");
asm("staa %save"); //% is used to access a local variable
printf("Register A = %d",save);//%i will not work
return 0;
}

In the short program above a local variable (it is within main) called ‘save’ is defined. The
contents of register ‘A’ are assigned to ‘save’, using the in-line assembly instruction staa (store
‘A’). Note the required % operator immediately before ‘save’. The printf statement causes the
value of register ‘A’, now stored in ‘save’, to be displayed on the terminal monitor as this part of
the program is executed by the microcontroller. The program below is similar, except that the
variable is now global (outside of main and accessible to any other functions). Note that in this

Proceedings of the 2004 American Society for Engineering Education
Midwest Section Conference

case the underscore must precede the variable ‘save’ (used for global variables). In both
programs the value of register ‘A’ will be displayed in a decimal format.

#include <stdio.h>
unsigned char save; //global variable
main()
{
asm("ldaa #$aa"); //hex aa=decimal 170
asm("deca");
asm("staa _save"); //underscore is used to access a global variable
printf("Register A = %d",save); //%i will not work
return 0;
}

As can be seen inline assembly language code can be inserted into a C-program using
asm(“…..”). Assembly language is required to view the contents of registers. In the short
programs above the printf statements are used for debugging purposes only, and would be
removed from a finalized embedded application. In the next lab students learn how to control
hardware (output port lines) using C. The following short program shows how bit zero of port
‘A’ may be turned on.

#include <stdio.h>
#define PORTA *(unsigned char volatile *)(0x0000)//physical address=0000(hex)
#define DDRA *(unsigned char volatile *)(0x0002)//”0x” prefix indicates hex
main()
{
DDRA=0x0f; //the lower 4 bits of port A are outputs
PORTA|=0x01;//PORTA=(PORTA OR 00000001), therefore the LSB bit = 1
return 0;
}

The “# define” statements are macros, which define pointers. For example, PORTA points to the
physical address of port A, which is 000016. DDRA refers to the data direction register of port
A. The “PORTA|=0x01” statement performs a logical bitwise OR operation with the current
values of the 8 bits of PORTA and 0116 (000000012). Therefore, only the least significant bit is
affected (turned on), all other bits are unchanged. Other bits that may be on remain on, and bits
that are off remain off. (This is analogous to a BSET assembly instruction.) If PORTA=0x01
were to be used instead to turn-on the least significant bit, any other bits currently on would be
turned off. The 0x prefix is used to indicate a hex value.

At this point in the course students are able to view the contents of any internal registers, and can
set the values of any output ports or control registers. Subsequent labs deal with the proper
configuration of control registers for specific functions, e.g. the timer, and analog-to-digital
units. Students also learn how to interface various devices to the microcontroller including a
keypad and an LCD display. The C required to accomplish these tasks is relatively
straightforward, and at this point students can progress more rapidly than when the course was
taught exclusively with assembly language. Additional references dealing specifically with the
application of C for microcontroller programming are included4,5.

Proceedings of the 2004 American Society for Engineering Education
Midwest Section Conference

Conclusions

The transition of this course from assembly language to C programming has proved very popular
with students. A minimal number of Motorola assembly language instructions are still
introduced in the course. Once students understand some basic fundamental concepts, they can
realize the full potential of programming a microcontroller using C. Most of our students decide
to use the 9S12 microcontroller in their capstone senior design project course, allowing them to
tackle larger problems using C. The changes made to this course are primarily a consequence of
requests from industry, and it is expected that the marketability of our students will be improved
as a result.

References

1. Technological Arts, Toronto, Canada, http://www.technologicalarts.com/.
2. Han-Way Huang, MC68HC12 An Introduction: Software and Hardware Interfacing, Thomson, 2003.
3. S. Menhart, “Updating Microcontroller Laboratory Courses,” proceedings of the 38th ASEE Midwest

Section Meeting, University of Missouri-Rolla, Missouri, September, 2003.
4. Ted Van Sickle, Programming Microcontrollers in C, LLH Technology Publishing, 2001.
5. Jonathan W. Valvano, Developing Embedded Software in C Using ICC11/ICC12/Hiware,

http://www.ece.utexas.edu/~valvano/embed/toc1.htm.

STEVE MENHART
Dr. Menhart joined the faculty of the University of Arkansas at Little Rock in 1989. He currently holds the rank of
Professor in the Department of Engineering Technology (ET), teaching in the Electronics and Computer ET
baccalaureate degree program. He obtained the Ph.D. and M.S. degrees in Electrical Engineering, from Texas Tech
University in 1988 and 1985, respectively.

